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Abstract. The box counting dimension dC and the correlation dimension dG change with 
the number of numerically generated points forming the attractor. At a sufficiently large 
number of points the fractal dimension tends to a finite value. The obtained values are 
dC ≈ 1.43 and dG ≈ 1.38. 

Key words: Duffing attractor, fractal dimension: box counting dimension – correlation 
dimension, theory of chaos, numerical simulations. 

1. INTRODUCTION 

The Duffing pendulum is a kind of a forced oscillator with damping and is 
governed by a nonlinear differential equation of the form 

 ( )3 cos Dx x x x t+ δ + β + α = γ ω , (1) 

where δ, β, α, γ, ωD are constant parameters [1-3]. It is of great interest in nonlinear 
dynamics as it models many realistic, simple physical systems, e.g. a double spring 
pendulum, a spring pendulum with a nonlinear restoring force, i.e. not obeying the 
Hooke law, or a forced bar between two magnets [1, 4]. It can be constructed as 
various mechanical and electrical devices [5, 6]. Additionally, despite its apparent 
simplicity with only the x3 nonlinear term, it exhibits a variety of behaviors. On  
the other hand, numerical integration can be easily conducted in order to examine 
the system in the means of the theory of chaos. Connected with the Duffing 
oscillator is the famous Duffing attractor, visible in a Poincaré surface of section 
presented in Fig. 1. The Poincaré section is a straightforward method for detecting 
chaos for given initial conditions of a dynamical system. In the case of forced 
systems the trajectory is sampled with a time step corresponding to the forcing 
frequency, e.g. ωD in Eq. (1). If the solution is strictly periodic (allowing the 
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presence of higher harmonics) it will appear as a finite number of points in the 
surface of section. A quasi-periodic oscillation will manifest itself via an analytical 
line due to the incommensurable frequencies. A chaotic solution will spread over a 
vast area of the phase space, forming a nontrivial set in the Poincaré surface of 
section. The Duffing attractor (being an invariant set, as it has the same structure for 
 

 
Fig. 1 – The Duffing attractor formed of 286 478 points. Magnifications  

of this plot are presented in Appendix A.  

different initial conditions in the basin of attraction that lead to chaotic trajectories) 
is a fine example of a so called strange attractor, due to its fractal structure. This is 
because the system is dissipative, so a flow evolved droplet of initial conditions 
will asymptomatically converge to a zero Lebesgue measure set [7, 8]. Moreover, 
the Lyapunov spectrum [4, 7, 9–11] itself indicates the system to be dissipative, so 
the converged set is indeed a strange attractor. The Lyapunov Characteristic 
Exponents measure how fast nearby initial conditions diverge with time. If the 
divergence is fast enough, i.e. exponential, the system is called sensitive to initial 
conditions. This sensitivity is a necessary condition for the system to be chaotic. 
There are as many Lyapunov exponents as the dimension of the phase space. It is 
worthy transforming Eq. (1) into a autonomous dynamical system by setting two 
variables as the position and velocity (x , ẋ ) respectively and the third one be the 
phase of the forcing, i.e. Dϕ = ω  describes the evolution in the time-like direction 
of the phase space [1, 12]. This sets the dimension of the phase space equal to 
three, so there are three Lyapunov exponents. One of them, corresponding to the ϕ 
direction, is equal to zero. Among the other two, one has to be positive for the 
system to be sensitive to initial conditions. So the last one has to be negative and 
have a greater modulus than the positive one in order for the system to posses a 
strange attractor. Also, a strange attractor is said to be self-similar, i.e. having a 
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fractal structure (see Appendix A). It is a common procedure to verify the fractality 
of a set by estimating the Hausdorff (fractal) dimension [4, 13]. The fractal 
dimension gives information about how much of the space (e.g. the phase space or 
the space of stroboscopic variables used for constructing the Poincaré surface of 
section) is covered by the considered set. For instance, a set with a fractal 
dimension of 1.5 covers the space more densely than an analytical line but not as 
densely as a regular two-dimensional geometrical figure. Note that this does not 
mean that the higher the dimension, the larger area the fractal covers, like a circle 
is not more two-dimensional than a square, even if the latter one is smaller. 

An ideal fractal should be formed of an infinite amount of points, although 
this is impossible to achieve in numerical computations. Also, the mathematical 
definition of the Hausdorff dimension does not provide a useful method for 
calculation. The most commonly used estimates are the box counting dimension 
and the correlation dimension [13]. It is obvious that if the examined set is formed 
of too few points, the fractal properties could not become apparent. So the set has 
to be consisted of a large enough number of points. Thus the fractal dimension 
depends on the amount of points.  

This paper is organized in the following manner. Sec. 2 briefly presents 
numerical methods used for estimating the box counting and correlation 
dimensions. In Sec. 3 the results of estimating these dimensions for a numerically 
generated Duffing attractor are presented. In Sec. 4 concluding remarks are given. 

2. METHOD 

The fractal dimension is estimated in two ways: through the box counting and 
the correlation dimension. The box counting dimension is defined as  

 
( )

( )0

ln
lim

ln 1/C

N
d

ε→

ε
=

ε
, (2) 

where N(ε) is the number of non-empty boxes (squares) of the size ε. This 
dimension was calculated using a computer algebra system Mathematica and the 
BoxCount function written by Pasquale Nardone [14].  

The correlation dimension is defined as 

 
dG= lim

r→0

ln C(r)
ln r

, (3) 

with the estimate for the correlation function as  
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where the Heaviside step function H adds to C(r) only points xi in a distance 
smaller than r from xj and vice versa. The total number of points is denoted by N 
here. In the following calculations N is a finite value so the limit in Eq. (4) is 
omitted. The correlation sum is calculated using a parallel Python program.  

Both limits in Eq. (2) and (3) are attained by using several small values of ε 
and r respectively and fitting a straight line to the obtained dependencies. The 
fractal dimension is estimated as the slope of the linear regression in both cases. 

The numerical complexity of the correlation dimension algorithm is higher 
than the box counting one. Detailed comparative discussion is presented in 
Appendix C. 

3. RESULTS 

Equation (1) was integrated using Mathematica's default method. Although 
the so called Clean Numerical Simulation (CNS) was recently developed [15-17 
and references therein] in order to avoid truncation and round-off errors in a long 
time integration interval, herein obtained points forming the Duffing attractor are 
meant initially to form a set in stroboscopic variables. As is seen in Fig. 1 and 3, 4 
in Appendix A, the attractor remains stable with the rise of N. Therefore it is 
claimed that for the purpose of this paper the CNS method is not necessary.  

The following parameters were used:  

 { } { }, , , , 1, – 1, 0.2, 0.3,1Dα β δ γ ω = . (5) 

Because β is negative, the potential is in a double-well form, so the system 
posseses two centers and one saddle as equlibrium points [3, 12]. The initial 
conditions were preselected to be (x0 , ẋ0)= (1,1) . The attractor was formed by 
taking the values (x , ẋ )  in stroboscopic variables with a step equal to 2π  due to 
the forcing frequency 1Dω = . The maximum length of the time series was equal to 

61.8 10⋅  and lead to the attractor shown in Fig. 1.  

Table 1  

Fractal dimensions. The error in these quantities, estimated via the standard deviation  
of the linear regressions' slope, is not greater than 2% 

 Length of 
time series 

Number of 
points forming the 

attractor 

Box counting 
dimension Correlation dimension 

1. 1⋅103 160 1.25164 1.45068 
2. 1⋅104 1592 1.33008 1.35716 
3. 5⋅104 7958 1.38010 1.39567 
4. 1⋅105 15 916 1.39157 1.40250 
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Table 1 (continued) 

5. 2⋅105 31 831 1.39461 1.38567 

6. 4⋅105 63 662 1.41441 1.37372 

7. 6⋅105 95 493 1.42120 1.37633 

8. 8⋅105 127 324 1.41623 1.37722 

9. 1⋅106 159 155 1.42120 1.37764 

10. 1.5⋅106 238 733 1.42848 1.37895 

11. 1.8⋅106 286 478 1.42515 — 
 

Table 1 presents all lengths of obtained time series and the corresponding 
box counting and correlation dimension. Fig. 2 shows how do these fractal 
dimension estimates change with the number of points forming the attractor. The 
correlation dimension for N = 286 478 was not calculated because the straightforward 
algorithm used is time and memory consuming. 

 

 
Fig. 2 – Fractal dimensions of the Duffing attractor. Blue marked points stand  

for the box counting dimension dC while the red marked ones symbolize the correlation  
dimension dG. Note this is a semi-log plot. 

4. CONCLUSIONS 

The fractal dimension was estimated for the Duffing attractor via the box 
counting and the correlation dimension. The values obtained are dependent on the 
number of points forming the examined set. In the box counting procedure one 
covers the space with boxes of a given size and counts how many of them are filled 
with points. This method relies only on global distribution of the points. On the 
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other hand, the correlation dimension takes into account the local point density. 
Therefore, these two estimates can be expected to behave differently with the 
number of points varied.  

The box counting dimension, in general, continually rose with the number N, 
although the bigger the N, the slower the rise was. It can be predicted that the dC 
value would finally reach its limit for N large enough. The maximum N = 286 478 
appears to be a value large enough to give a reliable estimate of dC ≈ 1.43. 

The rise of dC in Fig. 2 reaches its local maximum at N=95 493, followed by 
an oscillatory behavior, after which one can observe a decline at the maximum 
used value of N = 286 478. This is due to the arbitrariness of the choice which part 
of the lnN(ε) vs. ln(1/ε) plot was linear (see Appendix B). Including or excluding 
one point from each fitting the monotonic behavior may be retained, although the 
linear regressions herein were performed so that the standard deviation of the slope 
was minimal. On the other hand, the relative difference in this case is less than 1%.  

The correlation dimension even for an extremely small N = 160 gave a value 
not greater than a few percent than the final one obtained for N = 238 214, which 
was dG ≈ 1.38. What is a significant observation for numerical computations is that 
the dG for relatively small N (starting herein from N = 1592) does not differ much 
from its final value. After N = 63 662 the relative changes in the dG value are not 
significant. Although the correlation dimension does not act monotonically on N 
(as does not the box counting dimension), it appears to manifest some oscillating 
behavior for small N and tends to a limit value for higher numbers of points. 
Therefore the final value of dG ≈ 1.38 is a good estimate for the fractal dimension. 

The results show that the number of points forming the examined set plays a 
crucial role in reliably estimating the fractal dimension. Moreover, the correlation 
dimension acts more stable on the number of points N. Also, it takes into account 
the local distribution of points, so for a relatively small amount of points it gives a 
more reliable estimate for the fractal dimension. 

 
Acknowledgements. The author is grateful to Slawomir Chrobak for the Python program that 

allowed to calculate the correlation dimension. 

APPENDIX 

A. STRUCTURE OF THE DUFFING ATTRACTOR 

Figure 3 reveals the self-similar property of the Duffing attractor. This is a 
fundamental feature of all fractals and justifies the estimation of the fractal 
dimension in this paper.  
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Fig. 3 – Magnifications of a part of Fig. 1 with a self-similar structure of the Duffing attractor. 

B. LINEAR REGRESSIONS 

An example of a result of a linear regression that lead to the box counting 
dimension for N = 1592 is shown in Fig. 4a. The red line has a slope of 
1.33008 ∓ 0.02945, while the blue one's slope is 1.28012 ∓ 0.03560, which was 
obtained by taking into account one point more than for the red line. This point is 
indicated by an arrow. The relative increase of the standard deviation is 21%, 
which is a significant value, although the relative decrease of the fractal dimension 
is only 4%. This means that within the error both values are equally reliable, 
however the criterion that was used to estimate the fractal dimension for each N 
was so that the standard deviation was minimal. 

All linear regressions, starting from N = 1592, conducted in order to estimate 
the correlation dimension, had a form presented in Fig. 4b. 

 

 
Fig. 4 – Linear regressions for the attractor formed of N = 1592 points that lead to the: a) box 

counting dimension value of dC  = 1.33008; b) the correlation dimension dG  = 1.35716. 

C. NUMERICAL COMPLEXITY 

 The BoxCount function's evaluation time grows linearly with time, making 
the algorithm used an O(n) one (Fig. 5a). This linearity arises from the fact that 
each loop's step runs over each point forming the attractor only once. 
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 The correlation sum Python program has a complexity of O(n2) due to the 
fact that it calculates the distance beetwen all pairs of points, the number of which 
is exactly n2/2. Using the fitted quadratic polynomial (Fig. 5b) the estimated time 
to conduct computations on 31 838 points is 12 943 s, while the actual time was 
12 610 s, which is a fine correspondence. 
 

 
Fig. 5 

D. THE CODE 

 The parallel Python program corr.py calculates the correlation sum from Eq. 
(4) neglecting the 1/N2 term. The input file data.txt should be a two-column list 
with the number of points in the first line. The data catalogue should be placed in 
the same directory as the corr.py file. start, stop and step are the minimal and 
maximal r values and the step between them, respectively. The output file out.txt is 
located in the data catalogue. 
 
#!/usr/bin/env python  
# -*- coding: utf-8 -*-  
 
from __future__ import print_function  
import math  
import multiprocessing  
from datetime import datetime  
 
CONFIG = {  
    'input': 'data/data.txt',  
    'start': 0.0025,  
    'stop': 0.1,  
    'step': 0.0025,  
    'precision': 4  
}  
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points = []  
npoints = 0  
 
def xfrange(start, stop, step, precision=2):  
    r = start  
    stop += step  
    while r < stop:  
        yield round(r, precision)  
        r += step  
 
def distance_between_points(xs, ys):  
    xi, xj = xs  
    yi, yj = ys  
    x2 = (xi - xj) ** 2  
    y2 = (yi - yj) ** 2  
    d = math.sqrt(x2 + y2)  
    return d  
 
def heaviside_step(n):  
    return int(n >= 0)  
 
def _parse_lines(first, second):  
    current_row = map(float, first.split())  
    next_row = map(float, second.split())  
    xs, ys = zip(current_row, next_row)  
    return xs, ys  
 
def calculate(input_queue, result_queue):  
    while True:  
        r = input_queue.get()  
        h = 0  
        try:  
            for i in xrange(0, npoints):  
                for j in xrange(1 + i, npoints):  
                    xs = points[i][0], points[j][0]  
                    ys = points[i][1], points[j][1]  
                    dbp = distance_between_points(xs, ys)  
                    h += heaviside_step(r - dbp)  
        except Exception, err:  
            print(err)  
        result_queue.put((r, h))  
        input_queue.task_done()  
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with open(CONFIG['input']) as f:  
    try:  
        for line in f:  
            line = map(float, line.split())  
            points.append(line)  
        points.pop(0)  
    except Exception, err:  
        print(err)  
    npoints = len(points)  
 
def run():  
    steps = list(xfrange(CONFIG['start'], CONFIG['stop'], CONFIG['step'],  
                         CONFIG['precision']))  
    nworkers = multiprocessing.cpu_count()  
    workers = []  
    q = multiprocessing.JoinableQueue()  
    rq = multiprocessing.Queue()  
 
    for i in xrange(nworkers):  
        p = multiprocessing.Process(target=calculate, args=(q, rq))  
        p.daemon = True  
        workers.append(p)  
 
    for worker in workers:  
        worker.start()  
 
    for step in steps:  
        q.put(step)  
    q.join()  
  
    results = []  
    while not rq.empty():  
        results.append(rq.get())  
    results = sorted(results, key=lambda x: x[0])  
 
    return results  
 
def main():  
    output = run()  
    with open('data/out.txt', 'w') as f:  
        f.write("r\tC(r)\n")  
        for line in output:  
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            try:  
                f.write("{0}\t{1}\n".format(line[0], line[1]))  
            except:  
                f.write("%.*f\t%d\n" % (CONFIG['precision'], line[0],  
                                        line[1]))  
 
if __name__ == '__main__':  
    start = datetime.now()  
    main()  
    print("Execution time {0}".format(datetime.now() - start)) 
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