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We present an exact solution for an itinerant hole added into the oxygen orbitals of a CuO3-like ferromagnetic
chain. Using the Green function method, the quantum polarons obtained for the Heisenberg SU(2) interaction
between localized Cu spins are compared with the polarons in the Ising chain. We �nd that magnons with large
energy are favorable towards quasiparticle existence, even in the case of relatively modest electron�magnon coupling.
We observe two quasiparticle states with dispersion ∼ 2t each, which emerge from the incoherent continuum when
the exchange coupling J increases. Quantum �uctuations in the spin system modify the incoherent part of the
spectrum and change the spectral function qualitatively, beyond the bands derived from the perturbation theory.
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1. Introduction

Doping charge carriers in Mott insulators frequently
leads to drastic changes of the magnetic order and trans-
port properties. For instance, in colossal magnetoresis-
tance manganites the ferromagnetic (FM) order is ac-
companied by a metal�insulator transition, and appears
both for hole [1] and electron [2] doping. In contrast,
the antiferromagnetic (AF) interactions in CuO2 planes
is only weakened by doping while the competition be-
tween the magnetic energy and the hole dynamics leads
to new phases of high temperature superconductors, such
as stripe [3] or charge order [4]. A complete treatment of
this problem is di�cult and requires a study of the three-
-band model [5, 6]. Therefore, simpli�cations by mapping
to the one-band t�J model have been performed by sev-
eral authors [7�9]. The e�ective one-band model contains
then next-nearest neighbor hopping t′ [10, 11], and pos-
sibly even more distant hopping terms, which in�uences
the value of the transition temperature Tc [12, 13].
In this paper we consider a CuO3-like chain (depicted

in Fig. 1) with FM exchange between localized Cu S =
1/2 spins and a single hole injected into the oxygen 2p
orbitals. The chain structure is similar to that of a CuO3

chain in YBa2Cu3O7, where the superexchange is AF. It
has been found that oxygen holes are then delocalized
and strongly correlated [14]. Recently, excited states
were investigated in AF CuO3 chains in Sr2CuO3 [15]
and an interesting interplay due to spin�orbital entan-
glement [16] was pointed out [17].
In case of FM ground state the single band model

is also fundamentally di�erent from multiband models,
where charge defects are generated not in 3d orbitals
but in 2p oxygen orbitals [18]. This situation resem-
bles FM semiconductors such as EuO or EuS, where an

*corresponding author; e-mail: krzysztof.bieniasz@uj.edu.pl

electron with its spin aligned with the FM background
moves freely, while the one with opposite spin scatters on
magnon excitations which leads to rather complex many-
body problem causing drastic modi�cations of the elec-
tronic structure [19]. In this situation as well as in the
considered chain of Fig. 1, the ground state of this model
is exactly known, and the spectral properties may be de-
rived exactly [20]. Here we analyze them in detail and we
show that they include both polaron-like and scattering
states when the moving carrier interacts with magnons.

Fig. 1. Schematic representation of the CuO3-like
chain with: (i) exchange J between neighboring Cu
sites (arrows) along the chain, (ii) Kondo coupling J0
between Cu spin and the doped O spin (small arrow),
and (iii) hopping t over the oxygen sites (�lled circles).

2. The model

We consider a CuO3-like FM chain, with a single ↓-spin
hole doped into either of the O(2p) states, denoted a for
in-chain orbitals and b for apical orbitals (see Fig. 1).
The Cu(3dx2−y2) states host one localized spin S = 1/2
each. For simplicity, all the oxygen orbitals are modeled
as having s symmetry, since the di�erence compared to
the p-d model is trivial here. Further, we reduce the
number of k-states in the direction normal to the chain to
just one, by taking only the binding combination of apical
b states, i.e., for s symmetry bi = (bi+ζ + bi−ζ)/

√
2. This

is done to ensure a strictly one-dimensional (1D) system
and can be justi�ed by the fact that the antibonding
states do not couple to each other and thus do not appear
in the kinetic term of the Hamiltonian.
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We describe the CuO3 chain with a t�J-like model,

H = T +HS +HK, (1)

where the kinetic energy T describes the electron hop-
ping in the p-subspace, FM Heisenberg interaction HS

couples the neighboring d states (the constant JS2 can-
cels the extensive ground state energy), and a Kondo-like
p-d exchange term HK which couples the two subspaces

T = −t
∑
iσ

[
(a†i+ξ,σ + a†i−ξ,σ)biσ + H.c.

]
, (2a)

HS = −J
∑
i

(Si · Si+1 − S2), (2b)

HK = J0
∑
i

(
sai+ξ + sai−ξ + sbi

)
· Si, (2c)

where all the energy parameters are taken as positive,
i.e., t > 0, J > 0 and J0 > 0. Oxygen site spin operators
smj are labeled by the site index j and the orbital indexm
serves as a reminder which of the p orbitals the site cor-
responds to. These operators are later expressed in stan-
dard fermionic representation for s = 1/2 spins. We also
consider two symmetries in the HS term: (i) the SU(2)
symmetry corresponding to the Heisenberg model (2b),
and (ii) the Z2 symmetry realized in the Ising model,
where the scalar product in (2b) is replaced by the Ising
term, Si · Si+1 → Szi S

z
i+1.

To proceed, one performs a Fourier transformation
(FT) and introduces a convenient matrix notation, which
leads to the following representation of the Hamiltonian
(2) in the p-orbital basis:

T(k) =

(
0 εk
ε∗k 0

)
, (3a)

V(q) =

(
cos(q/2) 0

0 1/2

)
, (3b)

where V(q) represents HK and εk = −2t cos(k/2) is the
dispersion relation for a bare itinerant hole. HS is treated
separately by noting that in the p-orbital basis it has an
identity representation, and two eigenvalues correspond-
ing to the eigenstates spanning the magnetic subspace

HS|FM〉 = 0|FM〉, (4)

HSS
−
q |FM〉 = ΩqS

−
q |FM〉, (5)

where

Ωq =

{
4JS sin2(q/2), for Heisenberg HS,

2JS, for Ising HS,
(6)

is the magnon dispersion relation and the FT spin oper-
ator is de�ned as S−q = 1

N

∑
i e− iqRiS−i .

The problem outlined above can be solved exactly by
Green's functions [18, 21], de�ned as the matrix repre-
sentation of the resolvent operator G(ω) = [ω−H+ iη]−1

in the state with one hole,

Gµν(k, ω) = 〈FM|µk↓G(ω)ν†k↓|FM〉, (7)

where µ, ν ∈ {a, b} are indices running over the set of all
orbitals taking part in the hole dynamics.

We separate the Hamiltonian 2 into the bare part

H0 = T +HS and the interaction V = HK. We de�ne the
free Green functionG0(k, ω) as the Green function corre-
sponding to H0, and the full Green function corresponds
to the complete Hamiltonian (2). Next, we employ the
Dyson expansion of the full Green function. Due to the
very constrained magnetic Hilbert space consisting of just
two distinct states, after performing the expansion twice
the equations close, and one can express G(k, ω) solely
in terms of the free Green function G0(k, ω).
Due to very limited space available for this article,

we do not present here any details of the rather tedious
derivation. They may be found in the original paper [20],
where the full derivation of the spectral function is pre-
sented. Here we give only the �nal result needed for the
numerical analysis presented below. The full Green func-
tion can thus be expressed in the following way:

G(k, ω) =
[

[G0(k, ω)Q+(k, ω)]
−1

−2J0S
[
I−M−1(k, ω)

] ]−1
, (8)

M(k, ω) = I+Gcc(k, ω)−Gcs(k, ω)

×[I+Gss(k, ω)]−1Gsc(k, ω), (9)

Gαβ =
J0
N

∑
q

Uα(q)G0(k − q, ω − Ωq)

×Q−(k − q, ω − Ωq)Uβ(q), (10)

where

Uµ(q) =

{
V(q), µ = c,

V̄(q) =
(

sin(q/2) 0
0 1/2

)
, µ = s,

(11)

Q±(k, ω) = [I± J0SV(0)G0(k, ω)]
−1
. (12)

Having calculated the Green function (8), we extract
from it the physical information in the form of the traced
spectral function,

A(k, ω) = − 1

2π
= [TrG(k, ω)] , (13)

which is useful in the interpretation of the spectra de-
rived from photoelectron spectroscopy experiments. In
practice, throughout this article we plot tanh(A(k, ω))
to bring out the low amplitude part of the spectra.

3. Results and discussion

In our previous paper [20] we reported on the evolution
of the spectral function (13) with increasing electron�
magnon coupling strength, characterized by the param-
eter J0. We have found that with increasing value of
J0, the spectral function changes from having two states,
corresponding to the two branches of the free hole dis-
persion, to the �ve polaronic states, whose nature we ex-
plored in detail using perturbation theory [20]. We also
benchmarked those results against the mean �eld (MF)
approximation, �nding that MF works well for weak cou-
pling, while for strong coupling it highly underrates the
QP binding energy, even though the quantitative results
(i.e., the band shapes) are predicted surprisingly well.
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Fig. 2. Spectral functions compared with the MF so-
lution (red dash-dotted lines) and with the perturba-
tion expansion (blue dashed lines), as obtained for: (a)
J0 = 0.5t, and (b) J0 = 10t. Let us note the highly
nonlinear tanh-scale, with tics spaced every 0.1. Pa-
rameters: J = 0.05t, η = 0.02t.

Figure 2 presents a very condensed summary of our
previous results [20]. Already for J0 = 0.5t one can
see that new bands and gaps develop in the spectra.
However, MF approximation (red dash-dotted lines) still
works quite well predicting the localization of the highest
density in the graph. On the other hand, for an extremely
high value of J0 = 10t, MF breaks down completely, while
the perturbation expansion in t and J (blue dashed lines)
replicates the maxima of the spectral function quite well,
allowing one to identify those states as polaron-like.

In the present work we focus on the importance of the
magnon energy, i.e., on establishing how the value of the
parameter J in�uences the spectra. Figure 3 presents the
evolution of the spectral function when increasing J in
the range 0.05t to 2.0t. The value of J0 is set at 2.0t, cho-
sen so that at small J the spectrum already shows some
of the polaronic features, however the bands are not yet
fully developed. In fact, Fig. 3a shows this for J = 0.05,
the value used in our previous research, which serves here
as a reference state. In this graph a well developed lowest
branch can be recognized, and another one just above it,
still emerging from the incoherent continuum; the inco-
herent part is divided into two areas, separated by a small
gap and well de�ned boundaries. Increasing J to 0.5t
(Fig. 3b) one notices that the second band starts to mix
with the incoherent spectra and a gap opens between the
two branches. At J = t (Fig. 3c) a new structure fades in
from the incoherence, while most of the background dis-
appears. Finally, at J = 2t (Fig. 3e) the second branch
is fully developed, while the incoherent part has mostly
collapsed into a pair of �ghost� bands.

The spectral functions presented above have a number
of noteworthy features. Firstly, compared to the strong
electron�magnon coupling, even quite modest magnon
energies (i.e., both J0 and J are small and neither is the
leading term) suppress the incoherent part of the spectra
and aid the development of QP bands. For example,

Fig. 3. Spectral function density maps for a broad
range of J values obtained for: Heisenberg (a)�(c,e) and
Ising (d,f) spin interaction. Let us note the highly non-
linear tanh-scale (right), with tics spaced every 0.1, used
to display the features with low intensity. Parameters:
J0 = 2t and η = 0.02t.

instead of three incoherent and rather complex features
for J0 = 10t, J = 0.05t (Fig. 2b) one gets just two well
de�ned and low amplitude bands for J0 = 2t, J = 2t
(Fig. 3e), whose spectral weight decreases with increasing
J . Those two branches correspond to the two incoherent
regions mentioned before, which seems to suggest that
coherence is directly linked to magnon energy.

Finally, let us consider the case of the Ising spin ex-
change and compare it with Heisenberg HS. Figure 3d, f
presents the spectral functions for the Ising case, for
J = 1t and J = 2t, respectively. For very small J = 0.05t
(not shown), local J0 term dominates and there is prac-
tically no di�erence between the Heisenberg and Ising
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magnons. On the other hand, for stronger exchange
interaction J the picture changes quite substantially.
One notices that two QP bands exist in the Ising case
for J = 2t (Fig. 2f), with a slightly higher (although
J-independent) binding energy and a very similar dis-
persion as in the Heisenberg case (Fig. 2e). However,
the incoherent part of the spectrum changes far less dra-
matically for the Ising than it does for the Heisenberg
interaction HS when increasing J . Its spectral weight di-
minishes and the di�erent branches move to higher ener-
gies as dictated by the value of J , but they never collapse
into two states with energies increased by J0, as seen for
the Heisenberg case. The reason for this can be revealed
using the perturbation theory.

Fig. 4. Spectral weight distribution as obtained in per-
turbation theory (blue dashed lines) compared with the
exact solution (shaded) for (a) Heisenberg, and (b) Ising
exchange between localized spins. Let us note the non-
linear tanh-scale. Parameters: J0 = 10t and J = 5t.

Figure 4 shows the results of perturbation expansion,
as outlined in [20], against the exact results for very big
J0 = 10t and big J = 5t, for both the Heisenberg and
Ising cases. This reveals some of the peculiarities in the
interplay between those two parameters. First, let us
note that for the Ising case the incoherent (upper) part
of the spectrum is noticeably higher than for the Heisen-
berg case, while no such shift can be observed for the QP
bands. This suggests that the quantum spin �uctuations
a�ect only the incoherent spectra, while they are irrele-
vant for the QPs. Second, only two branches are seen for
the Heisenberg spectrum, while there are three distinct
features for the Ising case. Thus, it is clear that while the
perturbation expansion works well for the Ising, it breaks
down for the Heisenberg case. This breakdown depends
strongly on the value of J , with the perturbation solu-
tion going gradually out of tune with the exact one with
increasing J . This demonstrates a drastic redistribution
of the spectral weight due to the mixing of incoherent
processes.

Summarizing, we have shown that the perturbation
expansion reproduces the spectra obtained in the Ising
limit, while quantum �uctuations modify the incoher-

ent part of the spectrum and generate two dispersive
states. This demonstrates that quantum spin �uctua-
tions strongly a�ect the incoherent part of the spectra,
while they almost do not contribute to the quasiparticle
part at low energy.
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