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Abstract
A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-
GWFs) proposed very recently is used for the description of the superconducting
(SC) ground state in the two-dimensional square-lattice t–J model with the
hopping electron amplitudes t (and ′t ) between nearest (and next-nearest)
neighbors. For the example of the SC state analysis we provide a detailed
comparison of the methodʼs results with those of other approaches. Namely, (i)
the truncated DE-GWF method reproduces the variational Monte Carlo (VMC)
results and (ii) in the lowest (zeroth) order of the expansion the method can
reproduce the analytical results of the standard Gutzwiller approximation (GA),
as well as of the recently proposed ‘grand-canonical Gutzwiller approximation’
(called either GCGA or SGA). We obtain important features of the SC state.
First, the SC gap at the Fermi surface resembles a −dx y2 2 wave only for optimally

and overdoped systems, being diminished in the antinodal regions for the
underdoped case in a qualitative agreement with experiment. Corrections to the
gap structure are shown to arise from the longer range of the real-space pairing.
Second, the nodal Fermi velocity is almost constant as a function of doping and
agrees semi-quantitatively with experimental results. Third, we compare the
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doping dependence of the gap magnitude with experimental data. Fourth, we
analyze the k-space properties of the model: Fermi surface topology and
effective dispersion. The DE-GWF method opens up new perspectives for
studying strongly correlated systems, as it (i) works in the thermodynamic limit,
(ii) is comparable in accuracy to VMC, and (iii) has numerical complexity
comparable to that of the GA (i.e., it provides the results much faster than the
VMC approach).

Keywords: t–J model, high-temperature superconductivity, Gutzwiller wave
function, unconventional superconductivity, variational Monte–Carlo method

1. Introduction

The Hubbard and the t–J models of strongly correlated fermions play an eminent role in
rationalizing the principal properties of high-temperature superconductors (for recent reviews
see [2, 10, 37, 47, 53]). The relative role of the particles’ correlated motion and the binding
provided by the kinetic exchange interaction can be clearly visualized in the effective t–J model,
where the effective hopping energy δ δ∼ ∼t (0.35 eV) (δ ≡ − n1 2 is the hole doping) is
comparable to or even lower than the kinetic exchange integral ≈J 0.12 eV. Simply put, the
hopping electron drags behind its exchange-coupled nearest neighbor (n.n.) via empty sites and
thus preserves the locally bound configuration in such correlated motion throughout the lattice
[56]. In effect, this real-space pairing picture is complementary to the more standard virtual
boson (paramagnon) exchange mechanism, which involves, explicitly or implicitly, a
quasiparticle picture and concomitant with it reciprocal-space language [21, 36, 39, 45].
Unfortunately, no single unifying approach, if possible at all, exists in the literature which
would unify the Eliashberg-type and the real-space approaches, out of which a Cooper-pair
condensate would emerge as a universal state for arbitrary ratio of the band energy ∼W to the
Coulomb repulsion U. This exclusive character of the approaches is ascribed to the presence of
the Mott–Hubbard phase transition that takes place for ≈W U 1 (appearing for the half-filled
band case), which also delineates the physics in the strong-correlation limit for a doped-Mott
metallic state, for W substantially smaller than U. This is the regime where the t–J model is
assumed to be valid, even in the presence of partially filled oxygen 2p states [3, 21, 58, 73]. The
validity of this type of physics is assumed throughout the present paper, and a quantitative
analysis of selected experimental properties, as well as a comparison with variational Monte
Carlo (VMC) results, is undertaken.

One of the approaches designed to interpolate between the ≫W U 1 and ≲W U 1 limits
is the Gutzwiller wavefunction (GWF) approach [19]. Unfortunately, the method does not allow
for an extrapolation to the ≪W U 1 limit starting from the Hubbard model, at least in the
simpler Gutzwiller approximation (GA) [72]. Therefore, different forms of GA-like approaches,
appropriate for the t–J model, have been invented under the name of renormalized mean field
theory (RMFT) [10, 15, 16, 26, 34, 46, 63, 72]. The last approach based on the t–J model
provides a rationalization of the principal characteristics of high temperature superconductors,
including selected properties in a semiquantitative manner, particularly when the so-called
statistically consistent Gutzwiller approach (SGA) [1, 23, 25, 26, 29, 30, 57, 64, 70, 71] is
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incorporated into RMFT. However, one should also mention that neither GA nor SGA provides
a stable superconducting state in the Hubbard model.

Under these circumstances, we have undertaken a project involving a full GWF solution
for the Hubbard model by developing a systematic diagrammatic expansion of the GWF (DE-
GWF), which becomes applicable to two- and higher-dimensional systems, for both normal [5]
and superconducting [28] states. Earlier, this solution was carried through in one spatial
dimension in an iterative manner [35, 44]. Obviously, the DE-GWF should reduce to SGA in
the limit of infinite dimensions. Here, a detailed analysis is provided for the t–J model, together
with a detailed comparison to experiment, as well as to the VMC and GA results. The
limitations of the present approach are also discussed, particularly the inability to describe the
pseudogap appearance.

The structure of the paper is as follows. In section 2 we present the DE-GWF method (cf
also appendices A and B). In sections 3 and 4 (cf also appendices C, D and E) we provide
details of the numerical analysis and discuss physical results, respectively. In the latter section,
we also compare our results with experiment and relate them to VMC and GA results. Finally,
in section 5 we draw conclusions and overview our approach.

2. The method

2.1. t–J model

We start with the t–J model Hamiltonian4 on a two-dimensional, infinite square lattice

ˆ = ˆ + ˆH H H , (1)ex0

∑ˆ = ˆ − ˆ ˆ − ˆ
σ

σ σ σ σ
† ( )( )H t c n c n1 1 , (2)

i j
ij i i j j0

, ,
, ,

⎜ ⎟⎛
⎝

⎞
⎠∑ ννˆ = ˆ · ˆ − ˆ ˆH J S S c

1
4

, (3)ex
i j

i j i j
,

where the projected operators are ν ν νˆ = ˆ + ˆ↑ ↓i i i with ν̂ ≡ ˆ − ˆσ σ σ( )n n1i i i , the first term is the
kinetic energy part and the second expresses the full form of the kinetic exchange (with ≡c 1).

The spin operator is defined as ˆ = ˆ ˆ ˆ ≡ ˆ − ˆ ˆ ˆ ˆ ˆ
+ −

↑ ↓ ↑
†

↓ ↓
†

↑{ } ( )( )S S S S n n c c c c, , 1 2 , ,
z

i i i i i i i i i i, , , , , , and ∑
i j,

denotes summation over pairs of n.n. sites (bonds). The parameter c is used to switch on (c = 1)
or off (c = 0) the density–density interaction term reproducing the two forms of the model used
in the literature. Unless stated otherwise, the systemʼs spin isotropy and the translational
invariance are not assumed and the analytical results presented in this section are valid for
phases with broken symmetries. We study system properties in the thermodynamic limit; i.e.,
the system size L is infinite. We also neglect the three-site terms4. Note also that the fermionic

representation of the spin operator is identical in both the starting ˆ ˆσ σ
†( )c c,i i, , and the projected

ˆ − ˆ ˆ − ˆσ σ σ σ
†( ) ( )( ) ( )c n c n1 , 1i i i i, , representations.
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2.2. Trial wavefunction

The principal task within a Gutzwiller-type [19] approach is the calculation of the expectation
value of the starting Hamiltonian with respect to the trial wavefunction, which is defined as

∏Ψ Ψ Ψ= ˆ ≡ ˆP P , (4)
i iG 0 0

where Ψ0 is a single-particle product state (Slater determinant) to be specified later. We define
the local Gutzwiller correlator in the atomic basis of the form

∑λ Γ Γˆ ≡
Γ

ΓP , (5)i i i i,

with variational parameters λ λ λ λ λ∈Γ ∅ ↑ ↓{ }, , , di i i i i, , ,1 ,1 , , which describe the occupation

probabilities of the four possible local states Γ ≡ ∅ ↑ ↓ ↑ ↓{ } { }, , ,
i i i i i

. A

particularly useful choice of the parameters λ Γi, is the one which obeys

ˆ ≡ + ˆP xd1 , (6)i i

2 HF

where the Hartree–Fock operators are defined by ˆ ≡ ˆ ˆ↑ ↓d n ni i i

HF HF HF and ˆ ≡ ˆ −σ σ σn n ni i i
HF

, with

Ψ Ψ= ˆσ σn ni i0 0 . This form of P̂i

2
decisively simplifies the calculations by eliminating the so-

called ‘Hartree bubbles’ [5, 18].
For the t–J model, we work with zero double-occupancy, which sets λ = 0di, and

eliminates x as a variational parameter from the solution procedure. Explicitly, from the

conditions in equations (5) and (6) we find λ = + − − =↑ ↓( ) ( )x n n1 1 1 0di i i,
2 . Calculating x

and inserting into the expressions for λ σi,1 and λ ∅i, gives

λ =
−σ

σn

1

1
, (7)i

i
,1

λ =
−

− −σ σ
∅ ( )( )

n

n n

1

1 1
, (8)i

i

i i

,

where = +↑ ↓n n ni i i .

2.3. Diagrammatic sums

Here we discuss the analytical procedure of calculating the expectation value

Ψ Ψ

Ψ Ψ

Ψ Ψ

Ψ Ψ
≡ ˆ ≡

ˆ
≡

ˆ ˆ ˆ

ˆ
W H

H PHP

P
(9)

G

G G

G G

0 0

0

2

0

in detail for the kinetic-energy term, and we summarize the results for other terms. We start with
expressions for the relevant expectation values of interest via the power series in x, i.e.,
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∏ ∑ ∑Ψ Ψ = ˆ =
!

′ ˆ
=

∞

…
…P

x

k
d , (10)

k

k

l
l

l l
l lG G

2

0 0 , ,
, ,

HF

0
k

k

1

1

∏ ∑ ∑Ψ Ψˆ ˆ = ˆ =
!

′ ˆ∼ ∼ ∼ ∼
σ σ σ σ σ σ

† †

≠ =

∞

…

†
…c c c c P

x

k
c c d , (11)

( ) k

k

i j i j
l i j

l
l l

i j l lG , , G , ,
,

2

0
0 , ,

, , , ,

HF

0
k

k

1

1

where Ψ Ψ… ≡ …( ) ( )
0

0 0 , ≡ ˆ ˆ ˆ∼
σ σ
† †c Pc P( ) ( )

i i i i, , , and we have defined ˆ ≡ ˆ ⋯ ˆ
…d d dl l l l, ,

HF HF HF

k k1 1
with

ˆ ≡∅d 1
HF

, whereas the primed sums have the summation restrictions ≠ ′l lp p , ≠l i j,p for all

′p p, .
Expectation values can now be evaluated by means of Wickʼs theorem [14] and are carried

out in real space. Then, in the resulting diagrammatic expansion, the kth order terms of
equations (10)–(11) correspond to diagrams with one (or two) external vertices on sites i (or i
and j) and k internal vertices. These vertices are connected with lines (corresponding to
contractions from Wickʼs theorem), which in the case of the superconducting state with intersite
pairing are given by

δ≡ ˆ ˆ − ≡ ˆ ˆσ
σ σ σ′

†
′ ′ ′ ↑

†
′ ↓
†P c c n S c c, , (12)l l l l l l l l l l l, , ,

0
, , , , ,

0

where ↑̄ = ↓, ↓̄ = ↑. At this point, the application of the linked-cluster theorem [14] yields [5]
the analytical result for the kinetic-energy term

∑ α α α αˆ = + + +
σ

σ σ σ σ σ σ σ σ σ σ σ σ( )H t q q T q T q T T , (13)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

i j
i j i j i j i j i j i j i j i j i j0

G
, ,

, , ,
1 , 1

, ,
1 , 3

, ,
3 , 1

, ,
3 , 3

where

λ λ≡ − =
−
−σ σ

σ
∅ ( )q n

n

n
1

1

1
, (14)

i i i i
i

i
,1 ,

,

α λ λ≡ − = −
−

−
−

= −
−σ σ

σ σ

σ

σ
∅ n

n

n

q

n

1
1

1

1 1
. (15)i i i

i

i

i

i

i
,1 ,

,

The diagrammatic sums appearing in equation (13) are defined by

∑=
!=

∞

( )S
x

k
S k , (16)

k

k

0

where

∈ σ σ σ σ{ }S T T T T, , , (17)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i j i j i j i j, ,

1 , 1
, ,
1 , 3

, ,
3 , 1

, ,
3 , 3

and the kth order sum contributions have the following forms:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ∑≡ ˆ ˆ ˆ ˆ ˆ

σ σ σ σ σ
…

¯
†

¯ …( )T k n c n c d (18)( ) ( ) ( ) ( )
i j

l l
i i j j l l, ,

1 3 , 1 3

, ,
,
HF

, ,
HF

, , ,

HF

0

c

k

k

1

1

where ...
0

c
indicates that only the connected diagrams are to be retained (see appendix A for

exemplary diagrams and their contributions to diagrammatic sums in the two lowest orders).

The notation ⎡⎣ ⎤⎦( ) ( )1 3 means that for the index (3) the term in square brackets also needs to be
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taken into account, e.g. ≡ ∑ ˆ ˆ ˆ ˆ
σ σ σ σ…

†
¯ …( )T k c n c d( ) ( )

i j l l i j j l l, ,
1 , 3

, , , ,
HF

, , ,

HF

0

c

k k1 1
. In the following expressions we

will drop the brackets in the upper indices of diagrammatic sums for the sake of brevity.
The exchange term can be rewritten in the form

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑νν ννˆ ˆ − ˆ ˆ =

ˆ ˆ + ˆ ˆ
+ ˆ ˆ − ˆ ˆ

+ − − +

J S S J
S S S S

S S
1
4 2

1
4

, (19)
z z

i j
i j i j

i j

i j i j
i j i j

, ,

where the spin-component operators are given by ˆ ˆ ˆ = ˆ ˆ ˆ ˆ ˆ − ˆ
+ −

↑
†

↓ ↓
†

↑ ↑ ↓{ } { }( )S S S c c c c n n, , , ,
z

i i i i i i i i i
1

2
.

The expectation values of the exchange term components can be expressed as

⎡⎣ ⎤⎦ˆ ˆ + ˆ ˆ = − − − −
++ − − +

↓ ↑ ↓ ↑

− ↑ ↓ ↓ ↑( )( )( )( )S S S S n n n n
S S1

2
1 1 1 1

2
. (20)

G
i j i j i i j j

i j i j1 2 ,
22

,
22

For the expressions of the other components see appendix B.
The diagrammatic sums appearing in the above expressions are defined by equation (16)

with

∈ σ σ σ σ σ σ σ′{ }S I I I I I I S, , , , , , (21)i i i j i j i j i j i j
2 4

,
22

,
24

,
42

,
44

,
22

and the kth order sum contributions of the following forms:

∑≡ ˆ ˆ
σ σ

…
…( )I k n d , (22)i

l l
i l l

2

, ,

HF
, ,

HF

0

c

k

k

1

1

∑≡ ˆ ˆ
…

…( )I k d d , (23)i
l l

i l l
4

, ,

HF

, ,

HF

0

c

k

k

1

1

∑≡ ˆ ˆ ˆ
σ σ σ σ′

…
′ …( )I k n n d , (24)i j

l l
i j l l,

22

, ,

HF HF
, ,

HF

0

c

k

k

1

1

∑≡ ˆ ˆ ˆ
σ σ

…
…( )I k n d d , (25)i j

l l
i j l l,

24

, ,

HF HF

, ,

HF

0

c

k

k

1

1

∑≡ ˆ ˆ ˆ
σ σ

…
…( )I k d n d , (26)i j

l l
i j l l,

42

, ,

HF HF
, ,

HF

0

c

k

k

1

1

∑≡ ˆ ˆ ˆ
…

…( )I k d d d , (27)i j
l l

i j l l,
44

, ,

HF HF

, ,

HF

0

c

k

k

1

1

∑≡ ˆ ˆ ˆ ˆ ˆ
σ σ σ σ σ σ

…

† †
…( )S k c c c c d . (28)i j

l l
i i j j l l,

22

, ,
, ,

HF

0

c

k

k

1

1

In what follows, we evaluate these diagrammatic sums in particular situations.

2.4. Spin-isotropic case

The above expressions simplify significantly when a system with translational invariance and
spin isotropy is considered. In general, this situation is applicable when no Néel-type
antiferromagnetism occurs, as for the spin-singlet paired state the spin isotropy is preserved.
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Explicitly, they become

α αˆ ˆ = + +σ σ
†c c q T q T T2 , (29)

G
i j, ,

2 11 13 2 33

ˆ ˆ + ˆ ˆ =
+ − − +

S S S S g S
1
2

, (30)
G

si j i j
22

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ = −↑↑ ↑↓

S S g
I I

2
, (31)

z z

G

si j

22 22

ˆ ˆ = +
−

−
+

−

−
+

−

−

+
−

−
+

−

−
+

−

−

↑↑ ↑↓( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )

n n n I
n

n
I

n

n
I

n

n

I
n n

n
I

n n

n
I

n

n

1
4

1 2

2 1

1 2

2 1

1 2

1

4 2

1

2 2 1

1

2 1 2

1
, (32)

G
i j

2 22

2

2
22

2

2
44

2

4

2 4
2

24

2

3

where = =σ σn n ni j , =
−

g
( )s n

1

1
2 , ≡ = − −( ) ( )q g n n1 2 1

t
2 , α = − −( )q n1 , and the

diagrammatic sums have also been simplified with = σ σ
↑↑I Ii j

22
,

22 , = σ σ
↑↓I Ii j

22
,

22 , = =σ σI I Ii j i j
24

,
24

,
42 ,

= =σ σI I Ii j
2 2 2 , and = =I I Ii j

4 4 4, = σ σS Si j
22

,
22 .

Note that the rotational invariance requires ˆ ˆ = ˆ ˆ = ˆ ˆS S S S S S
z z x x y y

i j i j i j , which leads to the

condition for diagrammatic sums: = −↑↑ ↑↓S I I22 22 22 . We have verified that this condition holds
true in our calculations.

2.5. Relation to other approaches

When only the zeroth order of the diagrammatic expansion method is taken into account and
under additional simplifications (see below), the analytical results are equivalent to those of the
Gutzwiller approximation (GA) [10, 72] and of the recently proposed grand-canonical
Gutzwiller approximation (GCGA) [15, 16, 23, 25, 26, 29]. In the zeroth order all the diagrams
with unequal degrees of sites i and j vanish, namely = = = = = =σ σ σ σ σI I I I T T 0[ ] [ ]i j i j i j i j i j i

2 4
,

24
,
42

, ,
31

,
13 .

The remaining diagrammatic sums are given by

= −σ σ σI P , (33)i j ij
22 2

=σ σI S , (34)i j ij
22 2

= − −σ σ ↑ ↓S P P S , (35)iji j ij ij,
22 2

=σ σT P , (36)i j ij, ,
11

= − −σ σ σ σT P P P S . (37)iji j ij ij ij, ,
33 2 2

In this situation, and if we additionally disregard the T 33 and I 44 terms, relations valid for the
isotropic system are obtained:
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ˆ ˆ = = ˆ ˆσ σ σ σ
† †c c q T g c c , (38)

( )

G

GA

ti j i j, ,
2 11

, ,
0

ˆ ˆ + ˆ ˆ = ˆ ˆ + ˆ ˆ+ − − + + − − +
S S S S g S S S S , (39)

( )

G

GA

si j i j i j i j
0

ˆ ˆ = ˆ ˆS S g S S , (40)
( )z z

G

GA

s

z z

i j i j
0

reproducing analytically the results of GA [72]. It is interesting to see how large the difference
is between the exact expressions, equations (29)–(32), and their GA approximations,
equations (38)–(40). This difference is analyzed in appendix C.

If we consider general phases, and we keep the T 33 term, then the expressions for the
expectation values of the hopping and the exchange term become

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ˆ = −

+

− −σ σ σ σ σ σ
σ σ

σ σ

†

( )( )
c c q q P P

P P S

n n1 1
, (41)

G

ij
i j i j ij ij

ij ij

i j

, , , ,

2

ˆ ˆ = +
+ + −

− −
+

− − −

− −

−
− + − −

− −
+

− + − −

− −

+
− − − −

↓

↓ ↓ ↓ ↑

↑ ↓

↑

↑ ↑

↓ ↑ ↓ ↑

( )( )
( )

( )
( )

( )
( )

( )( )
( )

( )( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

S S
m m m m P

n n

m m S

n n

m m S

n n

m m P

n n

I m m

n n n n

4

1 1

4 1 1

1 1

4 1 1

1 1

4 1 1

1 1

4 1 1

1 1 1 1
, (42)

z z

G

ij

ij

i j
i j i j

i j

i j ij

i j

i j ij

i j

i j

i j

ij i j

i i j j

2 2

2 2

44

⎡⎣ ⎤⎦ˆ ˆ + ˆ ˆ = − − − − − − σ
+ − − +

↓ ↑ ↓ ↑

−

↑ ↓( )( ) ( )( )( )S S S S n n n n P P S
1
2

1 1 1 1 , (43)
G

ij ij iji j i j i i j j

1 2
2

where = +↑ ↓m n ni i i .

When the four-line contribution from the diagrammatic sum Iij
44 (in equation (42)) is

neglected, our method reproduces the GCGA results5. Explicitly, equations (41), (42), and (43)
are equivalent, respectively, to equations (15), (20), and (21) of [15]. In a similar manner,
equivalence is obtained for the density–density term, equation (B.1), and the result of the
GCGA approach presented in [16] (equation (44) therein). Therefore, within the present
approach the results of a sophisticated version of the RMFT [15, 16] are obtained.

2.6. Test case: Gutzwiller wavefunction for one-dimensional t–J model

As a test case of our analytical results we consider the one-dimensional t–J model, for which an
exact analytical solution has been presented [17] in the paramagnetic case. We calculate the

exact value of the spin–spin correlation function ˆ ˆS S
z z

i j using equation (49) from [34] and with

our DE-GWF method. The difference between these two results is presented in figure 1 as a
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zeroth order DE-GWF equivalent to GCGA.



function of doping in the orders k = 0–5. It can be seen that the fifth-order results are very close
to the exact results for the doping δ ≳ 0.05. The discrepancy should decrease with increasing
dimensionality d, as the zeroth-order results are exact for infinite d. The fifth-order results are
more than one order of magnitude closer to the exact values than those obtained in the zeroth
order. Note also that the latter (k = 0 results) are, for the present spin–spin correlation function,
equivalent to those of GCGA [15] and GA [72] approaches.

The order k to which we carry out our expansion is not the only parameter affecting
convergence. Another one is the number of Ψ0 lines (defined in equation (12)) included when
calculating the diagrammatic sums. Its effect on results for the spin–spin correlation function is
analyzed in appendix D.

3. Self-consistent variational solution

In the previous section we provided analytical results for the expectation values of all terms
appearing in the Hamiltonian (1) with respect to the assumed wavefunction (4). These results

enable us to calculate the ground state energy ≡ ˆW H
G
for a fixed Ψ0 . The remaining task,

which we perform for a spin-isotropic and translationally invarient wavefunction, is the
minimization of this energy (or of the functional  μ≡ −W n2

G G, where ≡ ˆ σn nG i G
), with

respect to the wavefunction Ψ0 . This wavefunction enters the variational problem via

≡ ˆ σn ni 0
and the lines ′Pl l, and ′Sl l, . Since we study superconducting states, the correlated and

noncorrelated numbers of particles (nG and n) may differ, and hence it is technically easier to
minimize the functional  at a constant chemical potential μ

G
, and not the ground state energy

at a constant number of particles nG. Obviously, there is a one to one correspondence between
μ

G
and nG and the latter is determined uniquely by the value of n.

New J. Phys. 16 (2014) 073018 J Kaczmarczyk et al

9

Figure 1. Difference between the exact GWF results for the one-dimensional t–J model
and our DE-GWF results as a function of doping for orders k = 0–5. The DE-GWF
results change most when an even order is taken into account (e.g., inclusion of the
fourth order terms gives larger change than inclusion of the third). The largest
discrepancy of the results is close to half filling, where the expansion parameter x
approaches its maximal absolute value of =x 4.



The remaining variational problem leads (cf e.g. [40, 41, 63]) to the effective single-
particle Schrödinger-like equation

Ψ Ψˆ =H E , (44)0

eff

0
eff

0

with the self-consistently defined effective single-particle Hamiltonian

∑ ∑ Δˆ = ˆ ˆ + ˆ ˆ +
σ

σ σ
†

↑
†

↓
†( )H t c c c c H. c. , (45)

i j
i j i j

i j
i j i j0

eff

, ,
,
eff

, ,
,

,
eff

, ,

 Ψ
Δ

Ψ
≡

∂
∂

≡
∂

∂
( ) ( )

t
x

P

x

S

,
,

,
, (46)i j

i j
i j

i j
,
eff 0

,
,
eff 0

,

with ti j,
eff being the effective hopping amplitude and Δi j,

eff the gap function. The effective

dispersion relation, the effective gap, and eigenenergies of Ĥ0

eff
are defined, respectively, as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑ε = =− −

=

( )
L

t tk
1

exp exp , (47)( ) ( )

( )i j

i j k
i j

j

i j k
i j

i

eff

,

i
,
eff i

,
eff

0,0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑Δ Δ Δ= =− −

=

( )
L

k
1

exp exp , (48)( ) ( )

( )i j

i j k
i j

j

i j k
i j

i

eff

,

i
,
eff i

,
eff

0,0

ε Δ= +( ) ( ) ( )E k k k , (49)eff eff 2 eff 2

where the last expressions for ε ( )keff and Δ ( )keff are valid for a homogeneous system. The final
solution (of one iteration of our self-consistency loop) is obtained by solving

equations (44)–(46), with the additional minimization condition  Ψ∂ =( )x, 0x 0 . Having

solved these equations, we can make the next iteration and calculate the new Ψ0 lines (from the
definition in equation (12)), according to the prescriptions

⎡
⎣⎢

⎤
⎦⎥∑ ε

= = −− ( )
( )

P
L

e n n
E

k

k
1

,
1
2

1 , (50)( )i
l m

k

k l m
k k,
0 0

eff

eff

∑ Δ Δ
Δ

= = −− ( )
( )

S
L

e
E

k

k
1

,
1
2

. (51)( )i
l m

k

k l m
k k,
0 0

eff

eff

The resulting computational self-consistency loop is shown in figure 2. Note also that the
self-consistency loop procedure is equivalent to the variational procedure used in [40, 41, 63],
as well as in the SGA method [1, 23, 25, 26, 29, 30, 57, 64, 70, 71], as shown explicity in [80].
The convergence is achieved when the new Ψ0 lines differ from the previous ones by less than

the assumed precision value, typically −10 7. Below we provide a detailed numerical analysis of
the results, as well as compare them to experiment.
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4. Results and their analysis

4.1. Numerical details

The self-consistency loop in figure 2 is solved numerically with the use of GNU Scientific
Library (GSL). The new lines are calculated from equations (50)–(51) by numerical integration
in k space (this corresponds to an infinite system size, → ∞L ). The typical accuracy of our
solution procedure is equal to −10 7. We set = −t t as our unit of energy, and present the results
for =′t 0.25 and J = 0.3, unless stated otherwise. We consider the two cases with c = 0 and
c = 1, but, as their results are very close, we show the c = 0 data only in figures 4 and 5(a). In
several figures we also provide the results of the GCGA (and GA) methods, which were
obtained by the simplified zeroth-order DE-GWF method (equivalent to GCGA or GA, as
discussed in section 2.5).

For most cases, we carry out the expansion to the fifth order, which provides quite accurate
results. The lower-order results are also exhibited in selected figures to visualize our methodʼs
convergence. To calculate the diagrammatic sums we need to neglect long-range Ψ0 lines in
real space. Namely, we take as nonzero only the lines ≡ ≡−P P P( ) XYi j i j, 0, (with = −X i j1 1

,

= −Y i j2 2
), for which + ⩽ =X Y R 252 2 2 (i.e. with up to 14th neighbors). The same condition

applies for Si j, , ti j,
eff , and Δi j,

eff. We also define an additional convergence parameter. Namely, we
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Figure 2. The full self-consistency loop of the DE-GWF method.



take into account only those contributions to the diagrammatic sums in which the total
Manhattan distance (i.e. +X Y ) of all lines is smaller than Rtot, typically set to =R 26tot .

In total, we have the three convergence parameters: (i) order k, (ii) Ψ0 cutoff radius R, and
(iii) total Manhattan distance of all lines Rtot. The uncertainty of our results coming from
parameters (ii) and (iii) is of the order of the line thickness of the presented curves, whereas the
kth-order results for most doping values are between the −k 1 and −k 2 order results (and the
differences between them diminish with the increasing k). Therefore, we believe that the series
is convergent. The accuracy of our results may be further improved by including higher-order
terms. However, the number of diagrams grows exponentially with the increasing order, which
makes the analysis for higher orders computationally demanding.

4.2. Comparison with variational Monte Carlo results

To test our approach, in figures 3(a) and (b) we have compared our results with those of [9]
obtained by the variational Monte Carlo (VMC) method for the Hamiltonian with c = 1 and for
the values of parameters = =′t J 0.3. In order to obtain comparable results we have to truncate
our effective Hamiltonian, as in VMC, so that it contains parameters only up to next-nearest
neighbors (see appendix E for details). We call the resulting approach VMC-like DE-GWF. Its
results agree very well with those of VMC. The sources of small quantitative discrepancies
between the two results are approximations of both methods. First, in VMC calculations, a
finite-size 11 × 11 (or 13 × 13) lattice is used, whereas we use an infinite lattice in the DE-GWF
method. Note that in an analogous comparison [28] with VMC calculations performed for the
Hubbard model on an 8 × 8 lattice, the discrepancies were much larger. The finite-size error of
VMC can be estimated by noting that the 11 × 11- and 13 × 13-lattice VMC results in
figures 3(a) and (b) do not follow a continuous curve, but are scattered around the VMC-like
DE-GWF curve. Second, in our method we perform the expansion up to the terms with
diagrams containing l = 15 lines (the remaining error coming from the Ψ0 cutoff in real space is
of the order of the line thickness). Note that the l = 15, 13, and 11 results are very close to each
other.

Additionally, discrepancies might come from the fact that in our procedure the correlated
(nG) and uncorrelated (n) numbers of particles are slightly different, whereas it is not clear to us
from [9] if there is a change in the particle number there due to the Gutzwiller projection.

The difference between the VMC-like DE-GWF and the full DE-GWF scheme shows that
neglecting longer-range gap and hopping components can lead to a decrease of the principal gap
component by up to 37% (the largest discrepancy is near half filling) and the corresponding
decrease of the condensation energy by ÷3 35% (the largest discrepancy is for the overdoped
system). These discrepancies are larger than those observed in [43], in which the longer-range
hopping components were not included. Our results suggest that inclusion of the longer-range
effective parameters is important, as it can lead to changes of results even by a factor of ≈1.6,
even though the condensation energy does not change much. We also provide GA and GCGA
results to show their qualitative differences with respect to both VMC and DE-GWF.
Surprisingly, the GA is closer to the VMC and the DE-GWF results than its extended variant,
the GCGA. The largest discrepancy between GA and either VMC or DE-GWF data is for
underdoped (δ < 0.15) and overdoped δ > 0.3 systems. We have also verified that for the
zeroth order the VMC-like and the full DE-GWF methods yield the same results, as they
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should, because the zeroth-order diagrammatic sums only contain lines connecting (next)
nearest neighbors.

4.3. Comparison to experiment and discussion

The break in the VMC-like DE-GWF curve in figure 3(a) appearing at δ ≈ 4% is related to the
phase separation effect present for the SC phase in the t–J model in both (VMC-like) DE-GWF
and VMC methods [6, 24, 50]. Namely, the chemical potential (μ

G
) of the SC phase has a

maximum as a function of doping for δ ≈ 3–5%. For this reason, our numerical procedure (in
which μ

G
is increased at each step) fails to converge for δ ≲ 5%. To obtain the following DE-

GWF results we changed our method to work with a fixed nG (similarly as in [1, 23, 29], with an
additional equation for nG). This allowed us to obtain convergence in the vicinity of the half
filling.
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Figure 3. Comparison of DE-GWF (lines) for J = 0.3 and ′ =t 0.3 with variational
Monte Carlo (VMC) results (the point size is equal to the error; from [9]). (a) Effective
gap (in units of t10

eff) and (b) condensation energy as a function of doping. The VMC-like
DE-GWF lines are obtained with an effective single-particle Hamiltonian containing
only (next-) nearest-neighbor and on-site terms (see appendix E for details). For the
(VMC-like) DE-GWF results labelled with l = 15, 13, and 11 we include diagrams with
up to l lines when computing the diagrammatic sums. The GA and GCGA results are
obtained by the truncated zeroth-order DE-GWF.



One of the most important physical characteristics of the cuprates is the universal nodal
Fermi velocity vF (i.e., vF is independent of δ) [75]. Recently however, it has been shown that
the Fermi velocity for the underdoped samples exhibits a low-energy kink and a nontrivial
doping dependence [62]. In effect, the velocity possesses two components: one near the Fermi
surface, which is doping dependent, and the velocity slightly below the Fermi surface, which is
doping independent. The source of the kink in the dispersion is probably the electron–phonon
interaction [27] and is not included in our purely electronic model. In figure 4 we show the

Fermi velocity defined as  ϵ= ϵ =( )v k ( )k kF
eff

0eff . Its behavior agrees with the experimental

results (we assume the lattice constant = Åa 4 and =t 0.35 eV). The RMFT method does not
reproduce such behavior [8, 26]. We also present for comparison the VMC results
[48, 49, 51, 68] obtained in [69] for =′t 0.2. The weak doping dependence of the Fermi
velocity speaks in favor of a transfer of the spectral density to the nodal direction from the
antinodal direction with the decreasing doping (see also the discussion below).

In figure 5 we plot the two gaps: the effective gap at the antinodal point Δ π=( )k ,0
eff and the

correlated gap Δ ≡ ˆ ˆ↑
†

↓
†c cG

G
i j . The effective gap agrees with the experimental values only after

rescaling by a factor of 0.4 (not shown), similarly as for the GA [8] and VMC [49] approaches.
Recent experiments have shown, however, that the competition between the superconducting
gap and pseudogap [11, 52, 54] in BSCCO diminishes essentially the value of the
superconducting gap in the nodal direction [31–33]. In fact, this gap is shown to vanish for
underdoped samples [33]. Therefore, a quantitative agreement with the experimental points in
figure 5(a) should not be the goal in describing high-temperature superconductors, as including
the pseudogap may change the picture essentially. One should also keep in mind that Δ π=( )k ,0

eff

depends on J. For lower J values we obtain much better agreement with the experiment (but at
the same time, the agreement of the nodal Fermi velocity is then worse). Similarly to the case in
VMC calculations [66], we observe an exponential decay of the gap with the doping reaching
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Figure 4. Universal Fermi velocity in the nodal ( =k kx y) direction as a function of
doping. The experimental values are taken from [8] and references therein, and typically
have an uncertainty of 20%. The VMC results are taken from [69]. The results obtained
for the model with and without the density–density term (for c = 0 and c = 1,
respectively) are very close.



the upper critical concentration δ ∼ 1 2c . We term as SC the phase with Δ > −10G
4, which

corresponds to gap values of the order of 0.4 K, below which other effects can destabilize the
superconductivity. In our model situation, however, we still have a stable superconducting
solution even if we increase doping above such defined δc by 8%, as shown in figure 5(b)
(bottom panel) . One must note that if the experimentally measured gap is usually determined
for temperature ≳T 1K then the tail of Δ δ( )G beyond δc will not be detected, as then effectively

>T Tc. Also, we have neglected here the atomic disorder. In the inset to figure 5(a) and in the
upper panel to figure 5(b) we show also the order-of-expansion dependence of the results. It can
be seen that, for most of the doping values, the kth-order results are between the results obtained
for orders −k 1 and −k 2. Moreover, the difference between the orders diminishes with
increasing order.

An important qualitative feature of the results displayed in figures 3(a), 4, and 5(a) and (b)
should be noted. Namely, the SGA method provides a good semiquantitative behavior of the
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Figure 5. (a) The effective gap at the antinodal point Δ π=( )k ,0
eff and its comparison with the

experimental data of [55]; (b) the correlated gap Δ ≡ ˆ ˆ↑
†

↓
†c cG

G
i j . In (a) the gap values

are plotted in physical units (assuming =t 0.35 eV). The zeroth- to fifth-order results
are exhibited to demonstrate the method convergence, cf inset. In (b) we show also the
gap on the logarithmic scale in the lower panel. We mark our numerical accuracy limit,
which is around −10 7, by the two horizontal lines. A residual very small gap persists to
the dopings beyond the upper critical concentration (see also main text).



data in figures 5(a) and (b). However, it fails in the case of the data shown in figures 3(a) and 4,
whereas the DE-GWF method provides a good overall representation of all the data analyzed.
Also, the agreement with the VMC results in figure 3(b) is excellent. Hence the DE-GWF
method seems to us to be the method providing a coherent set of results for the ground state of
an infinite-lattice system. Obviously, the approach still requires generalization of the analysis to
nonzero temperature and applied magnetic field.

In figure 6 we exhibit the doping dependence of the Fermi-surface topology, starting from
the effective Hamiltonian (45). We also show results for the state with a spontaneously broken
rotational symmetry, i.e. the appearance of the so-called Pomeranchuk phase [20, 25, 65]. This
phase has also been investigated by VMC [9, 74]. It is characterized by the symmetry
breakdown, i.e. ≠t tx y

eff eff, where x and y are the directions in the (x, y) plane. The drawback of

using VMC in such calculations is that the finite-size effects become much more important than
for the description of the SC phase (typically 12 × 12 points [74] or 8 × 8 points [9] are included
within one-quarter of the Brillouin zone, cf also the discussion in [9]). Our method does not
suffer from those finite-size limitations, and therefore it seems more appropriate for analyzing
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Figure 6. (a) Fermi surfaces for selected values of doping in the normal phase (a), the
spontaneously distorted Pomeranchuk phase (b), and the bare Hamiltonian with only
kinetic energy without renormalization (c).



the Fermi-surface properties. It can be seen from figure 6(b) that the correlated Fermi surface
differs essentially from that for noninteracting particles near half filling. Namely, if we approach
the half-filled case the Fermi surface becomes a line as in a bare Hamiltonian with the n.n.
hopping only. This is caused by diminishing of certain effective hopping parameters in the
vicinity of half filling (as shown explicitly in figure 8 (b)). The doping dependence of the Fermi
surface in the Pomeranchuk phase is similar to that obtained in the Hubbard model [5]. The role
of the Pomeranchuk instability will not be studied in detail here.

The dispersion relation in the normal phase and the quasiparticle energies in the
superconducting state are shown in figures 7(a) and (b), respectively. With decreasing doping,
the bandwidth becomes smaller, and the dispersion deviates significantly from the simple form
with the dominating n.n. hopping. The SC-phase quasiparticle energies (shown in figure 7(b))
resemble the metallic dispersion εk

eff only for substantial doping values. With decreasing doping
the deviations from the effective gap become larger. This effective gap has its maximum value
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Figure 7. (a) Dispersion relation of the effective Hamiltonian for the normal
(paramagnetic) phase. The vertical lines mark specific points of the Brillouin zone:
Γ = ( )0, 0 , π π= ( )M , , and π= ( )Y 0, . The horizontal line at ε = 0k

eff marks the
Fermi energy. (b) SC-phase quasiparticle energies for two doping values; the energies
εk

eff (of the normal phase at the same doping) are drawn for comparison.



(in the antinodal direction) close to the Y point of the Brillouin zone. For small doping values
this gap is comparable to the maximum value of εk

eff .
In the panel composing figure 8 we detail the effective gap and the effective hopping

amplitudes. Near half filling, only a few components of the gap are of substantial magnitude,
namely Δ10

eff , Δ21
eff (small, but nonzero), Δ30

eff , and Δ32
eff , as also found in [43] (in which [31] and
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Figure 8. (a) Effective gap parameters obtained variationally as a function of doping; (b)
effective hopping parameters relative to the dominant t10

eff contribution; (c) effective gap
in momentum space at the Fermi energy for selected doping values. The black line
corresponds to a pure −d x y2 2 dependence. The gaps are normalized for clarity.



[40] are the most distant gap components). The same components of the effective hopping are
nonzero at half filling, together with additional ones (e.g. t50

eff). From figure 8(c) it follows that
the effective gap along the Fermi surface deviates from a pure −dx y2 2 form, especially close to

half-filling, for which the gap in the antinodal direction is diminished by a factor of 3 with
respect to the pure −dx y2 2 form. Such deviations are also observed in high-temperature

superconductors [31–33, 38, 42, 60, 61, 68], where the situation is complicated further by the
appearance of a pseudogap [11, 13, 54]. Namely, for the underdoped samples the total gap
measured in angle-resolved photoemission spectroscopy (ARPES) is increased in the antinodal
direction with respect to the pure −dx y2 2 component [38, 42, 60, 61, 68], but the spectral weight

corresponding to the superconducting gap is simultaneously decreased [31–33], which agrees
with our findings in figure 8(c). Therefore, the decrease of superconducting gap can be an
intrinsic effect for strongly correlated superconductors, not only caused by the competition with
the pseudogap.

5. Summary and outlook

5.1. Method comparison

When working with a variational Gutzwiller wavefunction, the main task is the calculation of
the expectation value (equation (9)) of the Hamiltonian with respect to this trial wavefunction.
So far, there have been two types of method to approach this problem. In one of them (GA and
the derivatives) the expectation values of the Hamiltonian terms are approximated by the
corresponding expectation values with respect to the noncorrelated wavefunction (Ψ0 )

multiplied by appropriate renormalization factors (e.g. ˆ ˆ = ˆ ˆσ σ σ σ
† †c c g c c

( )

G

GA

ti j i j, , , ,
0
). This yields a

very fast method, but constitutes an additional approximation, which prevents the description of
superconductivity or Pomeranchuk phase in the Hubbard model. From figure 3 it can be seen
that such a method is able to yield quite accurate results for the condensation energy and the
effective gap in the t–J model. However, as we show in appendix C, this does not mean that the
GA is able to reproduce all the VMC (or DE-GWF) results accurately. For example, the average
values of hopping terms are underestimated within the GA by a factor of two already at the
doping δ ≈ 17%. The extended GCGA method compares much worse against the VMC (or
DE-GWF) results than the original GA. It is difficult to judge for what reasons one approximate
scheme is better than the other, and therefore we cannot identify why the GCGA is less accurate
than the GA in the studied situation.

In contrast, the VMC approach evaluates the expectation values in a controlled manner,
but on a relatively small lattice, which leads to an increased numerical complexity of the
approach with growing system size. In the DE-GWF method the averages are also calculated as
accurately as possible, but a different path towards computing them is undertaken. The resultant
procedure leads to principal advantages over the VMC approach: (i) the absence of the finite-
size limitations, (ii) relatively low computational complexity, (iii) the ability to account for
longer-range effective parameters in a natural manner, and (iv) the possibility of extending the
approach to nonzero temperatures. On the other hand, the VMC approach can be easily
extended by introducing additional Jastrow factors to the trial wavefunction (this yields
wavefunctions with, e.g., the doublon–holon correlation [66, 67] or Baeriswyl wavefunctions
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[4, 12, 22]). Investigation of the possibility of extending the DE-GWF method in this direction
is planned.

5.2. Comparison with the Hubbard model results and the experimental data

As the paper contains a new method of approach (DE-GWF) to high-temperature
superconductivity analyzed within the t–J model, a methodological note is in order here.
Namely, we would like to relate the present results to those from our very recent analysis of the
Hubbard model within the DE-GWF approach [28]. First, the ‘dome-like’ shape of Δ δ( )G is
similar in both situations, particularly in the large-U limit for the Hubbard model, though the
upper critical concentration is lower in the latter case. Second, the doping independence of the
Fermi velocity δ( )vF , representing a crucial test for any theory, is also closer to the experimental
values in the Hubbard-model case. In both situations, the DE-GWF approach provides much
better values than those obtained within the dynamic mean-field theory (DMFT) [7]. Third, the
doping dependence of the gap in the antinodal direction (cf figure 5(a)) can reproduce the
experimental trend if we rescale the results by a factor of ∼1 2 (see also below). Fourth, the
deviations of the gap value along the Fermi surface from the −dx y2 2-wave symmetry are

consistent with the experimental trend: the diminishing of the superconducting gap in the
antinodal region for underdoped samples.

5.3. Outlook and critical remarks

Combining the above features, together with the good agreement of the present results with the
VMC analysis for small systems, the DE-GWF approach provides a unique method of
accounting for the basic superconducting properties in a quantitative manner. However, it fails
to address one principal property, namely the appearance of the pseudogap. Very recently, we
have generalized the analysis of the projected t–J model [59] by introducing in a systematic
manner its supersymmetric (spin-fermion) representation. In this new representation the Fermi
sector provides essentially the t–J model in the above fermionic representation, with an
additional renormalization of both the hopping and the kinetic exchange integral amplitudes.
This should diminish the scale of energies obtained theoretically in figure 5(a) (this idea still
requires a detailed numerical analysis). What is even more interesting, the newest model [59]
provides an explicit pairing and a separate scale of excitations in the Bose sector, which may be
interpreted as an appearance of a pseudogap. Summarizing, the new model preserves essential
features of the t–J model as discussed here, but introduces additionally the bosonic branch of
collective phenomena. Such division is implicit in the recent calculations [13]. Work along this
line is in progress and, as it requires a very complex numerical analysis, will be presented
separately in the near future.

In conclusion, it is in our view rewarding that the Hubbard and the t–J models provide
converging results within the DE-GWF approach, at least on a semiquantitative level. The
application of the method thus corrects some of the SGA results [25, 26] and goes beyond the
standard RMFT [10, 15, 16, 26, 34, 46, 63, 72] approach.

To what extent this analysis can be enriched on the same level by a multiband model [21],
remains to be seen.
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Note added in proof. Renormalization of the effective hopping component t11
eff to zero upon

approaching half-filling (cf figure 8(b)), was pointed out previously in [76 ].
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Figure A1. Diagrams in the zeroth and the first order. The superconducting
(paramagnetic) contractions ′Sl l, ( ′Pl l, ) are marked with dashed (solid) lines. The internal
(external) vertices are marked with green (black) circles. The numbers in brackets below
diagrams represent their multiplicity (a combinatorial factor).



Appendix A. Exemplary types of diagrams

In figure A1 we present the diagram types for the kinetic energy (T11, T13, T 33), the potential
energy (I 2, I 4), and the ‘correlated delta’ (S11, S13, S33) diagrammatic sums. We consider the first
two orders (i.e. the diagrams with zero and one internal vertex). For the paramagnetic phase we
would have only the diagrams without dashed lines (and obviously, no correlated delta
diagrams). The number of diagrams grows exponentially with increasing order k, and therefore
we determine these diagrams by means of a numerical procedure.

The general form of the resulting diagrammatic sums is obtained as e.g.

= + ( )T P x , (A.1)ij
11 2

∑= + + + +( ) ( )T x P P P P S S P S S S x , (A.2)
l

il jl il jl jl il jl jl il jl
13 3 2 2 3 2

1

1 1 1 1 1 1 1 1 1 1

∑= − − + + +( ) ( )S x P P S P S S P S S P x . (A.3)
l

il jl jl il jl il jl il jl jl
13 2 3 3 2 2

1

1 1 1 1 1 1 1 1 1 1

In order to perform the summations of diagrams over a lattice, we need to assume as nonzero
the Ψ0 lines up to some finite distance. In the main text we have taken as nonzero the lines

( ≡S SX Yi j, , with = − = −( ) ( )X i j Y i j,1 1 2 2
, PX Y, –analogously) fulfilling + ⩽ =X Y R 252 2 2 . If

the cutoff distance is defined by + ⩽X Y 22 2 , then they are as follows:

=( )T P0 , (A.4)11
10

= − −( )T P P S0 , (A.5)33
10
3

10 10
2

= + +( )T P P P P P P S1 2 2 2 . (A.6)13
10
3

11 10 11
3

10 11 10
2

Increasing the cutoff distance R leads to significant complication of the obtained expressions—
e.g., for + ⩽X Y 42 2 (allowing for nonzero P20 and S20 lines), we have

= + + + + +

+ + + +
( )T P P P P P P S P P S S P S S

P S S P P S S S P P S

1 2 2 2

2 . (A.7)

13
10
3

11 10 11
3

10 11 10
2

10
3

20 10 20
3

10
2

10 20

20
2

10 20 10 11 10
2

10
3

20 10 20 20
2

In our numerical procedure, when calculating the diagrammatic sums, we start from the general
form (as in equations (A.1)–(A.3)) and sum over the internal vertex positions (here over l1),

making sure that the condition + ⩽X Y 252 2 is fulfilled for all contributing lines PX Y, , SX Y, .

Appendix B. Exchange term evaluation

The expressions for the components of the exchange term are as follows (with ≡ −↑ ↓m n ni i i ):
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Appendix C. Gutzwiller approximation: accuracy of the Gutzwiller factors

In figure C1 we plot the ratios of the averages …( )
G
obtained accurately within the (VMC-

like) DE-GWF approach (equations (29)–(32)) and those obtained within the GA
(equations (38)–(40)). Since in the GA these averages are expressed via Gutzwiller factors
(e.g. g

t
for the kinetic energy), the plotted ratios can serve to assess the accuracy of such

Gutzwiller factors. Explicitly, we plot the following quantities:

α α
≡

ˆ ˆ

ˆ ˆ
=

+ +σ σ
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where γ ≡ −

−

( )
( )

n

n

1 2

2 1

2

2 , by e.g. ( )S 022 we understand the zeroth-order diagrammatic sum, and by (…)

we denote other diagrammatic sum terms (see equation (32)). According to the above
expressions, a situation in which the GA approximates the average accurately corresponds to

=q 1. If an average is overestimated (underestimated) by the GA, this yields <q 1 ( >q 1). It
can be seen from figure C1 that for the exchange term averages ≈q 1, and therefore the GA
works quite well for them. However, for the kinetic energy term averages the GA greatly
overestimates the n.n. average (as also reported in [15]) and underestimates the next-n.n.
average, especially for an underdoped system. This is the reason behind the large discrepancy of
the GA and VMC results in this regime. The ratios q are quite similar in the VMC-like and full
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Figure C1. The ratio of the average …( )
G
obtained in the (VMC-like) DE-GWF

approach with respect to that obtained in the GA.



DE-GWF methods. They are also similar in the PM phase (however, for the next-n.n. hopping
the ratio q

11
is substantially larger).

Appendix D. Convergence analysis: number of lines

To analyze the effect of the number of Ψ0 lines included in the calculations we present in

figure D1 the difference (integrated over doping values) between the correlation function ˆ ˆS S
z z

i j

for a given number of lines n and for 25 lines as a function of n.
The nearly linear behavior of the differences in figure D1 suggests that the convergence is

exponential (a logarithmic scale is used in figure D1). Note also that the higher-order results
converge more slowly than the lower-order results, which indicates that to obtain the same
accuracy (with respect to the complete Ψ0 results with all lines included) in a higher order we
need to take into account more lines than in a lower order. Therefore, not only the inclusion of
higher-order terms is important to improve accuracy, but also the inclusion of longer range
lines.

Appendix E. Details of the VMC-like DE-GWF calculations

We set all parameters of the effective Hamiltonian to zero, except for n.n. pairing Δ10
eff and

hoppings t10
eff , t11

eff , as well as t00
eff , playing the role of effective chemical potential. The n.n.

hopping is kept fixed, whereas the other parameters are optimized variationally. In the resulting
scheme the effective Hamiltonian contains the same variational parameters as that used in the
VMC approach [9].

We have taken as nonzero the Ψ0 lines ( ≡ ≡−S S S( ) XYi j i j, 0, with

= − = −( ) ( )X i j Y i j,1 1 2 2
, PXY–analogously) fulfilling + ⩽X Y 252 2 . In the situation when

the number of Ψ0 lines does not match the number of effective parameters (ti j,
eff and Δi j,

eff), the

self-consistency loop would not find the true minimum of the energy and a more standard
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Figure D1. Convergence of the results for ˆ ˆS S
z z

i j as a function of number of Ψ0 lines.



minimization of the energy with respect to Δ10
eff , t00

eff , and t11
eff is necessary. Namely, we

numerically search for a minimum of the system grand canonical potential  by calculating its
value for fixed Δ10

eff , t00
eff , and t11

eff . The flowchart of such calculations is presented in figure E1.
Explicitly, having fixed effective parameters (step 1 in figure E1) we may construct the effective
Hamiltonian (step 2), calculate the Ψ0 lines (step 3), and having them we can obtain the

diagrammatic sums and the potential  (step 4). Finally, we choose the solution with Δ10
eff , t00

eff ,

and t11
eff corresponding to the lowest potential  .
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