XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013) IOP Publishing Journal of Physics: Conference Series 488 (2014) 152003 doi:10.1088/1742-6596/488/15/152003

The α -dependence of transition frequencies

Andrius Alkauskas[†], Jacek Bieroń^{* 1}, Gediminas Gaigalas[‡]

* Uniwersytet Jagielloński, Instytut Fizyki imienia Mariana Smoluchowskiego, Kraków, Poland

[†] Lithuanian University of Educational Sciences, Vilnius, Lithuania

[‡] Vilnius University, Institute of Theoretical Physics and Astronomy, Vilnius, Lithuania

Synopsis Using multiconfiguration Dirac-Hartree-Fock (MCDHF) method we calculated the dependence of the transition frequencies on fine-structure constant α . The energies and relativistic energy shifts are compared with results from Dzuba et al [1], Berengut et al [2] and King et al [3].

Certain unification theories suggest the possibility that fundamental constants of nature are time dependent. We present new results of the dependence of the transition frequencies on finestructure constant α . The calculations were done with the MCDHF method.

 Table 1. Comparison of the results

Ion	Upper state	Energy	q	Ref.
C IV	$1s^2 2p \ ^2P_{1/2}$	64484	108	[1]
		65200	104	[2]
		65094	104	Our
	${}^{2}P_{3/2}$	64591	231	[1]
		65328	232	[2]
		65222	232	Our
Ti II	$3d^24p \ ^4G_{5/2}$	29544	396(50)	[3]
	,	29759	396	[2]
		27804	394	Our
	${}^4F_{3/2}$	30836	541(50)	[3]
	,	30691	541	[2]
		28907	568	Our
	${}^{4}F_{5/2}$	30959	673(50)	[3]
	,	30813	673	[2]
		29019	684	Our
	${}^{4}D_{1/2}$	32532	677(50)	[3]
	,	32416	677	[2]
		30916	719	Our
	${}^4D_{3/2}$	32603	791(50)	[3]
	7	32510	791	[2]
		30942	698	Our
Mn II	$3d^54p \ ^7P_2$	38366	918	[1]
		38366	869	[2]
		36144	826	Our
	$^{7}P_{3}$	38543	1110	[1]
		38585	1030	[2]
		36310	993	Our
	$^{7}P_{4}$	38807	1366	[1]
		38814	1276	[2]
		36546	1247	Our

In Table 1 we present the atomic energy levels which are calculated using GRASP2K program

¹E-mail: bieron@if.uj.edu.pl

package [4]. The q values are computed with the formula:

$$w = w_0 + qx,\tag{1}$$

where $x = (\alpha^2/\alpha_0^2) - 1$, α_0 is the laboratory value of the fine structure constant, and q is the relativistic energy shift. Dzuba $et \ al \ [1]$ presented the results of calculations of the dependence of the transition frequencies on α for many atoms and ions where data exist for quasar spectra. Berengut et al [2] used the relativistic Hartree-Fock method, many-body perturbation theory and configuration interaction method to calculate the dependence of atomic transition frequencies on the fine structure constant α .

In the case of C IV (ground state $1s^22s\ ^2S_{1/2}$), the agreement with other authors is quite good (mostly due to the fact that relativistic effects for the carbon and its ions are small). For the Ti II (ground state $3d^24s \ ^4F_{3/2}$) and Mn II spectra (ground state $3d^54s$ 7S_3) the calculated energies are all smaller in our approximation, and q values show larger deviations. All calculations were done in single-configuration Dirac-Hartree-Fock model. We will present the correlated calculations for several atoms and ions which are of interest for searches of α time variation.

References

- [1] Dzuba V A, Flambaum V V, and Webb J K 1999 Phys. Rev. A. 59 230
- Berengut J C, Dzuba V A, Flambaum V V, and [2]Marchenko M V 2004 Phys. Rev. A. 70 064101
- [3] King J A, Webb J K, Murphy M T, Flambaum V V, Carswell R F, Bainbridge M B, Wilczynska M R, and Elliot Koch F 2012 Mon. Not. R. Astron. Soc. 422 3370
- [4] Jönsson P, Gaigalas G, Bieroń J, Froese Fischer C, and Grant I P 2013 Comput. Phys. Commun. in press

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution $(\mathbf{\hat{I}})$ (cc) of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1