
INTRODUCTION

The intergeniculate leaflet of the thalamus (IGL), is a
structurally and functionally important component of the rodent
biological clock. In the laboratory rats this small structure is
located between the dorsal lateral geniculate (DLG) and ventral
lateral geniculate (VLG) parts of the lateral geniculate body
(4.4–4.8 mm anterior to bregma, 3.9–4.1 mm lateral to midline
and 5.0–5.2 mm ventral to dura) (1). A vast body of physiological
and behavioral studies indicate the involvement of the IGL in the
regulation and modulation of biological rhythms. The IGL
integrate photic information with non-photic cues and conveys
this information to the master biological clock - suprachiasmatic
nuclei (SCN) (2-4). The neurons in the IGL are usually identified
as members of two major groups: neuropeptide Y (NPY) positive
and enkephalinergic (ENK) cells. Both neuropeptides are co-
localized with γ-aminobutric acid (GABA). In rat the NPY-
positive neurons are the major component of geniculo-
hypothalamic tract (GHT) projecting to the SCN (3, 5), whereas
ENK cells constitute the main source of geniculo-geniculate
pathway connecting contralaterally located IGLs. This population
of neurons express characteristic isoperiodic oscillatory pattern of
the activity, observed in rat during in vivo recordings (6-8). One of
the sources of non-photic information arriving to the biological
clock is serotoninergic projection from the raphe nuclei, which
constitutes the primary source of serotonin (5-hydroxytryptamine,
5HT) in the brain (9). The SCN receives numerically strongest
input from medial raphe nucleus (MRN), whereas the IGL is
mostly innervated by the neurons in the dorsal part of the raphe
nucleus (DRN). The DRN is involved in the control of sleep-wake
cycle and may be responsible for relying non-photic information

associated with arousal induced by i.e. the locomotor activity and
altered waking (10-12).

In vivo experiments performed in our laboratory demonstrated
that electrical stimulation of the DRN decreases firing rate of iso-
periodic oscillatory neurons in the rat IGL, while lesion of this
structure disinhibits their activity (13, 14). Increased 5HT
secretion into IGL was also observed after electrical stimulation of
the DR in another murid rodent - the hamster (15). Also, the
inhibitory influence of 5HT on spontaneous and light-evoked
activity of the hamster IGL neurons has been reported previously
(16). These studies suggest that serotonin may significantly
contribute to regulation of the IGL activity. The aim of the present
study was to determine the effect of 5HT action on the single IGL
neurons. It appears that 5HT has the diverse effect on the IGL
neurons - either presynaptic or postsynaptic effects were observed.

MATERIALS AND METHODS

Preparation

All experiments were performed in accordance with the
European Community Council Directive of 24 November 1986
(86/0609/EEC) and Polish Animal Welfare Act of 23 May 2012
(82/2012). They were approved by Local (Cracow) Ethical
Commission. Animals were held in 12h/12h light/dark condition
(light on 8.00 am; light off 8.00 pm) with water and food ad
libitum in Jagiellonian University Animal Facility. Every effort
was made to minimize the number and suffering of animals used.
Experiments were performed on 20 young male Wistar rats
which were kept in 12h/12h light/dark regime for 14 to 21 days.
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Animals were anesthetized with izofluran (2 ml/kg body weight,
Baxter) and decapitated (between 9.00 and 10.00 am). Brain was
rapidly removed from the skull and immersed in ice-cold
artificial cerebrospinal fluid (ACSF), composed of (in mM):
NaCl 118, NaHCO3 25, KCl 3, NaH2PO4 1.2, CaCl2 2, MgCl2 2,
glucose 10 (pH 7.4; osmolarity ~295 mOsmol/l). A block of
tissue containing thalamus was sectioned at 250 µm thick
coronal slices on Leica vibrotome (VT1000S). Slices containing
the IGL were placed in pre-incubation chamber for 30 min at
32°C and then another 60 min in room temperature (21°C).
Subsequently, the slice with investigated structure was
transferred to the recording chamber and perfused continuously
with oxygenated ACSF (95% O2, 5% CO2), kept at 32°C.

Electrophysiological recordings and data analysis

Whole-cell patch-clamp recordings were performed on the
IGL neurons (with no preference of the localization of the
neurons) between 4 and 10 Zeitgeber time (ZT) and no ZT-
dependent changes in the responses were observed. The
recording electrode were placed in the IGL region under visual,
microscopic control (Fig. 1). For the recordings borosilicate
glass pipettes (Sutter Instruments, Novato, USA) were used. The
pipettes (resistance 5–7 MΩ) were filled with internal pipette
solution containing in mM: potassium gluconate 125, KCl 20,
HEPES 10, MgCl2 2, Na2ATP 4, Na3GTP 0.4, EGTA 1 (pH=7.4
adjusted with 5 M KOH; osmolarity ~300 mOsmol/l). The IGL
neurons were visualized with 60× objective on Zeiss Examiner
microscope fitted with infrared differential interference contrast
(Goettingen, Germany). Whole-cell recordings in current clamp
mode (CC) were performed using a SC 05LX (NPI, Tamm,
Germany) amplifier and Spike 2 software (CED). Neurons were
held at 0 current in CC to record their spontaneous activity.
During each recording, current rectangular pulses (1 s, 80 pA)
were injected to monitor membrane resistance. Neurons with the
membrane potential more positive than –35 mV were excluded
from analysis (-50 mV when adjusted for the junction potential).

The signal was low-passed filtered at 5 kHz and digitized at
15 kHz. Data was recorded using the following software: Signal
and Spike2 (CED).

Reagents

Stock solutions of serotonin creatinine sulfate (5HT, Sigma-
Aldrich, St Louis, MO, USA) and tetrodotoxin (TTX, Tocris,
Bristol, UK) were prepared in distilled water (100× concentrated)
and kept in –20°C. Working solutions (5HT, 5 µM and TTX, 0.5
µM) were prepared in ACSF on the day of experiment. All drugs

were delivered by bath perfusion and ~200 s was needed for the
substance to reach the recording chamber.

Statistical analysis

Analysis was performed in MATLAB (MathWorks, Inc.,
USA) and Statistica 10.0 (StatSoft, Inc. USA). Changes in firing
rate or membrane potential were considered to be significant if
they were different from baseline by more than three S.D. All
data was expressed as mean value ±S.E.M. Student's t-test was
used and p<0.05 was considered as significant.

RESULTS

In total 28 neurons were investigated in current clamp mode.
Spontaneous activity of 18 IGL neurons was recorded in normal
ACSF. Majority of tested cells (n=17) expressed regular pattern
of activity with mean firing rate of 3.86 Hz ±0.1 Hz, only one
neuron was silent. On average the firing rate changed from 3.31
Hz ±0.07 Hz to 4.52 Hz ±0.13 Hz (n=18) after 5HT application,
when all tested cells were included. However, not all of the
recorded neurons were sensitive to the applied substance. The
activity of 4 out of 18 cells did not change after drug
administration (before 2.87 Hz ±0.17 Hz and after 2.87 Hz ±0.12
Hz). Among neurons sensitive to 5HT, the firing rate of 12
increased (from 3.39 Hz ±0.08 Hz to 5.48 Hz ±0.21 Hz,
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Fig. 1. (A) Intergeniculate leaflet of the
thalamus (IGL) localization on the
brain slice (10× magnification). DLG,
dorsal lateral geniculate nucleus; VLG,
ventral lateral geniculate nucleus; MG,
medial geniculate nucleus. (B) IGL
neuron during the patch clamp
recording (60× magnification).

Fig. 2. Changes in mean firing rate before and after serotonin
creatinine sulfate (5HT) application on the intergeniculate leaflet
of the thalamus (IGL) neurons. Different responses were observed
after drug application: activation (n=12, Student's paired t-test, 
* p<0.05), inhibition (n=2) and lack of response (n=4).



T=2.612, p=0.02, paired Student's t-test), and 2 decreased (from
3.39 Hz ±0.32 Hz to 2.03 Hz ±0.14 Hz) in response to 5HT,
respectively (Figs. 2-4). It should be mention that large
discrepancy between hyperpolarizing effects was observed.

Results of previous in vivo experiments (13-16) suggest that
5HT may influence activity of IGL neurons by direct
postsynaptic action. Therefore, in order to evaluate if the
observed effect of 5HT is pre- or postsynaptic, in 7 neurons (out
of 18) after recording the response to 5HT in normal ACSF, TTX
(0.5 µM) was added to recording solution. In these conditions
the membrane potential of 4 neurons did not change after
repeated application of 5HT (–55.46 mV ±0.23 mV versus
–54.80 mV ±0.26 mV). Three cells were depolarized by 5HT in
the presence of TTX (from –59.03 mV ±0.30 mV to –55.89 mV
±0.69 mV, Fig. 4). The results indicate that serotonin mainly acts
by influencing synaptic activity but direct action on postsynaptic
receptors cannot be rule out.
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Fig. 5. Mean changes in membrane
potential (normalized) before and after
serotonin creatinine sulfate (5HT)
application (5 µM, solid horizontal bar)
in artificial cerebrospinal fluid (ACSF)
containing tetrodotoxin (TTX). Each
data point represents the % of the mean
baseline value. Black line - mean
membrane potential of insensitive
neurons to 5HT (n=9), grey line - mean
membrane potential of neurons
depolarized by 5HT (n=7).

Fig. 6. Decrease in input resistance after application of serotonin
creatinine sulfate (5HT) in the presence of tetrodotoxin (TTX),
n=8, Student's paired t-test, * p<0.05.

Fig. 3. Representative hyperpolarizing effect of
serotonin creatinine sulfate (5HT) (5 µM, solid
horizontal bar) on intergeniculate leaflet of the
thalamus (IGL) neuron. 5HT application caused
significant hyperpolarization of the recorded
neuron. Downwards deflections represent the
responses of IGL cell to a hyperpolarizing current
injection (80 pA).

Fig. 4. Representative depolarizing effect of
serotonin creatinine sulfate (5HT) (5 µM, solid
horizontal bar) on intergeniculate leaflet of the
thalamus (IGL) neuron. First 5HT application in
normal artificial cerebrospinal fluid (ACSF) caused
increase in the spontaneous firing rate of recorded
neuron. Second 5HT (solid, horizontal bar)
application was performed in ACSF containing 0.5
µM tetrodotoxin (TTX) (dashed, horizontal bar)
and significant depolarization was observed after
5HT application. Downwards deflections represent
the responses of IGL cell to a hyperpolarizing
current injection (80 pA).



Serotonin creatinine sulfate complex is known to be difficult to
rinse out from the brain slices after application (17). Therefore, we
have studied the effect of 5HT on activity of 10 IGL neurons in the
presence of TTX in ACSF from the beginning of recording. By
using this protocol, we administered 5HT once only per each tested
neuron, and thereby eliminated desensitization, being also possible,
observed in previous studies (18) and during our recordings (n=3,
data not shown). On average, membrane potential changed from
–58.97 mV ±0.15mV to –58.24 mV ±0.37 mV (n=10) after 5HT
application. However, in this group of neurons, four were
depolarized (–61.56 mV ±0.19 mV to –58.54 mV ±0.37 mV) and
one was hyperpolarized (from –61.85 mV to –66.71 mV) by 5HT.
The remaining five neurons were insensitive to applied drug
(–54.46 mV ±0.23 mV versus –54.80 mV ±0.26 mV). The data
representing all depolarized and non-sensitive to 5HT cells
investigated in ACSF containing TTX were collected together in
the Fig. 5. We also observed decrease in input resistance during the
responses either depolarization and hyperpolarization (this data
was pulled together) after 5HT application (from 570 MΩ ±68 MΩ
to 530 MΩ ±61 MΩ, T=2.86, p=0.02, paired Student's t-test, Fig.
6). All the results are summarized in Table 1.

DISCUSSION

In the present study, we have demonstrated diverse effects of
5HT on the activity of single IGL neurons. We observed both
presynaptic and postsynaptic effects accompanied by the decrease
in input resistance. Previous studies performed in our laboratory
showed inhibitory effect of serotonergic projection from the DR
on the IGL activity (13, 14). Moreover, in the majority of cells
application of 5HT or 8-OH-DPAT into the IGL caused a
significant decrease of firing rate (16). Interestingly, in the present
study only three neurons were hyperpolarized after 5HT

treatment. The discrepancies between previous and present results
could be related to different techniques used in both studies. Thus
unlike in vivo recordings performed in the earlier studies, present
experiments were focused on the activity of single IGL neurons in
the isolated brain slices, where the connections between the IGL
and other structures were limited. Another possible explanation
may arise from the fact that authors of previous articles focused
mainly (16) or exclusively (13, 14) on examination of only certain
group of the IGL neurons, sensitive to the light (13, 14, 16) and/or
exhibiting characteristic oscillatory pattern of activity (13, 14).

Serotonin creatinine sulfate complex, a nonspecific 5HT
receptors agonist, used in our studies may exert its effect through
interaction with various receptor subtypes (19). It has been shown
that 5HT1A, 5HT7 and 5HT5A may be responsible for serotonin
action in the hamster IGL (16, 20, 21). Activation of these
receptors may contribute to different electrophysiological
responses. For example, 5HT1A evokes hyperpolarization and/or
inhibitory effect on spontaneous activity of cells in several brain
areas, including the IGL (16, 22). The 5HT7 mediates
depolarizing-excitatory responses in anterodorsal thalamus (23),
modulate glutamatergic synaptic transmission in the rat frontal
cortex (24) and GABAergic transmission in rat hippocampal CA1
area (25). The modulation of cell excitability by 5HT5A is the least
explored. However, recently (26) it was demonstrated that 5HT5A

elicits inwardly rectifying K+ current in subpopulation of layer V
of pyramidal neurons. The same current inhibited by cAMP was
observed in mPFC pyramidal neurons (27). Consistent with our
findings others (28) demonstrated multiple action of 5HT in the
SCN neurons. They have shown not only postsynaptic and
presynaptic inhibition but also postsynaptic depolarization after
serotonin application (28). This diversity of responses were
explained by different 5HT receptor types attendance in this brain
structure. Ying and Rusak (16) suggested that in addition to
5HT1A, other receptor type was probably involved in response to
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Fig. 7. Hypothetic mechanism of serotonin creatinine
sulfate (5HT) action in the intergeniculate leaflet (IGL)
neuronal network. [1] Postsynaptic depolarizing effect
of 5HT on "GABAergic interneurons", which exert
inhibitory effect on enkephalin (ENK) + neurons. In
addition, 5HT may directly hyperpolarize ENK + cells.
[2] Either postsynaptic or presynaptic inhibition (via
GABAergic interneuron) can be observed while
recordings from "GABA ENK" cells after 5HT
application. [3] Direct postsynaptic effect of 5HT on
"GABA neuropeptide Y (NPY)" neurons, (imitating
direct 5HT effect from dorsal raphe - DR in vivo) or
indirect depolarization, as a result of diminished
inhibitory influence from ENK + neurons. The
consequence of these interactions is increase in
neuropeptide Y (NPY) release to the suprachiasmatic
nuclei (SCN).

Administration 5HT in normal 
ACSF 

5HT in TTX after 5HT  
in normal ACSF 
(taken from previous group) 

5HT in TTX only 

Excitation 67%
(+2.09 Hz, n=12)

43%
(+3.14 mV, n=3) 

40% 
(+3.02 mV, n=4) 

Inhibition 11%  
(–1.36 Hz, n = 2) 

0%  
(n=0) 

10%  
(–4.87 mV, n=1) 

No effect 22%  
(+0.001Hz, n = 4) 

57%  
(+0.66 mV, n = 4) 

50%  
(–0.34 mV, n=5) 

Total n=18 
(+1.21 Hz) 

n=7 
(+1.60 mV) 

n=10  
(+0.73 mV) 

Table 1. All 5HT effects described by our study. For detailed information - see RESULTS.



5HT in the IGL. It should be also noticed, that our data are
consistent with hypothesis proposing a network of different 5HT-
responding cell types in the IGL (29). Clearly, further research is
needed to elucidate the possible involvement of different 5HT
receptors expression depending on different cell type in the
neuronal network of the IGL.

The IGL is the second after the SCN most important
component of the biological clock. Its main function is the
integration of photic and non-photic information, and further
rely it to the SCN through NPY-containing pathway (30). The
NPY injection or synaptic release of this neuropeptide to the
SCN at the end of the subjective night, causes the active phase
advance (31). Similar effect (29) could be induced by increased
locomotor activity (wheel-running).

That is why, the activation of the DR by the locomotor
activity, plays an important role in arousal-associated
information input to the biological clock (32). It has been shown
that phase-shifting effect of the locomotor activity requires
projection from the DR to the IGL (33). It could be hypothesized
here, that serotonin originating from the DR, directly or
indirectly activates NPY-positive neurons in the IGL.

The second population of IGL neurons, connecting
contralateral IGLs, are ENK-positive. It was shown (34), that in
both: NPY-positive and ENK-positive neurons, the main
inhibiting brain neurotransmitter - GABA is co-expressed. What
is more, it has been studied that enkephalinergic neurons of the
IGL in rats are light sensitive (35) and generate light-dependent
oscillations (6-8, 36). Therefore, modulatory effect of the ENK
neurons on the NPY neurons was proposed (14). The previous
hypothesis that 5HT can inhibit the ENK neurons and disinhibits
the NPY neurons is able to explain the observed network
mechanism of the secretion of NPY to the SCN (29) (Fig. 7).

The data presented in the present paper can improve our
understanding of the role of the reciprocal connections and the
role of 5HT in modulation the IGL neuronal network. We have
shown that presynaptic depolarizing effect which could be
exerted by abolishing inhibitory inputs to the recorded neurons.
The increase in NPY secretion to the SCN after 5HT treatment
may be related to the observed postsynaptic depolarization of
presumed NPY-positive neurons. However, the direct connection
between DR the NPY-positive cells is not proven or for that
matter disproven by our data. The further electrophysiological
studies combined with immunohistochemical stainings are
necessary to evaluate our statements.

In conclusion, the present study shows the effects (including
depolarizing effect, shown for the first time) of the serotonin-
creatinine complex on single IGL neurons. Moreover, our results
provide a basis for the new level of understanding of neuronal
network in the investigated structure. We believe that our
findings are likely to provide the cornerstone for untangling
arousal effect of 5HT on mammalian biological clock.
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