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We present the first Fourier-transform infrared absorption (FT-IR) and Fourier-transform Raman (FT-Raman) analysis
of vibrational structure of [N-phenylamino(2-boronphenyl)-R-methyl]phosphonic acid ([PhN-(2-PhB(OH),)-R-Me]PO,H,).
Assignments of experimental wavenumbers are based on performed theoretical calculations using density functional theory (DFT).
Theoretical calculations show that the most stable structure of the investigated molecule is dimer in cis-trans conformation created

by a pair of intermolecular hydrogen bonds between the boron hydroxyl groups of two monomers.

1. Introduction

In recent years aminophosphonic acids gain the attention
and interest of the researchers because of their diverse and
interesting biological activities [1-4]. These compounds are
defined as amino acid derivatives, in which the carboxylic
acid group [-C(=O)OH] is replaced by the phosphonic
acid moiety [-P(=0)(OH),] [5]. Such modification inhibits
the activity of certain enzymes by effective competition
for the active site of the enzyme and by forming strong
electrostatic binding [6]. Thus, the aminophosphonic acids
found application as enzyme inhibitors [6-8] and medical
[9,10] and herbicidal agents [5]. ®-Amino boronic acids also
demonstrate high potential in medical chemistry [11, 12],
especially as anticancer therapy agents [13], antibiotics [14],
and enzymes inhibitors [15]. This is due to the boronic acid
moiety ability to create hydrogen bonds and stable covalent
bonds in the enzyme active side [12, 16].

The unique properties of the phosphonic and boronic
acid groups cause that the amino acids analogues containing

these functional groups become very attractive molecular
systems. Therefore, we present the first vibrational character-
istic of [N-phenylamino(2-boronphenyl)-R-methyl]phospho-
nic acid ([PhN-(2-PhB(OH),)-R-Me]PO;H,) (see Figurel
for molecular structure) considered as potential protease
and kinase inhibitor. We used Fourier-transform Raman
spectroscopy to investigate the vibrations and structure of
the abovementioned compound. Because the absorption
infrared method gives complementary information to the
Raman method, supports the Raman analysis, and helps
to solve ambiguities during this analysis, the absorption
infrared spectra are also examined. Both these methods
are commonly employed in both experimental investiga-
tions [17-20] and theoretical calculations [21-23] to analyze
and compare structures for a large number of conformers
of the investigated compounds. Interpreting the Raman
and absorption infrared spectra involves explaining spectral
regions and wavenumbers based on likely vibrational modes.
Such an understanding of a molecule’s vibrational spectrum
is essential for explaining the relation between the molecular
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FIGURE 1: The molecular structure of [PhN-(2-PhB(OH),)-R-Me]PO;H, monomer (a) and dimer structure (b) (where C; denotes carbon

atom of the aromatic ring connected to the aliphatic chain).

structure and spectral response. To provide the definitive
band assignments needed to generate vibrational spectra use-
tul for structural analysis, we performed vibrational analysis
using Density Functional Theory (DFT) calculations at the
B3LYP/6-311G(d,p) level of theory. Our aim is to produce an
extensive look-up table of infrared and Raman spectra that
can make structure determination a fast and accurate process.

2. Materials and Methods

2.1.  [N-phenylamino(2-boronphenyl)-R-methyl]phosphonic
Acid Synthesis. The investigated compound was synthesized
according to the previous published procedure [24]. Its purity
and chemical structure were checked using 'H, *C, >'P, and
"B NMR spectroscopy (Bruker Avance DRX 300 MHz spec-
trometer, Bruker Polska, Poznan) and ESI-MS (Bruker
MicrOTOF-Q spectrometer, Bruker Polska, Poznan).

2.2. FT-Raman Measurements. A Nicolet spectrometer
(model NXR 9650) equipped with a liquid-nitrogen-cooled
germanium detector was used for the FT-Raman measure-
ments of [PhN-(2-PhB(OH),)-R-Me]PO;H, on a glass plate.
The 1064 nm line from a continuous-wave Nd**:YAG laser
was used as an excitation source with a power output of
500 mW. During the measurements, 1000 scans were col-

lected with a resolution of 4 cm™.

2.3. FT-IR Measurements. FT-IR spectra were obtained for
thin pellets containing about 1 mg of [PhN-(2-PhB(OH),)-
R-Me]PO;H, dispersed in 200 mg KBr at room temperature.

These measurements were carried out using a Bruker spec-
trometer (EQUINOX 55) equipped with a DT-GS detector
in the range of 400-4000cm™' with a Nernst rod as an
excitation source.

2.4. Theoretical Analysis. To optimize the ground-state geom-
etry of [PhN-(2-PhB(OH),)-R-Me]PO;H, and to calculate
their FT-Raman and FT-IR spectra, the Gaussian 03 suite was
used [25]. Our earlier analysis of various types of N-ben-
zylamino(boronphenyl) methylphosphonic acids [26] and a
literature study for similar compounds [27, 28] noted that
the most stable structure of the boronic acid derivatives is
a cyclic dimer formed by a pair of intermolecular hydrogen
bonds between the boron hydroxyl groups of two monomers.
Based on previous experience, here we present the theoretical
calculations for the most stable structure of the substituted
phenylboronic acid dimer (Figurel). We also performed
calculations for the monomer (not shown) and compare its
energy with the energy of the corresponding dimer. The
calculated stabilization of the energy indicates that dimer is
more stable than monomer (Ey,,., = —1634029 kcal/mol,
Epponomer = ~817006 keal/mol).

A DFT method with the B3LYP level of theory was
employed to optimize the molecular structure of [PhN-(2-
PhB(OH),)-R-Me]PO;H,. The triple-split valence basis with
a polarization function on heavy atoms and hydrogens (6-
311G(d,p)) was applied as the basis set [29]. This type of basis
was applied for the calculations of similar phenylboronic
acid derivatives and provides reliable results [27, 28]. No
imaginary wavenumbers were observed during optimization,
which demonstrates that the calculated structure correspond
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to energy minima on the potential energy surface for nuclear
motion.

Theoretical Raman intensities were calculated by the
Raint program, which uses the following relationship [30]:

.S @

I = 1072 (vy — %) 'S

in which I; is given in arbitrary units, v, is the laser excitation
wavenumber [cm™] (9398.5cm™! for a Nd:YAG laser), v; is
the frequency of the normal mode obtained from the DFT
calculation, and S; is the Raman scattering activity of the
normal mode.

The theoretical vibrational spectra were generated by
the free GaussSum 0.8 software package [31]. The calculated
wavenumbers were scaled by a scaling factor of 0.987, and
the theoretical spectra were plotted by setting the full width
at half maximum (FWHM) at 11cm ™" (the average value of
a typical FWHM for these compounds in the condensed
phase with a 50%/50% Gaussian/Lorentzian band shape).
This scaling factor and FWHM were fitted based on the
comparison between the wavenumbers and shape of bands
of theoretical and experimental spectra. This procedure was
used in order to better reproduce the experimental results.

To obtain normal mode assignments for the calculated
vibrational bands, the potential energy distribution (PED) for
the optimized structures was determined with the freeware
Gar2ped program [32] in conjunction with a visualization
script.

3. Results and Discussion

3.1. Geometric Structures. The most stable structure of [PhN-
(2-PhB(OH),)-R-Me]PO;H, is a cyclic dimer formed by a
pair of intermolecular hydrogen bonds between the boron
hydroxyl groups of two monomers. Thus, the theoretical
spectra presented are calculated for dimer. For this dimer
specie, there are two possible conformers (cis-trans and
trans-cis) depending on the positions of the hydrogen atoms
bonded to the oxygen atom of the boronic group, whether
they are directed away from (trans) or toward (cis) the
phenylboronic ring. Our calculations show that the cis-trans
conformation has the lowest energy; thus, it is the most stable.
The molecular structure and numbering scheme of the atoms
of the investigated compounds are given in Figure 1, while
Table 1 lists some geometric parameters for this molecule.
The O4-B,-0,, and Og'-B,'-0,," moieties in the pre-
sented dimer are almost perpendicular to the ring. This struc-
ture is promoted by possible interaction between nitrogen
and boron atoms [33]. The hydrogen atoms of both boronic
groups in the dimers (Hy, H,y, Hy', and H,,') lie in the
O-B-O plane (Figurel). This could be explained on the
basis of the oxygen lone-electron pairs having a resonance
interaction with the empty p-orbital of the boron atom,
forcing the hydrogen atoms to be in the O-B-O plane [34].
The calculated B-O and C-B bond lengths (Table1) for
[PhN-(2-PhB(OH),)-R-Me]PO5H, are in good agreement
with those present in the X-ray structure of phenylboronic
(B-0: 1362 A—cis H (atom H directed toward the phenyl-
boronic ring), 1.378 A—trans H (atom H directed toward

TABLE I: Select calculated bond lengths and angles of the [PhN-(2-
PhB(OH),)-R-Me]PO,;H, dimer.

Bond Bonc[léeingth Bond Bonc{l}l\ejngth Angle ]
C,-C, 1.406 Ps-Oy 1.485 C-B,-Oy 171
C,-C, 1.394 Ps-0, 1.613 B,-O4-H, 116.5
C,-C, 1.392 P-0,, 1.605 04-B,-0,, 1172
C,-C, 1.391 Oy-H,, 0.964 C,-B,-0,, 124.9
C;-Cq 1.393 0,-H,, 0.982 B,-O,,-H,, 1127
C-C, 1.401 Ci-N,, 1.458 B,-0,,-H,' 114.4
C,-B, 1.575 N,,-H,; 1.020 B,'-0,,'-H, 114.4
B,-Oq4 1371 N,,-Cy 1.410

O4-H, 0.979 Cy—Cyy 1.407

H,-O,, 1826 Cy—Cog 1.387

B,-Oy 1.382 Cys-Cyo 1.396

O,-H;  0.963 Cy—Csg 1.389

0,-Hy, 1826 Cy0-Cy 1.395

C,-Cyg 1.524 Cy-Cye 1.402

Cys—Pig 1.863

the phenylboronic ring); C-B: 1.568 A) [33] and pentaflu-
orophenylboronic (B-O: 1.362 A—cis H, 1.355 A—trans H;
C-B: 1.579 A) acids [34]. The calculated B,-Og and B,-
0,, (Table 1) bonds distance (~1.371A) for the investigated
compound indicates typical B-O length of phenylboronic
acid derivatives which lie in the range of 1.35-1.38 A [33].

3.2. FT-Raman, FT-IR, and DFT Studies. Figure2 shows
the experimental (black traces) and theoretical (red traces)
FT-Raman and FT-IR spectra of [PhN-(2-PhB(OH),)-R-
Me]PO,H, in the spectral range between 3650 and 400 cm ™,
whereas Table 2 summarizes the experimental and the-
oretical band wavenumbers with the calculated (DFT,
B3LYP/6-311 G(d,p)) potential energy distribution (PED,
in %) (the whole PED information is provided in Table
S1 in Supplementary Material available online at http://dx
.doi.org/10.1155/2014/247237). 'The given vibrational anal-
ysis is also based on our earlier investigations of [N-
benzylamino(boronphenyl)methyl] [26], fluoro- and formyl
[35], and phenyl [36-38] analogues of phosphonic acids.

Aromatic Vibrations. The 3069/3056, 1606, 1588, 1188, 1161,
1031,1008/999, 775, 617, and 490 cm ™" spectral features due to
the characteristic phenyl ring vibrations (see Table 2 for pre-
cise bands assignment) dominate the [PhN-(2-PhB(OH),)-
R-Me]PO5;H, Raman spectrum (Figure 2, the top black
trace). The noticeable spectral shift to lower wavenumbers
for the »,, vg,, and v;, modes of the phenylboronic ring
compared to that of phenyl reflects some redistribution of
the r-electrons caused by the electron donor character of
the boronic acid group (acceptor). Some of the ring bands
are also observed in the corresponding FT-IR spectrum (at
3058, 1604, 1590, 1177, 998/983, and 777 cm™!). These bands
are associated with the v,, vg,, Vg, Vou/V15> V12> and vy,



Journal of Spectroscopy

TaBLE 2: The calculated wavenumbers and potential energy distribution (PED, %) for the FT-Raman and FT-IR spectra of [PhN-(2-

PhB(OH),)-R-Me]PO,H,*.

Wavenumbers/cm ™

Assignment

Calc.
FT-Raman FT-IR B3LYP/6-311G(d,p) (PED %; >5%)
449 432 430 Yas (@) (31); 665 (CCL(CL)C) s> 8(CoPO3), 6 ppriage)
451 474 Vas ()5(29); 6,65 (CCLICL)C)yps 8 (CoPO3)s Vas(oriage)
499 490 491 8 y(bridge)> Vs(bridge)> Vastoridge)> Soop(CCL(CL)C)yp
531 533 8 p(bridge) Vs(bridge)> Yasbridge)
553 543 8 5 bridge) (48)> Vybridge)> Vas(bridge)
581 591 591 8 bridge) (36)> Vy(bridge)> Yastbridge)
627 617 617 0.,,($)(34), 800, (CBO,), Vas(briage)> Ysibridge)
659 635 636 8 poridge) (25 Vasoridgey Vecoridge)
696 688 8 bridge) (46)> Vybridge)> Vas(bridge)
717 710 Vastoridge) (32)> Ps(bridge)> Op(bridge)
720 722 8, bridge) (49> Vs(bridge)> Yas(bridge)
746 745 742 6p(bridge)(18)’ é (¢)B, Ys(bridge)
793 775 777 810p(CCL(CL)C) 5 (36); 8,(#)y> S (C1.Caorn, (BIO)
822 808 809 8 p(bridge) (43> Ve(bridge)> Vas(bridge)
823 826 827 Y(PO)(12), Vas(ordgo
886 834 882 8, bridge) (35)> Vy(bridge)® Vas(bridge)
919 899 903 ¥(PO)(30), 8,0, (CC,(C)C) 15
924 924 Y(PO)(22), 8, priage
952 934 Boap (Cao1, CHIC) 1, (27), 8,0y (€, CH)C) - 800y (CCHN g 1o (®)s
987 999 983 800 (CC(H)C) 5 (48), 8,,(9),
999 1008 998 8111g(9)(40), 8, riager pb(POH), Vatoridge)
1036 1031 1021 »(CC),(51)
1045 1042 8, bridge) (31> Y(CC)yps Vy(briage)> Yas(bridge)
1084 1074 1073 WCaN)(14), 8 g
1106 1090 Yasoridge) (48)> Vecbridge)s Op(bridge)
1165 1161 1162 P (COIH)C)y(58), 8 pmiager Porde
1171 1181 177 p.(CC(H)C)45(60), p,(C,C(H)C)
1194 1188 1189 p.(CLC(H)C),(34), p,(CC(H)C),
1216 1206 »(P=0)(16), p,(C, C,(H)P),p,(C, (H,P)N), p.(C,C,(H,P)N)
1234 1227 »(P=0)(46), p.(C, C, (E)P), p.(C,(ELP)N), p.(C, C, (HL,P)N)
1244 1242 8 bridge) (36)> V(briage)?(P=0)s Va(bridge)
1271 1264 8 (bridge) (42)> Vo(briage)> Vasbridge)
1286 1285 8 p(bridge) (39> Vs(oridge)» Vas(bridge)
1346 1330 1330 8, (briage) (26)> Ys(briage)s Pr(CLCMH)C) s Vog(briage)
1349 1363 Yas(oridge) (38): Vibriage)» Y(BO), 5p(bridge)
1446 1428 1428 p(CC(H)C),(36), %(CC) 5, p,(C,N(H)C,)
1450 1450 P, (CCH)C) 5 (43), "(CO)gp %(C, Oy
1510 1495 p.(CCH)C),(28), p,(C,C(H)C),, »(CC),
1519 1509 P.(C,N(H)C,)(50)
1587 1588 1590 %(CC)y(40), %(Cy Cyom, ) s> P(CCH)Cgy
1620 1606 1604 ‘V(CC)¢B (30), V(CLC)¢B
1625 1635 ¥(CC)y(42), 8,,(¢)
2938 2922 2924 »(C,H)(99)
2938 2957 »(C,H)(99)
3107 3059 3058 »(CH) ;5 (91)
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TaBLE 2: Continued.
Wavenumbers/cm™ Assignment
Calc. Exp.
FT-Raman FT-IR B3LYP/6-311G(d,p) (PED %; >5%)
3145 3069 ¥(CH)4(67), »(CH)4g
3405 3482 v(NH)(96)
3500 3503 Y(OH) 5ombrigde (83)s Y(OH)poy

? Abbreviations: v: stretching; p,: rocking; 8: deformation; y: torsion; p: puckering; 8,: trigonal deformation; s: symmetric; as: antisymmetric; oop: out-of-
plane vibrations; ¢: aromatic ring; ¢B: phenylboronic acid ring; bridge: hydrogen bonds [(HOBO),]; C; : carbon atom of the aromatic ring connected to the
aliphatic chain; C,: tetrahedral carbon atom; bold: vibrations related to band with Raman Intensity > 0.4 (%).
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FIGURE 2: The experimental and theoretical FT-Raman and FT-IR spectra of [PhN-(2-PhB(OH),)-R-Me]POH, in the spectral range of

3650-400 cm ™.

modes (according to the Wilson numbering scheme) [39],
respectively. The other ring vibrations appear in the FT-IR
spectrum as two medium absorbencies at 1495 [v,9,] and
1450 cm™" [v,q ).

Boronic Acid Group Vibrations. In the [PhN-(2-PhB(OH),)-
R-Me]PO;H, vibrational spectra, several moderate and weak
bands due to the boronic acid group vibrations appear.
From these, according to Erdogdu and Coworkers [40] and
Ayvyappan and Coworkers [41], the B-O stretching vibrations
[v(BO)] are expected to be enhanced near 1453-1450, 1384,
and 1369-1361 cm™". Our calculations for dimer placed these
vibrations at 1363-1349 cm™'. The bands allocated to the -
BOH deformation vibrations [§(BOH)] appear in the spectral
range of 1100-1000 cm™! [40, 41]. Our calculations indicated

that bands observed in these ranges are due to the deforma-
tion and torsion vibrations of the HOBO: - - H bridge coupled
with the »(C,N) mode [8/yprigqe)] + V(INC/C,N). Ayyap-
pan and coworkers also suggested that bands assignable
to the coupling of the B-C and B-O stretching vibrations
[(BC/BO)] are seen at 809-797 cm ™. However, the calcu-
lations performed for the [PhN-(2-PhB(OH),)-R-Me]PO;H,
dimer indicate that this band can be assigned to the 6/y(prigge)
modes. Erdogdu and coworkers indicated that the y(OBCC)
and y(HOBC/OBCC) vibrations appear in the range 740-
580 cm ™. Our theoretical calculations provide evidence that
the bands occurring in this spectral ranges are connected
with torsion and deformation vibrations of the HOBO---H
fragment. Additionally, the 540 cm™" band may be assigned
to the torsion of the -HOBC-, ~-HOBH-, and -HOBO-



fragments [y(HOBC)/(HOBH)/(HOBO)] [37, 38], whereas
our calculations pointed out that the 543cm™" bands are
due to the to the torsion vibrations of HOBO - - - H [ pyigge) ]
and the deformation of HOBO - +H [Y(pyiqee)]- The above
discrepancies in the band assignments may be due to the fact
that Erdogdu and coworkers and Ayyappan and coworkers
presented results for phenylboronic acid derivative monomer,
while we performed theoretical calculations for dimer.

Bearing in mind that the most stable structure of [PhN-
(2-PhB(OH),)-R-Me]PO;H, is a dimer formed by two
hydrogen bonds between the boron hydroxyl groups of two
monomers, the deformation and torsion vibrations of the
HOBO - H bridge are expected in the vibrational spectra.
These vibrations are manifested by the 1363-1330, 1286-
1242,1106-1090, 1074-1042, 886-882, 822-808, 746-732, 722~
710, 659-635, 574-543, 533-522, and 499-490 cm ™! spectral
features.

Phosphonate Group Vibrations. The -PO;H, group gives rise
to several vibrational bands. These appear in the 1242-1206,
1008-998, 924-903, 827-823, and 496-430cm ™' spectral
ranges. The 1242 and 1206 cm ™' spectral features are primarily
due to the P=0 stretching vibrations [v(P=0)], whereas the
924-903 and 827-823cm™" bands are assigned to the P-O
stretching mode [v(P-O)]. The two other bands mentioned
above, located at 1010-990 and 496-430 cm ™, are mainly due
to the p,(POH) and §,(C,PO;) vibrations, respectively.

Imine and Methine Groups Vibrations. In the [PhN-(2-
PhB(OH),)-R-Me]PO;H, FT-IR spectrum, the broad, strong
band due to the imine group vibrations is observed at
3482cm™! [31]. This band is associated with the N-H
stretching mode [v(NH)]. The broadness of this spectral
feature can be explained by the formation of intermolecular
and/or intramolecular hydrogen bonds between the -PO5H,,
-NH-, and -BOH groups. The C-N stretching vibrations
[v(C,N)] are observed at around 1074 cm™ . The deformation
modes of the C,N(H)C fragment are enhanced at 1519-
1509 and 1446-1428 cm™". In contrast, the rocking vibrations
of the C,(H,P)NH fragment contribute to the bands at
1509, 1428, and 1227-1206 cm ™. The >CH- group’s stretching
vibrations exhibit also moderate spectral features in the high
wavenumber range of the vibrational spectra (Table 2).

4. Conclusions

In this work, the [N-phenylamino(2-boronphenyl)-R-methyl]
phosphonic acid ([PhN-(2-PhB(OH),)-R-Me]PO;H,) was in-
vestigated using Fourier-transform infrared and Fourier-
transform Raman methods. We briefly discussed the char-
acteristic FT-Raman and absorption infrared bands that are
crucial for understanding vibrational structures of the tilted
compound.

In order to better understand the correlation between
obtained spectral feature and the vibrational structure, the
DFT calculations at the B3LYP; 6-311G(d,p) level using
Gaussian’03, GaussSum 0.8, and GAR2PED softwares were
performed.

Journal of Spectroscopy

Our theoretical and experimental considerations provide
the description of the most stable structure of the inves-
tigated molecules which is a cyclic dimer, in the cis-trans
conformation, formed by a pair of intermolecular hydrogen
bonds between the boron hydroxyl groups of two monomers.
Moreover, the spectral range of FT-IR and FT-Raman bands
associated with the aromatic and aliphatic functional group
vibrations of the molecule was characterized.
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