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Abstract
The hydrogen molecules H2 and ( )H2 2

are analyzed with electronic correlations
taken into account between the s1 electrons in an exact manner. The optimal
single-particle Slater orbitals are evaluated in the correlated state of H2 by
combining their variational determination with the diagonalization of the full
Hamiltonian in the second-quantization language. All electron–ion coupling
constants are determined explicitly and their relative importance is discussed.
Sizable zero-point motion amplitude and the corresponding energy are then
evaluated by taking into account the anharmonic contributions up to the ninth
order in the relative displacement of the ions from their static equilibrium value.
The applicability of the model to solid molecular hydrogen is briefly analyzed by
calculating intermolecular microscopic parameters for the × H2 2 rectangular
configuration, as well its ground state energy.
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1. Motivation

The few-site models of correlated fermions play an important role in singling out, in an exact
manner, the role of various local intra- and inter-site interactions against hopping (i.e.,
containing both covalent and the ionic factors) and thus, in establishing the optimal correlated
state of fermions [1–8] on a local (nanoscopic) scale. The model has also been used to obtain a
realistic analytic estimate of the hydrogen-molecule energies of the ground and the excited
states in the correlated state [9]. For this purpose, we have developed the so-called EDABI
method, which combines Exact Diagonalization in the Fock space with a concomitant Ab Initio
determination of the single-particle basis in the Hilbert space. So far, the method has been
implemented by taking only s1 Slater orbitals, one per site [10]. The method contains no
parameters; the only approximation made is taking a truncated single-particle basis (i.e., one
Slater orbital per site) when constructing the field operator, that in turn is used to derive the
starting Hamiltonian in the second-quantization representation. This Hamiltonian represents an
extended Hubbard Hamiltonian, with all two-site interactions taken into account and the
solution comprises not only the exact eigenvalues of the few-site Hamiltonian, but also at the
same time an evaluation of the adjustable single-particle wave functions in the correlated state.
Also, the calculated thermodynamic properties rigorously exemplify [12, 11] the low- and high-
energy scales, corresponding to spin and local charge fluctuations, respectively. The former
represents the precursory magnetic-ordering effect whereas the latter represents local effects
accompanying the Mott–Hubbard transition. In general, our approach follows the tradition of
accounting for interelectronic correlations via the second-quantization procedure, with the
adjustment of single-particle wave functions, contained in microscopic parameters of the
starting model, in the correlated state.

The first aim of this paper is to extend a previously established fully microscopic approach
[9, 10] and calculate all six possible electron–ion coupling constants for H2 as a function of the
bond length. As a byproduct, we obtain an accurate estimate of the zero-point-motion amplitude
and its energy to a high (ninth) order in the relative displacement of the ions. This evaluation
shows explicitly the dominant contributions to the vibronic spectra of the molecule. In effect,
the work formulates a complete two-site model of correlated states with all the coupling
parameters calculated from an ab initio procedure. It also forms a starting point to full scale
dynamic calculations involving a richer basis in the Hilbert space, at least in the adiabatic limit.
So, although the importance of the present results to the discussion of the exact evaluation of
the ground-state energy of the H2 molecule is limited, the approach may be extended to treat
molecular solid hydrogen with the inclusion of interelectronic correlations. Explicitly, as a
starting point we calculate the intermolecular hopping integrals and the principal electron–
electron interaction microscopic parameters as a function of intermolecular distance.

A methodological remark is in place here. As we determine the local ion–electron and
electron–electron coupling parameters, they can be regarded as a starting estimate of those for
the bulk solid molecular hydrogen, as we have recently studied a critical pressure of
metallization of the atomic solid (Mott insulating) state [13]. The obtained pressure of atomic-
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hydrogen metallization is about GPa100 , a value which squares well with that observed for the
case of fluid molecular hydrogen ( GPa140 )[14], although the recent simulations provide quite
different values for fluid hydrogen analyzed at high temperature [15]. Obviously, our previous
work is not related directly to the molecular-hydrogen metallization in the solid state [16–19].
So far, we have discussed rigid-lattice properties. We believe that the present results form the
first step in incorporating the vibrational spectrum and correlations to extended systems.

The structure of the paper is as follows. Even though the main purpose of the paper is to
calculate the local electron–proton and electron–electron coupling constants, for the sake of the
completeness, in sections 2 and 3 we reproduce some of the results of [9] and correct some
minor errors (see also appendix A). In section 4 we define the method of calculation of both the
electron–ion (proton) coupling constants (see also appendix B), as well as estimate the zero-
point motion to the ninth order versus the interionic distance. In section 5 we extend the single-
molecule treatment and provide the intermolecular hopping amplitudes and the electron–
electron microscopic parameters which may serve for analysis of the solid molecular hydrogen.
Section 6 contains physical discussion and a brief outlook, where we also refer to the finite-size
quantum Monte Carlo results. In the series of appendices we provide some analytical details, as
they may form an analytical basis for the electron–lattice coupling supplementing the classic
Slater results for the electronic part of H2 molecule [20].

2. Model and summary of purely electronic properties

2.1. Wannier basis

To describe the behavior of an electron in the system of two ions we start from s1 Slater–type
orbitals

Ψ α
π

= α− −er( ) , (1)i
r R

3
i

where α is the inverse size of the orbital. To ensure orthogonality we use Wannier functions,
which in this case reduce the superposition of the atomic states, i.e.,

β Ψ γΨ= −⎡⎣ ⎤⎦w r r r( ) ( ) ( ) , (2)i i j

with the mixing parameters

β

γ

= + −
−

=
+ −

⎧
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S

S
S

S

1

2

1 1

1

1 1

(3)

2

2

2

where α Ψ Ψ= ≡ 〈 〉S S R( , ) |1 2 is the atomic functions’ overlap.
Equations (3) ensure both the orthogonality and proper behavior in the atomic limit i.e.,

β =→∞lim 1R , where R is the average interatomic distance. γ =→∞lim 0R .
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2.2. Second-quantization picture

The two-site Hamiltonian with one orbital per site has the general form

∑

∑

ϵ= + + +

+ + −

+ − + +

+ + +

σ
σ σ σ σ

σ
σ σ σ σ σ σ

↑ ↓ ↑ ↓

↑ ↓ ↓ ↑
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( )
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( )

( )
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1
†

2 2

1 2 1 ¯
†

2 ¯ 2 ¯
†

1 ¯

where σâi and σâi
† are the fermionic operators of annihilation and creation of the electron with

spin σ on the s1 orbital of hydrogen atom ∈i {1, 2}.
The microscopic parameters ϵ = T11, =t T12, =U V1111, =J V1122, =K V1212 and =V V1112

correspond to one–and two-particle interactions [9]

= T w w a, (5 )ij i j

= V w w w w b, (5 )ijkl i j k l

where in atomic units = −▽ − − r R2 | |2 , and = − ′ r r2 | |. In appendix A we provide
explicitly the form of microscopic parameters as a function of both intersite static distance R
and the inverse wave-function size α. In what follows we first diagonalize (4), and subsequently
optimize the wave functions contained in the microscopic parameters of (4). This program will
be carried out systematically in what follows.

2.3. Exact solution

The system described by the Hamiltonian (4) has an exact solution previously studied in detail
in [9]. For the two-electron system ( + =n n 21 2 ), i.e. with one particle per site, the starting
basis is

= ↑ ↑a a a1 ˆ ˆ 0 , (6 )1
†

2
†

= ↓ ↓a a b2 ˆ ˆ 0 , (6 )1
†

2
†

= +↑ ↓ ↓ ↑( )a a a a c3
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
2
†

1
†

2
†

representing the intersite spin-triplet states with eigenvalues ϵ= = = + −E E E K J21 2 3 , and

= −↑ ↓ ↓ ↑( )a a a a d4
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
2
†

1
†

2
†

= +↑ ↓ ↑ ↓( )a a a a e5
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
1
†

2
†

2
†
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= −↑ ↓ ↑ ↓( )a a a a f6
1

2
ˆ ˆ ˆ ˆ 0 , (6 )1

†
1
†

2
†

2
†

representing the spin-singlet states, with the corresponding Hamiltonian matrix involving the
matrix elements 〈 〉 ≡ ( )i j ij :

ϵ
ϵ

ϵ
=

+ + +
+ + +

+ −


⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟( )

K J t V
t V U J

U J

2 2( ) 0
2( ) 2 0

0 0 2

. (7)ij

The state (6f) is an eigenvector of (7) with eigenvalue ϵ= + −E U J26 . The
diagonalization supplies us with the two other eigenvectors [1]

± = ∓ ±
∓ ∓ ± + +

− 


U K

U K t V

[2 ( )]

[ ( ) 4 4 5 ], (8)

1
2

with eigenvalues

ϵ= + + + ±± E
U K

J2
2

1
2

, (9)

where = − + + U K t V( ) 16( )2 2 . The state −〉| from (8) is the lowest-energy spin-
singlet eigenstate. It is this state for which we determine explicitly the single-particle wave
function and subsequently determine the microscopic parameters ϵ, t, U, J, K, and V explicitly,
all as a function of interionic distance R.

2.4. Optimization of the atomic basis

The ground-state energy is the energy −E of (9), supplemented with the ion–ion repulsion, i.e.
by

= +−E E
R

2
, (10)G

where R(2 ) is also represented in atomic units. As all the microscopic parameters are only a
function of the distance R and the inverse wave-function size α, we have α=E E R( , )G G . For
each distance R, we minimize EG with respect to α, thus closing the solution. Finally, we select

=R RB as the equilibrium solution, for which the zero-point motion still has to be taken into
account.

3. The stationary state for the H2 molecule

In figure 1 we plot the energy of H2 (dimer) versus the distance R. It is crucial that we obtain a
local (and global) minimum at = ≡ ÅR R 0.757B . This simple result obtained in [9] differs
with respect to the virtually exact solution by Kołos and Wolniewicz [21, 22], = Å−R 0.74K W

by 2.5% only.
In figure 2 we plot the sequence of the spin-singlets and the spin-triplet states.

Parenthetically, the start from second-quantization language allows for evaluation of the
ground-state and the lowest excited states, on an equal footing. This feature provides the
difference with purely variational calculations in the first-quantization language. Namely,
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within this basis the spin-singlet state is stable at arbitrary interionic distance R. In figures 3–5
the inverse wave function size α, as well as all the microscopic parameters, are displayed as a
function of the bond length R. One can see that with increasing R, the values tend to the proper
free-atom limits. Those quantities form an input for the subsequent evaluation of electron–
proton coupling constants discussed next.

4. Adiabatic approximation for the electron–ion coupling

Our principal aim here is to extend our previous model [9, 10] by allowing the ions to oscillate
around the equilibrium positions. Thus the interionic distance R is taken now in the form

δ= +R R R, (11)B

where δR is responsible for the zero-point motion. The electronic part of the ground-state
energy is expanded next on δR in terms of a Taylor series, which to the ninth order reads

Figure 1. Ground-state energy—as defined by (10)—versus interionic static distance R.
Note that the minimum value is = −E Ry2.295 87B (marked by the vertical line here
and below) at =R a1.430 42B 0.

Figure 2. Solutions for the states: the spin-triplets ( = =E E E1 2 3) and the spin-singlets
( ±E , E6) versus the interionic distance R. The spin-singlet state −〉| is the equilibrium
state.
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Figure 3. The optimal inverse wave-function size α versus the proton–proton average
distance R. Note that α = −a1.193 78B 0

1.

Figure 4. Microscopic parameters ϵ, t, U, and K versus average interionic distance R.
Note the convergence of the intersite Coulomb repulsion K to the classical value R2
(dashed line) at → ∞R . The on-site repulsion U also reaches its atomic limit

=U Ry1.25at , whereas the hopping parameter →t 0.

Figure 5. Microscopic parameters J and V versus R. Note that the exchange integral is
always ferromagnetic, and the so-called correlated hopping parameter is <V 0.
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∑ δ δ= + +δ
=

 ( )E
i

E R O R
1
!

, (12)R B

i
B
i i

2

9
( ) 10

where = ∂
∂

EB
i E

R R

( ) i
B

i

B

and =E 0B
(1) , whereas all the remaining terms but for the energy EB

describe the oscillations (see table 2 for numerical values). We have modified the Hamiltonian
(4) accordingly by taking into account δR, i.e.,

δ→ +  , (13)

where δ is the additional term. Also,  simplifies to the form

∑Ξ= Ô , (14)
i

i i

where Ξ ϵ= t U J K V{ , , , , , } and Ôi are the corresponding operator parts of Hamiltonian: the
two- and four-operator terms of (4) standing next to the respective microscopic parameter (for
example = +ϵO n nˆ ˆ ˆ1 2). With the Hamiltonian in this form we now have the energy change due
to the change of the microscopic parameters

∑ ∑δ δΞ ξ δ= = O R Oˆ ˆ , (15)
i

i i

i

i i

where ξ ≡ δΞ
δi R

i . Since δ ∝ +R b b( )i i
† , where bi

†, bi are bosonic creation and annihilation
operators of the system deformation and the set ξ{ }i defines a new set of microscopic
parameters—the electron–ion coupling constants. They can be derived by differentiation in a
way similar to that of [23, 24] (see appendix B for details).

The shift of the ions changes the system properties in the following manner

∑δ ξ δ= O Rˆ , (16)
i

i i
0

where the average 〈 〉 = 〈− −〉O Oˆ ˆ
i i0 is taken with respect to the ground state. In effect, we

obtain

=ϵO aˆ 2, (17 )
0

= +
O

t V
bˆ 8

, (17 )t
0

= +
+ − O
t V

U K
cˆ 16( )

2 ( )
, (17 )U

0

2

=O dˆ 1, (17 )J
0

= + −
O
U K

eˆ
2

, (17 )K
0

= +
O

t V
fˆ 8

. (17 )V
0

The R dependence of the parameters 〈 〉Ôi given by (17) is displayed in figure 6. As they
are of the order of unity, the principal factor determining the relative strength of the coupling
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Figure 6. Averages (17) calculated in the ground-state versus distance R. They are of
the order of unity.

Figure 7. Coupling constants ξϵ and ξt versus intersite distance R.

Figure 8. Coupling constants ξU , ξK , ξJ and ξV versus intersite distance R

9
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constants is provided by the parameters ξ{ }i displayed in figures 7 and 8. At the equilibrium
bond distance marked by the vertical line, the largest values are (on the absolute scale) those
coming from modulation of the hopping parameter (ξt) and the change of intersite Coulomb
interaction (ξK). The first of the two has been included in the Su, Schrieffer and Heeger model
[25]. The second may play an important role in the high-TC superconductivity [24]. Also, we
see that the so-called Holstein coupling [26] is not important if calculated near the hydrogen-
molecule equilibrium state.

We determine the value of δR by minimizing the total energy of the system:

δ≡ + +  E . (18)total ion

where

δ
δ

= +
+

 P

M R R
2

2
2

. (19)ion

2

where the ionic momentum δP is evaluated via the Heisenberg principle and
≈M 1836.152 67

a u. .
is the mass of the proton.

5. Evaluation of the microscopic parameters for the two-molecule system

We extend our approach by considering a system of two H2 dimers at a relative distance a from
each other (see figure 9). We calculate the respective hopping integrals, where t12 should
approach t defined in (A.1b) for large a, and the new single-particle energy ϵ should again
converge to previously obtained value (A.1a). We determine all the two-particle interaction
integrals, thus going beyond the Hubbard model solved in [5]. Additionally, in table 1 we list
the numerical values of the most relevant microscopic parameters.

The results are presented in figures 10–13. Note that all the results converge to the free-
molecule ( → ∞a ) values. The calculated hopping values of t13 and t14 may serve as input
parameters for H2 molecular crystal.

Explicitly, in figure 10 we display the intermolecular dependence of single-particle
parameters. For the distances ≳a a2 0 the hoppings t13 and t14 can be regarded as small on the
scale =t t12 . Hence, the system in a solid will preserve its molecular character, with no
magnetism involved even though we have nominally one electron per atom. In other words, the
lowest band will be full and no simple-minded Hubbard subband (HOMO-LUMO) picture in
the ground state appears. In figure 11 we compare the relative values of intramolecular (U,

Figure 9. The system of two H2 molecules at the relative distance a. The hopping
integrals ti are marked next to the respective dashed lines. Note that the
orthogonalization procedure for four sites produces a different basis than that obtained
in (3).
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Table 1. Numerical values of single-particle energy (ϵ), the hopping integrals ( αβt ), the on-site Coulomb repulsion U and the
intramolecular Coulomb interaction K12 for the two-molecule system; values refer to the points marked in the figure 13.

R a( )0 a a( )0 ϵ Ry( ) t Ry( )12 t Ry( )13 t Ry( )14 U Ry( ) K Ry( )12 K Ry( )13 K Ry( )14

0.715 1.43 −3.4265 −1.5534 −0.9320 0.2799 1.9210 1.2082 1.0480 0.8405
0.715 2.86 −2.9068 −1.3948 −0.2349 0.0993 1.7875 1.1386 0.6790 0.5976
0.715 4.29 −2.5229 −1.3671 −0.0499 0.0339 1.7557 1.1233 0.4674 0.4369
1.43 1.43 −3.4500 −0.8030 −0.8030 0.1023 1.8143 1.0127 1.0127 0.7514
1.43 2.86 −3.0007 −0.7504 −0.2232 0.0279 1.6903 0.9699 0.6732 0.5655
1.43 4.29 −2.6483 −0.7380 −0.0535 0.0096 1.6585 0.9587 0.4666 0.4245
2.145 1.43 −3.2344 −0.4278 −0.7651 0.0500 1.7359 0.8269 0.9858 0.6552
2.145 2.86 −2.8805 −0.4211 −0.2294 0.0013 1.6162 0.8047 0.6674 0.5223
2.145 4.29 −2.5668 −0.4185 −0.0610 −0.0019 1.5839 0.7977 0.4655 0.4056
2.86 1.43 −3.0007 −0.2232 −0.7504 0.0279 1.6903 0.6732 0.9699 0.5655
2.86 2.86 −2.7193 −0.2354 −0.2354 −0.0075 1.5712 0.6631 0.6631 0.4739
2.86 4.29 −2.4410 −0.2385 −0.0670 −0.0066 1.5383 0.6593 0.4646 0.3816
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=K K12 ) versus intermolecular (K13, K14) Coulomb interactions. Again, intramolecular
interactions dominate for ≳a a2 0. From figures 10 and 11 it follows then that in the insulating
(molecular-crystal) state, virtual hopping processes will contribute and renormalize the gap
between the full-band (valence) and the conduction-band (excited single electron) states in a
similar manner to the kinetic exchange. This gap will have the form of the Hubbard gap, as the
value of U, corresponding to the transition → +− +H H H2 2 2 2 will have the value

Figure 10. The one-particle microscopic parameters for two H2 molecules system
versus intermolecular distance a. The red dashed line marks the effective (renormalized
by ion–ion repulsion) single-particle energy per site ϵ ϵ= + ∑N R1 2i ieff . Note the
convergence of →t t12 , and →t t, 013 14 with → ∞a . The equality of t12 and t13 at

= =a R a1.430 42B 0 should be observed as well.

Table 2. The numerical values of coefficients in Taylor series of ground-state energy.
Up to the term EB

(6) all of the derivatives are calculated analytically from equation (10).
Orders seventh–ninth (marked by an asterisk) were calculated numerically due to
complicated analytical expression for ground-state energy.

( )EB
Ry

a
(1)

0

0.0

( )EB
Ry

a

1

2 !
(2)

0
2

0.430 045

( )EB
Ry

a

1

3 !
(3)

0
3

−0.464 021

( )EB
Ry

a

1

4 !
(4)

0
4

0.354 584

( )EB
Ry

a

1

5 !
(5)

0
5

−0.253 393

( )EB
Ry

a

1

6 !
(6)

0
6

0.174 863

( )E
*

B
Ry

a

1

7 !
(7)

0
7

−0.119 178

( )E
*

B
Ry

a

1

8 !
(8)

0
8

0.081 758 6

( )E
*

B
Ry

a

1

9 !
(9)

0
9

−0.056 383 7
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− ≈U K Ry0.612 , by far the largest energy in the insulating state. For the sake of
completeness, we have plotted in figure 12 the remaining interaction parameters: the exchange
integrals, intra- (J12) and inter-molecular (J13 and J14), as well as the correlated hopping
amplitudes: V12 and (V13 and V14), respectively.

In figure 14 we show the difference between the energies of the ( )H2 2
system and that of

the free molecules (per molecule):

Δ = −E
E

E
2

, (20)H

H

B
( )

2

2 2

where E ( )H2 2
is the energy of the ( )H2 2

system and = −E Ry2.295 87B is the energy of single

molecule. The equilibrium parameters are Δ = −E Ry0.011 29H2 and =a a4.5 0. Those results
are in agreement with the earlier estimates [28]. The stability of hydrogen molecular clusters
were also studied in [29, 30]; our approach coherently incorporates electronic correlations (a

Figure 11. Coulomb-interaction microscopic parameters: the on-site part (U),
intramolecular (K12), and intermolecular K13 and K14 for two H2-molecule system
versus intermolecular distance a.

Figure 12. Two-particle microscopic parameters: intramolecular spin-exchange J12 and
correlated hopping V12, as well as the intermolecular parameters J13, J14, V13 and V14 for
two H2 molecules system versus intermolecular distance a. Note that all the
intermolecular parameters converge to zero quickly.
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necessity in describing the non-polar systems) into the molecular picture, which plays an
important role in view of the existence of the minima of the ΔE a( )H2 curve [28, 29].

Figure 13. The one-particle microscopic parameters (in Ry) for the two H2 molecule
system versus intermolecular distance a and interionic distance R. Note the symmetry of
ϵ and t14. As expected for relatively small distances, values of t12 and t13 are negative
whereas t14 is positive. When approaching point (0, 0) all parameters diverge to
negative (t12 and t13) or positive (ϵ and t14) infinity. The explicit values of the marked
points are given in table 1

Figure 14. Difference between the energies of the ( )H2 2
system and that of the free

molecules (per molecule) versus intermolecular distance a. Note the van der Waals-like
behavior with the shallow minimum at =a a4.5 0. Inset: inverse atomic wave-function
size α versus a. For → ∞a , it approaches the value α = −a1.193 78B 0

1. The behavior is
similar to the one in [27].
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6. Discussion of results and outlook

The evaluation of the global parameters of the system can be summarized as follows:

1. The H2 binding energy is = −E Ry2.295 87B . This value can be compared to the Kołos-
Wolniewicz value [21]: = −−E Ry2.349K W , which is about 2.26% lower than the value
obtained here.

2. The increase of the binding energy here is due to the zero-point motion, which is

=E Ry0.024 072 , (21)ZPM

and is of the order 1.0485% of the binding energy.

3. Whereas the bond length is here =R a1.430 42B 0 (as compared to =−R a1.3984K W 0,
which is 2.29% lower), the zero-point motion amplitude is δ = aR 0.189 028 0, a rather
large value. Note that the optimal size of the inverse orbit of the s1 component hydrogen
orbital is α = −a1.193 78B 0

1, so that the effective Bohr orbit is α≡ =−a a0.83771
0. The

Bohr orbit decrease is due to the increased binding of electron in the molecule ∼ Ry0.2932
with respect to that in the hydrogen atom. The size a is substantially smaller than that of s1
orbit ( Å1.06 ) in H atom [9].

4. The ion–electron coupling constants versus R are shown in figures 7 and 8, whereas their
values for =R RB are listed in table 3. We also provide the second-order coupling
constants values at the hydrogen-molecule equilibrium in table 4. Our first-principle
calculations allow us to claim that the coupling constant appearing in the Holstein model
[26] (ξϵ) is decisively smaller than those of the Su, Schrieffer and Heeger model [25] (ξt) as
well as of those coming from the intersite direct Coulomb interaction (ξK). This should not
be surprising, as the dominant coupling parameters represent interatomic-vibration
contributions. A separate branch is represented by phonon excitations, but their analysis
requires a construction of a spatially extended system of the molecules.

The question is to what extent the calculated local characteristics will represent their local
counterparts in the molecular-solid phase. Certainly, the phonons and the molecule-rotational
degrees of freedom will represent low-energy excitations. But the zero-point motion energy of

Table 3. The values (in atomic units) of the microscopic parameters of Hamiltonian (4)
and the electron–ion coupling constants from (15) at the hydrogen-molecule equilibrium
( =R RB and α α= B).

microscopic
paramters (Ry)

coupling constants
(Ry/a0)

ϵ −1.750 79 ξϵ
0.006 161 65

t −0.727 647 ξt
0.598 662

U 1.653 21 ξU
−0.124 934

K 0.956 691 ξK
−0.234 075

J 0.021 9085 ξJ
−0.007 463 03

V −0.011 7991 ξV
−0.000 426 452
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the whole molecule should have to be added. Will this provide a reliable description of the
molecular or atomic hydrogen even though our accuracy in determining the individual-molecule
energy is about 2% higher than the virtually exact value of Kołos and Wolniewicz [21]? One
has to check and this task is under consideration in our group. Such consideration must include
the inter-molecular hopping integrals t13 and t14. One should also note that the proper method of
treating the few-site H2-molecule system is the quantum-Monte-Carlo-method [31–33].
Nonetheless, our method evaluates both the system energetics and the wave-function
renormalization at the same time in the correlated state.

One can also extend the present model of the molecular binding by also including s2 and
p2 adjustable hydrogen orbitals in the Hilbert space of the single-particle states via the
corresponding Gaussian representation. The first estimate of the s2 -orbital contribution to
selected microscopic parameters is briefly discussed in appendix D. Their numerical values are
provided in 6. One can see that the basis extension leads to the numerically relevant corrections.
This is an additional route to follow, but only after the first-principle calculations of the solid
phase along the lines discussed here is undertaken and tested.

Very recently [34], the dynamical mean field theory (DMFT) has been applied to the H2

molecule and its accuracy tested. Our approach in this respect is much simpler, but still provides
comparable accuracy. Also, we have calculated the vibronic coupling constants, which have
been determined accurately recently [35]. Those results compare well with our estimates. This
circumstance shows again that our method forms a proper starting point for treatment of solid
molecular hydrogen, as a correlated state, at least in the insulating phase.
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Table 4. The values (in atomic units) of the second-order electron–ion coupling con-
stants ξ δ Ξ δ= Ri

2 2 2 at the hydrogen-molecule equilibrium ( =R RB and α α= B).

coupling constants
(Ry a0

2)

ξϵ
2 0.327 335

ξt
2 −0.560 426

ξU
2 0.050 4027

ξK
2 0.013 028

ξJ
2 −0.006 715 66

ξV
2 −0.010 5204
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Appendix A. Exact solution without the zero-point motion

For the sake of completeness we express the microscopic parameters defined in (5) in terms of
single-particle parameters via (2)

ϵ β γ ϵ β γ= + ′ − ′( ) t a1 2 , (A.1 )2 2 2

β γ β γϵ= + ′ − ′( )t t b1 2 , (A.1 )2 2 2

β γ γ

γ γ γ

= + ′ + ′

− + ′ + ′

⎡⎣
⎤⎦

( )
( )

U U K

V J c

1 2

4 1 4 , (A.1 )

4 4 2

2 2

β γ γ

γ γ γ

= ′ + + ′

− + ′ + ′

⎡⎣
⎤⎦

( )
( )

K U K

V J d

2 1

4 1 4 , (A.1 )

4 2 4

2 2

β γ γ

γ γ γ

= ′ + ′

− + ′ + + ′

⎡⎣
⎤
⎦⎥( ) ( )

J U K

V J e

2 2

4 1 1 , (A.1 )

4 2 2

2 2 2

β γ γ γ γ

γ γ γ γ

= − + ′ − + ′

+ + + ′ − + ′

⎡⎣
⎤⎦

( ) ( )
( ) ( )

V U K

V J f

1 1

1 6 2 1 , (A.1 )

4 2 2

2 4 2

where Ξ′ parameters are

Ψ Ψ′ = T a, (A.2 )ij i j

Ψ Ψ Ψ Ψ′ = V b, (A.2 )ijkl i j k l12

with = −▽ − − r R2 | |2 , and = − ′ r r2 | |. The single-particle parameters read

ϵ α α α′ = − − + + α−⎜ ⎟⎛
⎝

⎞
⎠R R

e a2
2

2
1

, (A.3 )R2 2

α α α

α α

′ = + −

− +

α

α

−

−

⎜ ⎟⎛
⎝

⎞
⎠t e R R

e R b

1
1
3

4 (1 ), (A.3 )

R

R

2 2 2

α′ =U c
5
4

, (A.3 )

α
α

α α′ = − + + +α− ⎜ ⎟⎛
⎝

⎞
⎠K

R
e

R
R R d

2 2 3
2

1
3

11
4

, (A.3 )R2 2 2
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α α
α

α
α

′ = + +

− +

α

α

−

−

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠
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⎝
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⎠

V e R
R

e
R

e

2
1
4

5
8

1
4

1
5

2
, (A.3 )

R

R3

α α α α

α α

α

′ = − − −

+ + − −

+ −

α− ⎜ ⎟⎛
⎝

⎞
⎠

)
( ( )

( )

J e R R R

R
S C S R SS R

S R f

5
4

23
10

6
5

2
15

12
5

log ( ) 2 ¯Ei 2

¯ Ei 4 , (A.3 )

R

E

2 2 2 3 3

2 2

2

where the overlaps are given by

α α= + +α− ⎜ ⎟⎛
⎝

⎞
⎠S e R R1

1
3

, (A.4)R 2 2

α α= − +α ⎜ ⎟⎛
⎝

⎞
⎠S e R R¯ 1

1
3

. (A.5)R 2 2

CE is so-called Euler constant

∑= − ≈
→∞ =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C

k
nlim

1
log ( ) 0.5772, (A.6)

n
k

n

E

1

and Ei(x) is the exponential integral.

∫= −
−

∞
− −Ei x e t t( ) d . (A.7)

x

t 1

Appendix B. Adiabatic-approximation details

For the sake of completeness, we also provide the explicit form of the coupling constants
ξ Ξ≡ Rd di i . For editorial purposes we calculate first the single-particle coupling constants
from (A.3a). They are

δϵ α α′ = − − +α α− − ⎡⎣ ⎤⎦( )R e e R R a2 1 2 1 , (B.1 )R R2 2 2

δ α α α′ = + − +α−t e R R b
1
3

[12 ( 5 )], (B.1 )R 3

δ ′ =U c0. (B.1 )

The corresponding derivatives of the two-particle parameters are

δ α α α α′ = − + + + +α α− − ⎡⎣ ⎤⎦K R e e R R R R d
1
3

6 6 (2 )(6 (3 2 )) (B.1 )R R2 2 2
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δ α α α α α′ = + + − + − +α α− − −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( )V R e R R e R R R e
1
8

5 15 6 5 5 14 16 (B.1 )R R2 3 2 2 2 2 3 3

δ α α α α α

α α α α

α α α α α α

α α α α

α α α α α α
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R
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2
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with basis mixing-parameters β and γ (see (3)) changes

δβ
β

δ=
− −

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )

S

S S S
S

4 1

1

1

1

2 1
, (B.2)

2 2 2

δγ δ=
− + −S S

S
1

1 1
, (B.3)

2 2

where S is the overlap (A.4) and δS reads

δ α α= − +α− ⎜ ⎟⎛
⎝

⎞
⎠S e R R

1
3

1 . (B.4)R 2

Our final results are

ξ δβ
β

ϵ β γ δϵ γδ

β δγ γϵ

= + + ′ − ′

+ ′ − ′

ϵ
⎡⎣ ⎤⎦( ) t

t a

2 1 2

2 [ ], (B.5 )

2 2

2

ξ δβ
β

β γ δ γδϵ

β δγ γ ϵ
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t
2 2

2

ξ δβ
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γ γ

= + + ′ + ′

− + ′ + ′

+ ′ + ′

− + ′ + ′

⎡⎣
⎤⎦

⎡⎣
⎤⎦

( )

( )

( )

U U K
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4
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2
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2
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These parameters are displayed versus R in figures 7 and 8.

Appendix C. Zero-point motion with classical electronic interaction

We ask the question of how important it is to include the quantum nature of the electronic
interaction in our evaluation of zero-point motion energy. Let us consider, following [9], the
energy of the ions as

δ
δ

= +
+

E
P

M

e

R R2
, (C.1)ion

2 2

where δP and δR are the momentum and position uncertainties, M is ion mass and e its charge.
By expressing δP by δR via the uncertainty relation δ δ ⩾ P R2 2 3

4
2 we obtain

δ δ
= +

+


E

M R

e

R R2
, (C.2)ion

3

4
2

2

2
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which we can minimize with respect to δR. We calculate

δ = − + −⎛
⎝⎜

⎞
⎠⎟R

M
a

MR

a

1

4 2
1

1 8 2
, (C.3)

a u
0

. .

where

= − + −

+ − +

⎡⎣
⎤
⎦⎥

( )

( )

a MR MR

M R MR

1 12 2 4

2 1 9 2 . (C.4)

a u. .

15 4 3 3
1 3

We take the mass of the ion ≈M 1836.15267
a u. .

m0 and the interionic distance
= =R R a1.430 17B 0. The results are presented in the table C.1.

Appendix D. Inclusion of 2s orbitals

We would like to estimate the role of higher orbitals both for more realistic description of H2

systems and future consideration of other elements. We start by taking the s2 Slater-type orbital

Ψ
α

π
≡ α−er r( )

3
, (D.1)s s r2 2

5
s2

where α s2 is the inverse wave function size. It is obviously non-orthogonal with the s1 orbital
(1) as we have that

Ψ Ψ
α α

α α
≡ =

+
α αS

8 3

( )
. (D.2)on

s s s

s

, 1 2
3 2

2
5 2

2
4

s2

D.1. On-site orthogonalization

We perform the orthogonalization by introducing realistic orbital functions [36]

χ Ψ α=r r( ) ( , ), (D.3)s s1 1

χ Ψ α Ψ α= +A Br r r( ) ( , ) ( , ), (D.4)s s
s

s
s

2 1
2

2
2

where A and B are mixing parameters obtained via orthonormality conditions

χ χ

χ χ

=

=

0,

1. (D.5)

s s

s s

1 2

2 2

Table C.1 The values (in atomic units) of the zero-point motion energy and amplitude.
The classical electron interaction approximation versus adiabatic approximation.

δR| |0 (a0) EZPM (Ry)

classical interaction 0.0901816 0.14434
quantum interaction 0.189028 0.024072
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We can solve problem (D.5) analytically and obtain

= −
− +

=
− +

α α

α α α α α α α α α α
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α α α α α α α α α α
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where Son is given by (D.6) and
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, 1 1 2
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2
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D.2. Intersite orthogonalization

As χ σ s are orthogonal on-site, one can also introduce intersite orthogonalization. We introduce
the following mixing coefficients (2)

β χ γ χ= −σ σ σ σ( )w r r r( ) ( ) ( ) , (D.8)i i j

where βσ and γσ depend only on the overlap integral χ χ≡ 〈 〉σ σ σS |1 2 :
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−
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2

We already have overlap S s1 (A.4).
Overlap S s2 is only a little bit more complicated

χ χ Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ Ψ Ψ

= = + +

= + +

= + +α

S A B A B

A AB B

A S ABS B S

2

2 , (D.11)

s s s s s s s

s s s s s s

s s s s

2
1
2

2
2

1
1

1
2

2
1

2
2

2
1
1

2
1

1
1

2
2 2

1
2

2
2

2 1 , 1 ,2 2 2s2

where

α α α
=

+ + +α − ( ( ( ) ) )
S

e R R R 4 9 9

6 3
, (D.12)s s

R
s s s1 ,2

( )
2 2 2

s2

α α α α= + + + +α − ( ( ( ( ) ) ) )S e R R R R
1
45

5 20 45 45 . (D.13)s R
s s s s

2 ( )
2 2 2 2

s2

22

New J. Phys. 16 (2014) 123022 A P Kądzielawa et al



D.3. Single-particle microscopic parameters

Introducing s2 orbitals provides us with four new single-particle microscopic parameters

ϵ = w w ar r( ) ( ) , (D.14 )s i
s

i
s

2
2

1
2

= t w w br r( ) ( ) , (D.14 )s i
s

i
s

2
2

1 ¯
2

= V w w cr r( ) ( ) , (D.14 )on i
s

i
s1

1
2

= V w w dr r( ) ( ) , (D.14 )inter i
s

i
s1

1 ¯
2

where ϵ s2 is single-particle energy on the s2 orbital, t s2 the hopping between s2 sites, and Von

and Vinter are hybridizations on- and inter-site respectively.
Similarly to sections appendix A and B, the exact solution is a function of Slater

microscopic parameters
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where A and B are found via (D.5), while βσ and γσ via (D.9). The Slater microscopic
parameters can be explicitly written in a form

ϵ α α α′ = + − − +α α− ( (( ) ) )
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e R e R
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One can obtain the exact values for the optimal inter-ionic distance = =R R 1.430 42B

and α α= = 1.193 78B . The results, together with comparison to the one-orbital case, are listed
in table D.1. Note that the new estimates are carried out for the optimal bond length and the
inverse wave-functions size for the case of s1 functions only ( = =R R 1.430 42B and
α α= = 1.193 78B , respectively).
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