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We derive the Anderson Kondo lattice model by applying canonical perturbation expansion for the Anderson- 
lattice model in direct space. The transformation is carried out. up to the fourth order by a modified Schrieffer Wolff 
transformation: we separate the part. of hybridization term responsible for the high-energy processes (involving 
the largest, in-t.he-syst.em int.raat.omic Coulomb interaction between /  electrons) and replace it. wit.li the virtual 
processes in higher orders. The liiglier-order processes lead to three separate exchange interactions. The obtained 
Hamiltonian contains both the Kondo (/ c) and the superexchange (f  / )  interactions, as well as a residual hy­
bridization responsible for the lieavy-quasiparticle formation. This effective Hamiltonian can be used to analyze 
the magnetic or the paired states, as well their coexistence in heavy-fermion systems. The magnitudes of both the 
Kondo exchange and the superexchange integrals are estimated as a function of bare hybridization magnitude.
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1. In tro d u ctio n

In this paper we present our main results concerning 
the canonical pertu rbation  expansion for the Anderson- 
lattice model in direct, space, by transform ing out only a 
part, of the /  c hybridization term  and replacing it. w ith 
the v irtual processes in higher orders, which in tu rn  yield 
the effective /  c, /  /, and c c in teractions. The calcula­
tions are carried out up to  the fourth order, taking into 
account, bo th  two- and three-site processes. These results 
elaborate and correct, the  earlier results [1|. We also es­
tim ate  the  m agnitude of the derived exchange integrals. 
The present, results provide an effective model for subse­
quent. consideration of m agnetism  and real-space pairing 
in heavy-fermion system s [2, 3]. The results represent, an 
application of the modified Schrieffer Wolff transform a­
tion, th a t leads, am ong others, to  the itineracy of origi­
nally localized /  electrons.

2. M o d e l

The basic feature of A nderson-lattice model is the 
hybridization term  Vim representing the  quantum - 
m echanical mixing between the two types of electrons: 
the atom ic ( / )  and the  conduction (c) states. We as­
sume th a t  \Vim \ C  U, where U is the  m agnitude of 
the  / - /  Coulomb interaction in the  same atom ic /-s ta te . 
O ther Coulomb interactions (in the conduction band and 
between bands) are disregarded. Additionally, we put
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f  ~  Vim, which means th a t the  atom ic level is located 
below, bu t not. too  far from the Fermi surface. Therefore, 
one can calculate nontrivial corrections in small param ­
eter Vim/U  to  the  electronic /  and c sta tes if the  strong 
Coulomb interaction ~  U and the  hybridization ~  Vim 
are included.

The sta rting  A nderson-lattice H am iltonian in the  site 
(real-space) language reads

H  ^  '  (tmn — ) clnj Cn j + ef  ^  '  N ij
mnj ia
m=n

T U ^ A A  +  E  ^ im  f j  Cmj +  V 4 4 j  / i j )  , (O
i imj

where cm j are creation and annihilation operators 
of electrons in c-state in real-space representation (m  is 
the  site num ber and a  the  spin), / j ,  /  i j  are creation and 
annihilation operators of /-e lec trons on i-th  site w ith spin 
a , N i j  =  / ij  E  is the  num ber of /-e lec trons on site i, t mn 
is hopping integral for c-electrons, t f  is the  bare energy of 
the  originally localized 4 /  electrons, Vim is hybridization 

U
(the high-energy scale in the system ).

The sta rting  point, in the  derivation of the  effec­
tive H am iltonian via a canonical pertu rbation  expansion 
(introduced for A nderson-lattice model in f 1 |) is a divi­
sion of the  hybridization term  into two parts. Namely, 
we divide the term  into two, reflecting the low- and the 
high-energy processes, i.e., those which do not and do 

U
in Fig. 1. In formal language, it. am ounts to  separating 
the hybridization term  in the following manner:
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Fig. 1. Low- and high-energy interband hopping pro­
cesses in direct space induced by the hybridization be­
tween /  and c states. Only the high-energy f - c  mixing 
processes (involving energy U) are transformed out and 
replaced by exchange processes in the second and the 
fourth orders. Low-energy processes remain unchanged 
in effective Hamiltonian as residual hybridization. In 
effect, such transformation differs from the standard 
Schrieffer-Wolff transformation, where both terms are 
transformed out.

I t should be noted th a t in the present approach the 
num ber of f  electrons E *  N  is not conserved, neither 
before nor after the transform ation. Instead, only the 
to ta l num ber of electrons in the system, u (e) =  N  +  Ui 
is fixed, where n  =  E j  ct j cij - This last circum stance 
allows for an itineracy of strongly correlated /  electrons; 
it allows to  represent one of the  principal differences w ith 
the Schrieffer-Wolff approach.

3. C an on ica l p er tu rb a tio n  exp an sion :  
a b r ie f  su m m ary

To develop the canonical pertu rbation  expansion 
(CPE) we proceed as follows [1]. Due to  the fact th a t 
im portan t are the double occupancies of /  electrons on 
the same site, we project them  out from H am iltonian

Pi

f Z ć m  =  ( 1 -  Ń is ) H c mi7 +  Ń f  cm„ . (2)

Next, by trea ting  as a pertu rbation  only the p a rt con­
nected with high-energy processes, i.e., ~  (Ń ia f lacma + 
H.c.), we calculate explicitly the effective H am iltonian 
using the canonical pertu rbation  expansion up to  the 
fourth order. The low-energy p a rt rem ains unchanged 
and represents a residual hybridization, which will in tro­
duce, among others, the itineracy of the starting  (bare) 
localized /  states. In general, the canonical pertu rbation  
expansion m ethod allows for differentiation between the 
two term s in (1), which are of the  same order ( ~  Vim). 
The differentiation constitu tes the m ain difference be­
tween the present transform ation and th a t introduced 
originally by Schrieffer and Wolff [4]. It will lead to  far 
reaching consequences, e.g., the  itineracy of originally 
atom ic ( /)  electrons.

Y  Pl =  1 Mid P iPc = s„,Pi. (3)
i

O perators P i project the states onto subspace w ith (/ — 1) 
double occupancies in the system  of /  sites. We redefine 
initial A nderson-lattice model using projection operators 
Pl in the  following manner:

Ho =  P i H P i +  P 2 H P 2 , (4)

H i =  P i H P 2 +  P 2 H P i . (5)
In this representation, H i describes the processes chang­
ing by one num ber of double occupancies

P2H Pi =  (P iH P 2 )ł =  Y  VimŃ is f l C m . (6)
ima

In reality, only the effective H am iltonian projected onto 
P i subspace will m atter; the  role of the higher-energy 
subspaces will show up through virtual processes only.

Now, we introduce the canonical transform ation of (1) 
using the  transform ation generator S  of the  form

H(e) = e- 1 (Ho +  eH i  )e +i eS, (7)
where £ is a param eter, which groups the term s of the 
same order of expansion in Vim (at the end we p u t £ = 1 ) .  
Expanding the exponential functions into a Taylor series 
and elim inating the linear term  ~  £ by setting the phys­
ical condition

H i =  i[S , Ho ], (8)
we obtain up to  the fourth order

H (£) =  Ho — 2 £2[S, H i ] — 1  £3 [S, [S, H i ]]

+ 8 £4[S, [S, [S, H i ]]]+  O (£5). (9)

W ith  the use of the definition of projection opera­
tors we can find form of P lS P l+ i from condition (8), by 
pu tting  P lS (0) P l+i =  0 and iterating  the  solution [1], F i­
nally, we obtain

Pi P !+i =

— i (Pi H iP i+ i)  (Pl+i Ho Pi+i — Pi Ho Pi Y  . (10)

Let us note th a t P iS P i ~  P i; thus we can always choose 
S  in such a way th a t P iS P i =  0, because if we project 
(8) w ith operator P i on bo th  sides we obtain  th a t P iS P i 

H o
In the atom ic lim it, the difference P i+ i H oP i+ i — 

P iH oP i can be replaced by m ean value of energy dif­
ference between subspaces w ith / mid (l — 1) double oc­
cupancies. By m aking th is approxim ation, we neglect 
renorm alization of the low-energy hybridization processes 
by the  higher order contributions (i.e., neglect the  term s 
~  Vim in the  denom inator of (10)). In effect, we have

Pi+i Ho Pi+i — Pi Ho P i« (Pi+i Ho Pi+i) — (Pi Ho Pi > =

U +  e / — p, =  U +  e / . (11)

Finally, by projecting out the expansion introduced by 
expression (9) on the subspace w ithout double occupan-
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cies, the  effective H am iltonian can be obtained in the 
form

P i H P i «  P i Ho P i — 7 7 7 —  Pi H i P2 H i P i
U +  f

+  ------1 77 ( A  H i P2 H i Pi H i P2 H i Pi
1U +  f ) v

— -  Pi H i P2 H i P3 H i P  H i P i ) , (12)

where we have put £ = 1 .  Let us note th a t the  th ird ­
-order term  is always zero, because we have chosen th a t
Pi S  Pi =  0.

The term  P i H i P2H i P i describes v irtual process in the 
second order in which in interm ediate sta te  a single dou­
ble occupancy occurs. In the  fourth order two different 
types of processes appear: those w ith passing through 
the  subspace (Pi)  w ithout double occupancies and those 
with passing through th a t subspace w ith up to  two dou-

P3
In w hat follows we restrict ourselves to  the  most in­

teresting  part, th a t is to  the  H am iltonian projected onto 
the  subspace w ithout double occupancies (12). This part 
will be discussed in detail, because it is helpful in de­
term ining the  ground sta te  for different m agnetic and 
superconducting phases of heavy fermions w ith nominal 
4/ i starting  configuration (Ce3+ ions).

4. R esu lts: K on d o  ( f - c )  and su p erex ch a n g e  
( / - / )  in tegra ls

An explicit form of the effective H am iltonian can be 
found, if we carry out a careful analysis of all possi­
ble processes, which can show up in the  second and 
the  fourth orders of the  expansion. After collecting the 
all possible diagram s containing two- and three-site pro­
cesses (examples are shown in Fig. 2), we evaluate them

Fig. 2. Examples of processes in the second (left) and 
the fourth (right) orders of the CPE expansion.

using definitions (4)-(6). In effect, the  complete effective 
H am iltonian (12) w ith projected out double occupancies 
(H eff — P xH P i)  has the  following form:

H  eff — 2̂ (t mn ^ mn ) cJna Cna +  €f h/%a
m=n,a i,a

+  E  (V m  ( l  -  N%*) f a ćma + H .0 .)
i,m,a

+ E  j £ ? (  S i ■ 'm  -  » )
i,m

+  E  J H  ( s * ■ S  -  ^ j )

+ 2 i E  1 +  Sm ■ (Sj  X S i )  , (13)
(mi)(mj) '  Hc

where the  projected particle-num ber operators are via = 
( l  -  Nia^j N%a , and v% =  ^  v%a \ S% and Sm are the  lo­
cal spin operators in the fermion representation for /  and 
c electrons, respectively; n c =  (nm) and n f  =  (v%) are 
average occupancies. The first th ree term s represent the 
projected starting  H am iltonian w ith residual (projected) 
hybridization only. The next three represent, respec­
tively: the  Kondo interaction, the  superexchange part 
and the interaction of D zialoshinskii-M oriya-type, the 
last appearing only if the  c-electrons are present. The 
noncollinearity of the  m agnetic ordering of c electrons 
(~  S'* • (Sn X Sm)), as well as the  superexchange interac­
tion between them , were neglected in effective Ham ilto­
nian (13) since the c bandw idth Wc =  2z\t(mn) | is by far 
the largest energy in the  c-electron subsystem.

The corresponding exchange integrals have the  follow­
ing forms:

J(K) _  2 | _im |2 . |_%m I4
im U + 6f (U  +  Cf )3

_ 4 |Vi m|2 |Vin 1 ( 1 _  n£e

^  (U +  f  )3 ^ 2 '

- 2  E  |Vim|2|_ in;l2 n c - 2 E  |Vim|2|Vjm3|2 n f , (14)
n(i) (U +  Cf ) j  (m) (U +  Cf )

=  E  |Vj m|2|Vim3|2 nc . (15)

ij 4  (U + )3
The first of them  represents the  effective Kondo ex­

change integral calculated here to  the  fourth order; the 
second, the  exchange integral for bo th  the  Heisenberg 
part and the  novel three-spin interactions. Note th a t in 
order to  estim ate the  corresponding exchange integrals,

nc n f
the actual occupancies. Obviously, n e =  n c +  n f .  Now, 
we can estim ate numerically the  values of (14) and (15), 
as discussed next.

5. E stim a te s  o f  exch a n g e  in tegra ls

The numerical estim ates of the  exchange integrals ap­
pearing in (14) and (15) are shown in Figs. 3 and 4 for the 
two values of Coulomb interaction U: ef +  U =  3eV  and 
€f +  U =  5 eV, respectively. We have also assumed th a t 
hybridization has nonzero value only for nearest neigh­
bours _(im) =  _ ,  where the  num ber of nearest neighbors 
z =  4 and the  hybridization m agnitude |_ | =  0 .3^0 .5  eV. 
Typically for Ce systems the  num ber of electrons per site 
is n c =  1 and n f  =  1. Let us note th a t to  estim ate J%jH) 
we assume th a t sites i and j  are next nearest neighbors, 
such th a t sum m ation in (15) allows only those m, which

i j
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Fig. 3. Exemplary values of the Kondo exchange inte­
gral J with and without correction from the fourth 
order (a) and that for the superexchange integral J  
(b); both as a function of bare hybridization magnitude 
\V\, for e/ +  U =  3 eV.

Let us note th a t J (K) in Fig. 3a is always antiferrom ag­
netic; the  fourth order effects reduce the second-order 
value by ^  30% for the  smaller U-value. Likewise, the  
f - f  exchange J (H) is also always antiferrom agnetic and 
more th an  an order of m agnitude smaller, as it should be, 
since it contains solely the  fourth-order processes. For the 
larger value of U the  integral J (H) and the  correction from 
the fourth order in J (K) are smaller. Let us note also th a t 
the present approach contains short range in teraction be­
tween asym ptotically itineran t fermions (Vim =  0).

6. C o n clu d in g  rem arks

T he value of the  Kondo exchange and the superex­
change integrals have been evaluated as a  function of 
hybridization m agnitude. In the  m etallic s ta te  there ap­
pears a  3-spin in teraction (the last term  in (13)), which 
m ay introduce a  noncollinearity of the  spins in the  m ag­
netic heavy-fermion sta te . A detailed analysis of the  re­
sults will be published separately.
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Fig. 4. Values of the Kondo exchange J (K) with and 
without correction coming from the fourth order (a) and 
of superexchange J (H) integral (b); both integrals as a

\V\
e/ +  U =  5 eV.
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