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Abstract
We demonstrate the stability of the spin-triplet paired s-wave (with an admixture
of extended s-wave) state for the limit of purely repulsive interactions in a
degenerate two-band Hubbard model of correlated fermions. The repulsive
interactions limit represents an essential extension of our previous analysis (2013
New J. Phys. 15 073050), regarded here as I. We also show that near the half-
filling the considered type of superconductivity can coexist with anti-
ferromagnetism. The calculations have been carried out with the use of the so-
called statistically consistent Gutzwiller approximation (SGA) for the case of a
square lattice. We suggest that the electron correlations in conjunction with the
Hundʼs rule exchange play the crucial role in stabilizing the real-space spin-
triplet superconducting state. A sizable hybridization of the bands suppresses the
homogeneous paired state.
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1. Introduction

Spin-triplet superconductivity was suggested to occur in Sr RuO2 4 [1, 2], in uranium compounds
[3–5], and in iron pnictides [6, 7]. All these multi-band systems have moderately (Sr RuO2 4 and
the pnictides) or strongly correlated (URhGe, UPt3) electrons, d and f respectively. Previously,

the spin-triplet pairing has been used successfully to describe the superfluidity of liquid He3

[8, 9] and that of the neutron-star crust [10]. In the last two cases of continuous fermionic
systems, which are regarded as paramagnets with an enhanced magnetic susceptibility, a single-
component (single-band) Landau Fermi-liquid picture was taken as a starting point and the
pairing of the odd parity (p-wave type) was due to the exchange of paramagnons when
combined with the Pauli exclusion principle. Such an approach is limited to weak correlations
and was also applied to weakly ferromagnetic superconductors [11] and to the paramagnetic
Sr RuO2 4 [12].

In the case of correlated and orbitally degenerate lattice systems the intra-atomic
ferromagnetic (Hundʼs rule) exchange interaction of magnitude J 0.1≳ eV, appears naturally
and is essential to the description of ferromagnetism, for moderately and strongly correlated
electrons. Furthermore, its significance to the spin-triplet pairing has been emphasized in
general [13–17], as well as for both the pnictides [6] and Sr RuO2 4 [18, 19]. In most cases, the
Hundʼs rule in conjunction with remaining local Coulomb interactions are either treated in the
Hartree–Fock approximation [20] or a semi-phenomenological negative-U intersite attraction
[21] is introduced. Moreover, magnetism is robust (i.e. that with a substantial static magnetic
moment) in most of the mentioned systems, at least at and near the half filling of the relevant
bands, and thus the spin-fluctuation mechanism may be insufficient to describe the
magnetism-superconductivity coexistence. In effect, it is very important to scrutinize a global
stability of the spin-triplet phase against an onset of either pure magnetism or coexistent
states within the orbitally degenerate Hubbard model (the canonical model of correlated
electrons) when both the magnetism and the pairing in real space are treated on an equal
footing. Analysis of such states is possible only by including the local interelectronic
correlations. By correlated systems we understand those for which the kinetic (band) energy
of fermions is either comparable or even smaller than the interaction energy among them. In
such systems, starting from the Hartree–Fock approximation combined with BCS-type
approach, is ruled out.

We have very recently analyzed a microscopic model with the Hundʼs-rule induced
magnetism and spin-triplet pairing, in both the Hartree–Fock [20] and the modified Gutzwiller
approximations [22] (hereinafter referred to as I). In the Hartree–Fock–BCS approach, the
paired states (often coexisting with magnetism) appear only in the limitU J U J3 0′ − ≡ − < ,
where U′ (U) is the intra-atomic interorbital (intra-orbital) magnitude of the direct Coulomb
repulsion and J is the Hundʼs-rule exchange integral. This limit can be named as that with
attractive interactions. In the correlated Gutzwiller state and under the same conditions,
superconductivity, both pure and coexistent with antiferromagnetism, is also stable [22]. The
stability of the superconducting phases does not come as a surprise in this parameter regime,
since it resembles a single band model with negative U.
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In the course of our study reported in I [22] it became apparent to us that the spin-triplet
paired state can also become stable in the regime of purely repulsive interactions U J 0′ − > ,
which represents a typical situation for the correlated d3 and d4 electrons considered in the
discussion of pure magnetic phases. In this manner, we essentially extend the regime of
applicability of our approach by encompassing superconductivity within the context of
correlated itinerant magnetism in its canonical regime of interaction parameters [23]. This
regime has been considered for a similar model with the use of the dynamical mean-field theory
in [16], where only the normal-state instability with respect to the spin-triplet pairing was
analyzed. Here we show explicitly that the s-wave (with an admixture of an extended s-wave)
symmetry solution for the paired state, i.e. that with even parity, is stable (also against
ferromagnetism) and therefore should be included in the analysis of the spin-triplet
superconductivity in the orbitally degenerate and correlated systems. We would like to
underline that this is a generic microscopic approach in which the electronic correlations play a
decisive role in stabilizing the orbital-singlet spin-triplet state. The spin-fluctuation contribution
represents in the present analysis a higher order effect and will not be considered here. One
should note that the possibility of the spin-triplet pairing by purely repulsive interactions has
been discussed a long time ago [24], though the authors considered only the case with odd-
parity.

In connection with our analysis one should also note the studies of analogous pairing in
multicomponent cold-atom fermionic systems (see e.g. [25–27]) where the phenomenon of
superfluidity is investigated in general terms but not with an explicit reference to this particular
microscopic mechanism.

It should be emphasized that the model considered here is not as yet material specific.
Nonetheless, it allows for an analysis of general features of the proposed pairing mechanism.
One should also notice some similarities between the considered pairing mechanism and the
single-band real space spin-singlet pairing considered for the Hubbard [28] and t-J models
[29, 30] of correlated systems. In this respect, the present work contributes to the universality of
the exchange-interaction induced local pairing since the concept of exchange interaction is tied
in a fundamental manner to the antisymmetry of the many-fermion wave function [31] (for the
case of orbitally degenerate electrons see e.g. [32, 33]).

The paper is composed as follows. In section 2, we provide a brief description of our
theoretical approach, within the SGA method, for the spin-triplet superconducting phase of type
A ( , ,Δ Δ=↑ ↑ ↓ ↓) with both inter- and intrasite pairing components included. Details of the method
in use are provided in appendices A and B. Similar description with only intrasite pairing is
shown in I for the same phase, as well as for the spin-triplet paired phase coexisting with
antiferromagnetism, for which the results will be also analyzed here but in the purely repulsive
interactions regime. In section 3 we analyze the stability of considered phases as a function of
band filling n and the effective pairing parameter J U Jeff = ′ − , as well as discuss the influence
of hybridization on the paired states, whereas section 4 contains the concluding remarks.
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2. Model and method: Effective Hamiltonian in statistically consistent Gutzwiller
approximation (SGA)

The starting Hamiltonian, as in I, has the form of the extended Hubbard model, i.e.
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where l = 1, 2 labels the orbitals. The first term includes intraband (l l= ′) and interband
(hybridization, l l≠ ′) hopping terms, the second and the third represent the interorbital and
intra-orbital Coulomb repulsion interactions, whereas the last represents the full form of the
interorbital (Hundʼs rule) ferromagnetic exchange interaction. The Hamiltonian (1) can be
rewritten in an alternative form by introducing the real-space pairing representation for the
interaction part
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As one can see, forU J′ > the interaction energy that corresponds to the creation of a local pair
in either spin-triplet or spin-singlet states, is positive. The factor favoring the triplet
configuration is the Hundʼs rule exchange, but as we show, the interelectronic correlations
are of primary importance to stabilize this spin-triplet paired state globally. Below we present
only briefly the essential ingredients of the approach already discussed in I, but point out those
elements not detailed there (cf appendix A).

As stated above, electronic correlations turn out to be crucial in the present situation. To
account for them in our study we use the Gutzwiller approach modified by us [22]. In this
method, one assumes that the correlated state GΨ of the system can be expressed in the
following manner

P , (5)G G 0Ψ Ψ= ˆ

where 0Ψ| 〉 is the normalized non-correlated state to be defined below, whereas PĜ is the
Gutzwiller correlator, which we have selected in the form
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Here, I{ }| 〉 is a basis of the local (atomic) Fock space (4 162 = states, corresponding to
N 0, 1, , 4e = … ) and I I,λ ′ are the variational parameters, which we assume to be real and

symmetric. In the subsequent discussion, we write the expectation values with respect to 0Ψ as

O O0 0 0Ψ Ψ〈 ˆ〉 ≡ ˆ , while the expectation values with respect to GΨ will be denoted by
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We focus on the pure superconducting phase of type A defined as A A 0i G i G,1 , 1〈 ˆ 〉 = 〈 ˆ 〉 ≠− ,

and A 0i G,0〈 ˆ 〉 ≡ . This is because one would expect that the equal-spin state (ESP) is favored by

the local ferromagnetic exchange. Note that the expectation values in the correlated state, GΨ| 〉 of
the respective pairing operators are nonzero only if the corresponding expectation values in the
noncorrelated state 0Ψ| 〉 are also nonzero. For simplicity as in I, we assume that t t t11 22= ≡ and

t t t12 21= ≡ ′ for the nearest neighbors. The expectation value of the grand Hamiltonian

  Nμˆ = ˆ − ˆ in the correlated state now takes (cf appendix A for details) the following form
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where Q and Q̃ are the band renormalization factors (cf appendix A), μ refers to the chemical
potential, and q n n/

l
s

il G il 0= 〈 ˆ 〉 〈 ˆ 〉σ σ σ (for the case considered here q q
l
s s≡σ ). The expression for

 G〈 ˆ 〉 can be rewritten as the expectation value of the effective single-particle Hamiltonian GA
ˆ ,

evaluated with respect to 0Ψ| 〉. This effective Hamiltonian is defined within the subspace of
broken-symmetry single-particle states in the following manner
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The first three terms of (9) originate from the single particle part of (2), whereas the fourth
originates from its interaction part. The intra-atomic interaction appears only through its
average, in accordance with the general philosophy of the Gutzwiller approach. This amounts to
saying that physically the configurations dictated by the macroscopic parameters (number of
orbital double occupancies, component-band occupancies, spin-subband magnetic polarization)
are fixed and form the background for the quasiparticle dynamics. Thus, Q and Q̃ are the
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renormalization factors of the respective quasiparticle hopping processes. The first of them
refers to the narrowing of the component quasiparticle bands, whereas the second corresponds
to the intersite pairing amplitude. In other words, Q and Q̃ can be regarded as k-independent
renormalization factors of the hopping and pairing-potential matrix elements respectively. It
should be emphasized that in our initial Hamiltonian (1) there are no intersite interaction terms
and so the intersite pairing that is present in (9) is due to correlations (a non-BCS factor). Also,

the off-diagonal factor Q̃ is nonzero only when the local expectation values Ai G, 1〈 ˆ 〉± (and the

corresponding Ai, 1 0〈 ˆ 〉± ) are also nonzero. As a result, the intersite pairing appears concomitantly
with the intrasite one. The Hamiltonian (9) now can be solved without invoking an explicit form
of 0Ψ| 〉, since it will be specified by the type of averages 0〈…〉 we assume as nonzero (i.e.
selected type of the symmetry-broken state).

As discussed in detail in [22, 34–37], in the Gutzwiller approximation the mean fields
entering the problem should be treated as variational parameters to obtain the fully minimized
energy of the system. This is due to the fact that the renormalization factors depend explicitly on
those mean fields. However, to assure the statistical-consistency during the minimization
procedure, one has to impose additional constraints so that the mean values obtained from a
self-consistent procedure coincide with those determined variationally. This is the principal
additional ingredient to the Gutzwiller approximation (GA) to make the whole approach
mutually (statistically) consistent. In this statistically consistent Gutzwiller approach (SGA)
[22, 34–37] the constraints are introduced with the help of the Lagrange-multiplier method
which leads to supplementary terms in the effective Hamiltonian so that now it takes the final
form
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σ

σ

since we consider a spatially homogeneous situation. The global Lagrange multipliers mλ and nλ
are introduced to ensure that the spatially homogeneous averages Am〈 ˆ 〉 and n〈 ˆ〉 calculated either
from the corresponding self-consistent equations or variationally, coincide with each other. One
should also note that it is natural to fix n G〈 ˆ〉 instead of n 0〈 ˆ〉 during the minimization procedure.

That is why we put the term Nμ− ˆ already at the beginning of our derivation. This assumption is
typical in the whole approach and represents a simplified procedure; a full treatment requires
that the two particle numbers ( n G〈 ˆ〉 and n 0〈 ˆ〉 ) should coincide, what leads only to quantitative
corrections [38]. The values of the mean fields, the variational parameters, and the Lagrange

multipliers, are all found by minimizing the free energy functional ̂λ that is derived with the

help of the effective Hamiltonian ̂λ in a standard statistical-mechanical manner. For the
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considered two-band model there can be up to 256 variational parameters I I,λ ′. Fortunately, for
symmetry reasons, one can reduce their number significantly. In effect, we have to minimize
only 16 variables in this pure superconducting state of type A. We should emphasize that the
SGA method does not introduce any additional approximations in comparison to the standard
Gutzwiller approximation. Moreover, by setting I I I I, ,λ δ=′ ′ we reproduce the Hartree–Fock–
BCS results which constitutes a test for the applied method. Additionally, it can be shown that
our treatment is fully equivalent to the saddle-point slave-boson approach but does not contain
the spurious condensed slave Bose fields [37].

From equations (9) and (10) it can be seen that the Lagrange multipliers mλ have an
interpretation of the intrasite gap parameters, while the symmetry of the intersite gap parameter
is fully determined by the bare band dispersion relation that results from (9). By assuming the
dispersion relation for a square lattice with nonzero hopping t between nearest neighbors only

t k k2 (cos cos ), (12)x ykϵ = − +

one obtains the following form of the gap parameter

k k(cos cos ), (13)x yk
(0) (1)Δ Δ Δ= + +

where (0)
1 1Δ λ λ≡ = − (as we are considering an ESP state) while Qt2(1)Δ ≡ ˜ is the intersite

pairing amplitude. In this manner, we have obtained a mixture of the s-wave and the extended s-
wave pairing symmetry. To obtain the expression for the free energy, which is minimized when
carrying out calculations, one has to first transform the Hamiltonian (10) into the reciprocal
space and then carry out the diagonalization in order to obtain the renormalized quasiparticle
energies. This procedure is detailed in appendix B.

In order to check if the stable spin-triplet paired phases can indeed appear in the repulsive-
interaction regime, we have first performed the calculations, taking into account only the
intrasite pairing for the following selection of phases: type A superconducting (A), pure
ferromagnetic (FM), paramagnetic (NS), superconducting coexisting with antiferromagnetism
(SC+AF), and pure antiferromagnetic (AF). The antiferromagnetic ordering considered by us
has a simple two-sublattice form. We have also considered the so-called A1 superconducting

phase, i.e. with A 0G1〈 ˆ 〉 ≠ and A A 0G G1 0〈 ˆ 〉 = 〈 ˆ 〉 ≡− , coexisting with ferromagnetism. However,
this phase turned out not to be stable in the whole range of the model parameters examined.
Therefore, it is not included in the subsequent discussion. Detailed information concerning the
above phases can be found in Part I, where we have analyzed the intrasite paired states only in
the regime of attractive interaction, i.e. for U J 0′ − < . Below we present results from the
repulsive-interaction regime first and subsequently analyze the evolution from the attractive to
the repulsive regime by plotting the gap parameter as a function of J U Jeff = ′ − from negative
to positive values.

Note that the renormalized single-particle properties, Fermi surface topology, etc, have
been discussed separately [38], so here we concentrate only on the detailed discussion on
stability of the superconducting state and its coexistence with antiferromagnetism in the regime
of purely repulsive interactions.
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3. Results in the purely repulsive interactions limit: U ′ − J > 0

The numerical analysis has been performed assuming that the hybridization matrix element has
the simplest form

hk k12ϵ β ϵ≡ , where [0, 1]
h

β ∈ , specifies the interband hybridization strength.
The interorbital Coulomb repulsion constant U′ was set toU U J2′ = − . All the energies have
been normalized to the bare band-width, W t8= | | for a two-dimensional square lattice, and the
results were obtained for k T W/ 10B

4= − emulating the T = 0 state.
In figure 1 we show that the superconducting phases, both pure and coexisting with

antiferromagnetism, are stable for purely repulsive interactions regime (U J 0′ − > ). With the
increasing Coulomb repulsion U, the regions of stability of the paired phases are becoming
narrower. Note that the Hartree–Fock calculations lead only to the stability of magnetically
ordered phases in this regime. The appearance of the paired states is therefore a genuine
correlation-induced effect taken into account within the SGA method. One can say that out of
the 2, 3, and 4-particle configurations possible locally, all with positive interaction energies,
those representing the spin-triplet are selected as the ones for which the relative system energy
is lowered by the amount of J on a local scale and subsequently stabilized globally by including
the renormalized band energy. What is interesting is that, within the parameter range analyzed,
the coexistence of ferromagnetism and superconductivity does not appear even though both are
stabilized by the Hundʼs-rule exchange.

Next, we analyze the superconducting A phase with inclusion of the intersite part of the
pairing. In figure 2 we plot the superconducting gap components (0)Δ and (1)Δ as a function of the
effective pairing parameter J U Jeff ≡ ′ − and for a representative value of the band filling
n = 1.2. As the Jeff parameter changes sign to positive, the intrasite interaction corresponding to
the spin-triplet-pair creation on a single atomic site changes from the attractive to the repulsive.
As one could expect, according to the Hartree–Fock–BCS results, the intrasite gap parameter
vanishes before Jeff reaches zero (from the negative-side values) and the intersite pairing does
not appear at all. The situation is different in the SGA. Namely, the paired solution survives for
J 0eff > and the pairing has both the intra- and the intersite components. However, the (1)Δ
parameter is an order of magnitude smaller than (0)Δ . The phase A has a lower value of energy
than the normal phase for the whole range of Jeff presented in figure 2. The evolution of the gap
components is smooth when the sign of Jeff changes. This speaks again for the decisive role of
correlations in stabilizing globally this pairing induced by local interaction. Exemplary values
of the order parameters, the renormalization factors, and the free energy for T 0→ , are all listed
in table 1.

So far we have put 0
h

β = . In figure 3 we show the J dependences of the gap parameters
for J 0.1eff = and the influence of the hybridization on the considered type of superconductivity.
The superconducting gaps are not affected by the increase of the

h
β parameter up to the critical

value 0.0379
h
Cβ ≈ at which both of them suddenly drop to zero. Therefore, a sizable

hybridization is detrimental to the homogeneous spin-triplet pairing. This result represents a
rather stringent condition ( 1

h
β ≪ ) imposed on the observability of a pure homogeneous A-SC

state. It is caused by the fact that the hybridization introduces inequivalence of the bands which
results in a Fermi wave-vector mismatch between kF1 and kF2− and thus leads to a collapse of
the interband paired phase at a critical value of

h
β . Such a destructive role of hybridization
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appears also in the attractive interactions limit (cf I) but for a substantially larger amplitude of
0.1

h
β ∼ .

4. Outlook: meaning of the pairing mechanism

As this paper provides an essential extension of the idea of spin-triplet pairing to the nontrivial
situation of real-space pairing with repulsive interactions, a methodological remark is in place
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Figure 1. Ground-state energy of stable phases as a function of the band filling for two
values of U for the case when only the intrasite pairing is included (i.e. for 0(1)Δ ≡ ). For
comparison, plots obtained in the H-F approximation are also shown. The shaded
regions mark the stability of corresponding phases according to the SGA method. A
pure AF state is stable for n = 2 in a and n 2≈ in b (marked by arrow). Note the
appearance of the pure FM and A-SC states, next to each other in b. No stable
coexisting FM+SC state appears in this range of parameters.

Figure 2. The intrasite (left scale) and the intersite (right scale) gap components as a
function of the effective coupling constant J U Jeff ≡ ′ − . For comparison, we provide
also the results obtained in the Hartree–Fock approximation (blue dotted line).
Additionally, the band renormalization factor Q is shown in the inset. Note that

Q/4(1)Δ ≡ ˜ . The HF-BCS paired solution is stable only for J 0eff < , whereas that in the
correlated state evolves smoothly to the J 0eff > regime.



here. First, the standard concept of spin-triplet superconductivity involves pairing among
quasiparticles in k space near the Fermi surface, in a single band. This situation forces an odd
parity in connection with the antisymmetry of the orbital part of the pair wave function. The
pairing potential within, e.g., the spin-fluctuation mechanism is explicitly k-dependent as it
contains the appropriate dynamic susceptibility. Such pairing mechanism contains also the
retardation effects [8, 9, 11, 12].

In the present situation we introduce the pairing potential already at the model level in real
space. This is because we consider the system locally strongly correlated in an extreme situation
even close to the Mott (or Mott–Hubbard) localization. The obtained quasiparticles as a rule
contain strong renormalization effects. Nevertheless, in the limit of weak correlations our results
reduce to those coming from the Hartree–Fock–BCS approximation and this limit represents a
sort of implicit checkout that our approach has a solid basis. Here the pairing operates between
electrons from two different bands and leads to an orbital-singlet spin-triplet pairing. As a
result, the superconducting gap is an even function of k but the wave function of the Cooper
pair as a whole is antisymmetric as it should be. Furthermore, the pairing potential is
k-independent and contains no retardation effects. However, it involves all electrons, i.e. is not
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Figure 3. Intrasite ( (0)Δ ) and intersite ( (1)Δ ) gap amplitudes as a function of the Hundʼs
exchange integral (a) and the hybridization parameter (b). In the inset of (a) the J
dependence of the band narrowing factor is shown. In the repulsive limit, the
hybridization is rapidly destructive to the SC stability (cf I, where the influence of
hybridization in the attractive limit is analyzed).

Table 1. Representative values of the gap parameters, the renormalization factors and
the free energies for J = 0.4, n = 1.2 and 0.0

h
β = , for three different values of the

effective pairing constant, Jeff . For comparison, we have provided the values of the
renormalization factor and the free energy for the superconducting phase of type A and
the normal phase, NS. The subscripts refer to these two phases. The numerical accuracy
is better that the last digit specified.

Jeff
(0)Δ (1)Δ QA QNS FA FNS

0.1− 0.02325 0.00191 0.74669 0.74401 −0.255481 −0.255067
0.1 0.00357 0.00073 0.72164 0.72157 −0.179725 −0.179705
0.15 0.00200 0.00054 0.71454 0.71453 −0.161874 −0.161867



limited to the vicinity of the Fermi surface, as would be the case in BCS theory. The last
circumstance requires the specific variational (self-consistent) evaluation of both the
quasiparticle properties as well as the magnitude of the pairing within a single framework.
Finally, the k-dependent component of the pairing obtained in our approach is an effect of
correlations and, from the technical point of view, appears during the construction of the
effective Hamiltonian. Explicitly, the intersite pairing term in this Hamiltonian originates from
the hopping part of the initial Hamiltonian and as a result the intersite pairing symmetry (in our
case the extended s-wave) is determined by the dispersion relation of the bare electrons.

By using the statistically consistent Gutzwiller approach (SGA), we have shown that the
real-space spin-triplet paired states, both pure (A-type) and coexistent with antiferromagnetism
(SC+AF phase) become stable in the orbitally degenerate Hubbard model, in the limit of purely
repulsive interactions (U J 0′ − > ) near the half filling. One can say that both the Hundʼs rule
and the correlation-induced change of the band energy contribute to the spin-triplet pairing; they
correspond to the BCS (potential energy gain) and the non-BCS (kinetic energy gain) factors
stabilizing the paired state, respectively. Also, the intersite (extended s-wave) component of the
pairing is directly related to the intrasite (s-wave) counterpart. This can be seen from figures 2
and 3(a), where (0)Δ and (1)Δ reach zero for the same values of the model parameters. One should
note that the present model does not lead to a stable SC+FM state. Therefore it cannot account
for such a coexistence observed in e.g. UGe2 or URhGe. However, in that group of uranium
compounds the proper starting point is the orbitally degenerate Anderson-lattice model in which
principally quasi-atomic 5f states due to U are strongly hybridized with those electrons from
uncorrelated conduction bands. In other words, a strongly inequivalent-band structure must be
assumed from the start even before the hybridization is taken into account. In that situation the
interband Kondo exchange, as well as the f-f superexchange leading to the spin-triplet pairing,
compete with the contribution arising from the Hundʼs rule counterpart.

The intersite hybridization suppresses the homogeneous paired states and this is ascribed
to the Fermi wave-vector mismatch in the bands (k kF F1 2≠ ), that appears when the bands
become inequivalent. This band inequivalency introduced by the hybridization has been
discussed elsewhere [38]. However, when the mismatch is not very large, the homogeneous
paired phase is still stable, which means that such paired state should appear in some realistic
situations. One of the possibilities is the compound LaFeAsO Fx x1− , for which a two-band model
has been used in [6] for the description of the triplet superconducting state. In the case of
strongly inequivalent bands (like the α and β bands in Sr RuO2 4), the large Fermi wave vector
mismatch of the Cooper pair partners can be compensated by introducing a nonzero center-of-
mass momentum of the Cooper pair which could lead to a spontaneous creation of a Fulde–
Ferrell–Larkin–Ovchinnikov type of phase. This kind of inhomogeneous SC state has not been
analyzed in detail as yet. Furthermore, the application of the pairing mechanism analyzed here
to the ultracold atom fermionic systems in optical lattices, where the simplest two-equivalent-
band situation can be realized, should also be considered.

At the end, one must emphasise that the present pairing mechanism by purely repulsive
interactions is of similar type as the spin-singlet pairing in the correlated single-band Hubbard
[28] and t-J models [29, 30]. As the t-J model is derived from the one band Hubbard model in
the large-U limit, one can say that in both approaches the intra-atomic repulsion leads to the
intersite pairing, as in our case. In the mentioned models, the spin-fluctuation induced pairing
appears as a higher order contribution to the renormalized mean-field or SGA approaches,
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which in turn can be regarded as saddle-point solutions within a statistical-field-theoretical
approach.
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Appendix A. Derivation of the effective Hamiltonian in the correlated state

In order to construct the effective Hamiltonian within the Gutzwiller approach one has to derive

the formula of the expectation value of the initial Hamiltonian   μˆ = ˆ − ˆ , in the correlated
state defined by (5). This can be done by the use of the diagrammatic approach in the limit of
infinite dimensions [33, 39]. By applying this method to the two-site term that originates from
the hopping part of the Hamiltonian, one obtains

c c
P P P c c P P

P
. (A1)il jl G

m i j G m G i G j il jl G i G j

m m

0 ,

2

0

0

2

0

Ψ Ψ

Ψ Ψ
〈ˆ ˆ 〉 =

∏ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

∏ ˆσ σ

σ σ
†

′

≠ | | |
†

′ | |
⎡⎣ ⎤⎦

The sites with m i j,≠ play the role of inner vertices and as it can be shown the contribution of

all diagrams with those inner vertices vanishes, at least proportional to d1/ , where d is the
spatial dimensionality. As a result in the d = ∞ limit we obtain

c c PPc c PP . (A2)il jl G i j il jl i j0 0Ψ Ψ〈ˆ ˆ 〉 = ˆ ˆ ˆ ˆ ˆ ˆ
σ σ σ σ

†
′

†
′

In executing our diagrammatic approach we demand that at least four lines meet at every inner
vertex which can be fulfilled by putting restrictions on the I I,λ ′ parameters. This leads to a set of
constraints that have to be obeyed during the calculations (see equation (26) in I [22]). The right
hand side of equation (A2) can be further simplified due to the fact that in the case of infinite
dimensions only a single line can join the two external vertices i j≠ . In such a situation the

contraction at i can be done with the creation operator cilˆ σ
† when it meets the annihilation

operator cjlˆ σ′ at j (the inverse situation is also considered). However, when the superconducting

pairing correlations are possible in 0Ψ , the line between i and j can also be an anomalous
propagator. The resulting one particle density operator takes the form

( )
( )

c c t q q q q c c

t q q c c q q c c , (A3)

i j G ij i j

ij i j i j

, , 0

, , 0 , , 0

∑

∑

γγ

γγ

〈ˆ ˆ 〉 = ˜ ˜′ − ¯ ¯ 〈ˆ ˆ 〉

+ ˜ ˜′ ¯ 〈ˆ ˆ 〉 + ¯ 〈ˆ ˆ 〉

γ γ
γγ

γγ γ γ γγ γ γ γ γ

γγ
γγ γ γ γ γ γγ γ γ γ γ

†
′

′
˜ ′ ˜′ ˜ ′ ˜′ ˜

†
˜′

′
˜ ′ ˜′ ˜

†
˜′

†
˜ ′ ˜′ ˜ ˜′
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where we have introduced for simplicity the index 1, 2, 3, 4γ = which labels the four spin-
orbital states (in the lσ notation: 1↑, 1↓, 2↑, and 2↓). The second sum of equation (A3), which
corresponds to the anomalous propagator, leads to the intersite pairing terms in the Gutzwiller
effective Hamiltonian, as discussed below. The interaction term of Hamiltonian (2), which
consists of only one-site operators, can be expressed by using the diagrammatic approach in the
following way

 L E m , (A4)
at

I I
I I I I

,
, , 0∑ˆ = ¯ 〈 ˆ 〉

′
′ ′

where m I II I,ˆ ≡ ′′ and L is the number of atomic sites. The factors q and q̄, as well as EI I,
¯

′,
can be expressed with the use of the variational parameters I I,λ ′, the local single particle density

matrix elements c cil il 0〈ˆ ˆ 〉σ
α

σ
α
′ ′
′ , and the matrix elements of the atomic part of (1) represented in the

local basis, I H I
atˆ ′ . Here cilˆ σ

α represents either creation or annihilation operators. The
explicit formulas for q, q̄, and EI I,

¯
′ are provided in I.

By using (A3) and (A4) we can easily derive the expression for  G〈 ˆ 〉 which is given by (8)
for the case of superconducting phase of type A, for which the q and q̄ parameters fulfill the
following relations

q q

q q q

,

. (A5)
l l,

2 ,1 1 ,2

≡
¯ = − ¯ ≡ ¯

σ σ

σ σ σ σ

In (8) we have introduced the so-called renormalization factors which are defined by

Q q q

Q qq

,

2 . (A6)

2 2= − ¯
˜ = ¯

Having the formula for  G〈 ˆ 〉 one can construct GA
ˆ and the final effective Hamiltonian (10)

which is the subject of our analysis.

Appendix B. Diagonalization of the effective Hamiltonian

The effective Hamiltonian (9) transformed to the reciprocal space has the following form

 Q q n Q c c

Q c c c c L E m

( )

( ) , (B1)

GA
l

s
l

ll l l
l l

I I
I I I I

k
k k

k
k k k

k
k k k k k

( )
12

1 2 2 1
,

, , 0

1 4

1 4 1 4

∑ ∑

∑ ∑

ϵ μ ϵ

ϵ

ˆ = − ˆ + ˆ ˆ

+ ˜ ˆ ˆ + ˆ ˆ + ¯ 〈 ˆ 〉

′
σ

σ
σ

σ σ

σ
σ σ σ σ

′ ≠ ′

†

†
−
†

−

where kϵ is the bare band dispersion relation, which in our case corresponds to electrons on a
square lattice with nearest neighbors hopping only

t k k2 (cos cos ). (B2)x ykϵ = − +

The renormalization (Q) of the electron hopping, which is visible in the first two terms of the
effective Hamiltonian, is caused by the interelectronic correlations. Moreover, within our
approach an additional term appears which is also due to the correlation effect, and it
corresponds to the intersite pairing—the third sum of equation (B1). One can see explicitly, that
in the considered case the momentum dependence of the intersite component of the
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superconducting gap is fully determined by the bare band dispersion relation kϵ , which leads to
an extended s-wave symmetry. This comes as a result of the fact that the intersite pairing
appears during the renormalization procedure (A3) of the electron hopping term from the initial
Hamiltonian.

Transforming the complete effective Hamiltonian K̂λ, given by (10), to the reciprocal space
one obtains

  q n L n

A L A H.C. . (B3)

GA n
s

kl G

m
m m

kl

k
km

1
0

∑

∑ ∑

λ

λ

ˆ = ˆ − ˆ − 〈 ˆ〉

− ˆ − 〈 ˆ 〉 +

λ
σ

σ

=±

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

As it can be seen the intrasite pairing term from (10) leads to a momentum independent

superconducting gap (s-wave symmetry). To diagonalize ̂λ we introduce the four-component
representation of the single particle operators

f c c c c( , , , ), (B4)
k k k k k1 2 1 2
ˆ = ˆ ˆ ˆ ˆ

σ σ σ σ σ
† † †

− −

and write down ̂ in the following manner
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2 2
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ˆ

σ is a 4 x 4 orthogonal matrix
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In the above expression we have introduced the following notation

Q q ( ) , (B7)s
nk kϵ ϵ μ λ˜ = − +

k k(cos cos ), (B8)x yk
(0) (1)Δ Δ Δ= + +

where (0)
1 1Δ λ λ≡ = − (as we are considering an ESP state), which has an interpretation of the

intrasite gap parameter, while Qt2(1)Δ ≡ ˜ is the intersite pairing amplitude. In this manner, we
have obtained a mixture of the s-wave and the extended s-wave pairing symmetry. By
diagonalizing (B6) one obtains the quasiparticle eigen-energies in the paired states

E Q , (B9)SC
k k k k

2 2
12ϵ Δ ϵ= ± ˜ + +

which correspond to quasiparticle (+) and quasihole (−) excitations. These renormalized
quasiparticle energies represent the input quantities to construct the free energy functional of the
Landau type (cf I) and carry out the minimization procedure with respect to all mean field,
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variational and Lagrange parameters in order to determine the equilibrium properties and the
phase diagram discussed in the main text.
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