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1. Introduction

The soft hadronic data collected in high energy collisions are frequently
analyzed in the framework of thermal or statistical models (see e.g. [1–6])1.
In the most popular applications, such models explain the relative abun-
dances of hadrons, i.e., the ratios of hadron multiplicities. Thermal models
can be also used to analyze the hadron transverse-momentum spectra and
correlations. In the latter case, we often refer to thermal models as to the
hydro-inspired models. This name reflects the fact that such models do not
include the full hydrodynamic evolution but use various hydrodynamics-
motivated assumptions about the state of matter at the thermal (kinetic)
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 3.0.
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1 For a review and an extensive list of references, see [7].
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freeze-out. One of the most popular hydro-inspired models is the blast wave
model originally introduced in [8] and adapted to ultra-relativistic energies
in [9], see also [10] and [11].

With growing beam energies, such as those presently available at the
LHC, the final state hadron multiplicities also grow substantially, and hy-
drodynamic features of hadron production are expected to appear even in
more elementary hadron+hadron and hadron+nucleus collisions, e.g., see
Ref. [12]. Quite recently, the blast wave model has been used in this con-
text to analyze high-multiplicity pp collisions at the LHC [13]. The authors
of [13] found indications of strong transverse radial flow in such events.

In the present paper, using as the starting point the blast wave model2
featuring a boost-invariant, azimuthally symmetric fluid expanding in the
transverse direction according to the Hubble law [15], we show how to in-
clude the possibility of the formation of thermal clusters as an intermediate
step between freeze-out and particle emission. We are interested, in par-
ticular, in the consequences the production of such clusters may have on
the measurements of the Bose–Einstein correlations (for a recent review,
see [16]).

We note that similar studies have been performed earlier in Refs. [17, 18].
The approach presented in [17] is based on the assumption that the distri-
bution of the particles emitted from a cluster is a Gaussian. Within our
framework, the particle distribution within a cluster may be arbitrary and
the HBT radii are expressed by the moments of the distribution. Moreover,
the distribution of clusters assumed in our paper is different from that pro-
posed in [17]. Our approach differs from that presented in Ref. [18] since
we are using a different physical picture. The authors of Ref. [18] assume
that the space-time evolution of each cluster/droplet is described by the hy-
drodynamic equations and the whole system consists of a set of such small
hydrodynamic subsystems. In our approach, we model a physical process
where a single and large hydrodynamic system breaks first into clusters and
later into observed particles (pions).

A thermal cluster is characterized by the Boltzmann distribution of the
momenta of its decay products

e−βE
∗
= e−βp

µuµ , (1)

where E∗ is the energy of the emitted particle in the cluster rest frame,
pµ is its four-momentum, and uµ is the cluster four-velocity. T = 1/β is
the temperature of the cluster. The new point which we explicitly include
in our analysis is the natural condition that the cluster is limited in space-
time. This means that in the cluster rest frame the emission points of its

2 Our use of the blast wave model follows similar studies done earlier in the case of
heavy-ion collisions [11, 14].
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decay products are distributed in the region described by a positive function
g(x∗) = g(t∗, x∗, y∗, z∗) normalized to unity∫

d4x∗g(t∗, x∗, y∗, z∗) = 1 , (2)

where [x∗, y∗, z∗] represent the distance from the center of the cluster to the
particle emission point and t∗ is the time elapsing from the moment the
cluster appears in the system till the particle emission time. Our aim is to
investigate how the finite size of the cluster influences the results and the
interpretation of the HBT measurements.

In the next section, we define the model by introducing the source func-
tion embodying the formation and decay of clusters. It is based on the gen-
eralized Cooper–Frye formula and the Hubble-like expansion of the fluid. In
Section 3 the momentum distribution of particles is evaluated. The HBT
correlation functions are discussed in Sections 4 and 5, and in Section 6 the
general formulae for the HBT radii are given. The results are summarized
in the last section. Several appendices display some details of the algebra
needed to obtain the results presented in the paper.

2. The generalized Cooper–Frye formula

2.1. Source function

Our approach is based on the Cooper–Frye formula [19], generalized
to the case where matter created at an intermediate stage of the collision
process consists of thermal clusters. The starting point is the following
expression for the source/emission function

S(x, p) =

∫
dΣµ(xc) p

µf(xc)

∫
d4x∗g(x∗)δ(4) (x− xc − Lc x

∗) e−βp
µuµ(xc) .

(3)
Here x and p are the spacetime position and four-momentum of the emitted
particle, xc and uµ(xc) are the spacetime position and the four-velocity of a
cluster, Lc is the Lorentz transformation leading from the cluster rest frame
to the frame where the measurements of the BE correlations are performed
and which we shall call “the HBT frame”. Finally, dΣµ(xc) is an element of
the freeze-out hypersurface which we take in the form

dΣµ(xc) = S0σµ(xc) δ(τf − τc)d4xc = S0σµ(xc) δ(τf − τc)τcdτcdηcd2rc , (4)

where S0 is a normalization constant and the variables τc and ηc are the
longitudinal proper time and the space-time rapidity of the cluster

tc = τc cosh ηc , zc = τc sinh ηc . (5)
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In a similar way, we define the cluster radial distance from the collision axis
and the azimuthal angle in the transverse plane

xc = rc cosφc , yc = rc sinφc . (6)

The four-vector σµc = σµ(xc) defines the space-time orientation of an element
of the freeze-out hypersurface

σµc = (cosh ηc, 0, 0, sinh ηc) . (7)

The function f(xc) in (3) describes the distribution of clusters in space,
while the function g(x∗) defines the distribution of the particle emission
points in the cluster (in the cluster rest frame). The properties of the func-
tions f(xc) and g(x∗) will be discussed in more detail below. Here we only
note that for small clusters, i.e., for x∗ → 0, the source function (3) is
reduced to the standard emission function [9]

S(x,p) =

∫
dΣµ(x

′)pµδ(4)(x′ − x) exp(−βpµuµ(x′))f(x′) . (8)

Equations (3) and (4) allow to introduce a compact representation of the
source function, which highlights its physical interpretation, namely3

S(x, p) =

∫
d4xc Sc(xc, uc)Sπ(xc, uc, x, p) , (9)

where
Sc(xc, uc) = δ(τf − τc)f(xc) (10)

and

Sπ(xc, uc, x, p) =

∫
d4x∗σµ(xc)p

µe−βpµu
µ
c δ(4) (x− xc − Lc x

∗) g(x∗) . (11)

Function Sc(xc, uc) is the distribution of the cluster four-velocity uc and
space-time position xc, while Sπ(xc, uc, x, p) is the distribution of the final
particles emerging from the cluster decay. Equation (9) shows that the
source function can be represented as an integrated product of these two
distributions.

We assume that function f(xc), defining the distribution of clusters in
space, depends only on the transverse distance rc. Hence, using Eqs. (9)
and (10), the source function may be rewritten as

S(x, p) =

∫
rcdrcf(rc)

∫
dηc

∫
dφc Sπ (xc, uc, x, p) . (12)

3 From now on, we shall omit all constant factors in the source function, since its
normalization is irrelevant for the problems we are discussing in this paper.
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2.2. Transverse Hubble expansion

Since the system is boost-invariant and cylindrically symmetric, the four-
velocity of a cluster, uc = u(xc), has the form [7]

uc = (cosh ηc cosh θc, sinh θc cosφc, sinh θc sinφc, sinh ηc cosh θc) . (13)

In addition, we assume that the transverse rapidity of the cluster θc and its
position rc are related by the condition of the radial Hubble-like flow [15].
This leads to the expressions

sinh θc = ωrc , cosh θc =
√

1 + ω2r2c , (14)

where ω is the parameter controlling the magnitude of the transverse flow.
The particle four-momentum is parameterized in the standard way in

terms of rapidity, y, transverse momentum, p⊥, transverse mass, m⊥, and
the azimuthal angle in the transverse plane, φp,

p = (m⊥ cosh y, p⊥ cosφp, p⊥ sinφp,m⊥ sinh y) . (15)

Then, the scalar product of p and uc is

p · uc = m⊥ cosh(y − ηc) cosh θc − p⊥ cos(φp − φc) sinh θc . (16)

This form is used in the thermal Boltzmann distribution. In a similar way,
we obtain the factor p · σc needed to define the element of the freeze-out
hypersurface4

p · σc = m⊥ cosh(y − ηc) . (17)

2.3. Distribution of the emitted particles in a thermal cluster

The decay distribution can be written as

Sπ(xc, uc, x, p) = pµσ
µ
c exp(−βpµuµc )S∗(xc, x, uc) . (18)

The first two factors in (18) describe the momentum distribution. We have

pµσ
µ
c exp(−βpµuµc ) = m⊥ cosh(y − ηc)

× exp [−βm⊥ cosh θc cosh(ηc − y) + βp⊥ sinh θc cosφ] , (19)

where φ = φc−φp is the angle in the transverse plane between ~uc,⊥ and ~p⊥.

4 The form of (17) follows directly from (15) and (16). Other forms are also possible
here if one assumes different freeze-out conditions. Using (4) and (7), we follow the
most popular version of the blast wave model.
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The last factor in (18), i.e. the function S∗(xc, x, uc), describes the distribu-
tion of the points of particle emission from the cluster, which is discussed in
greater detail in Appendix A,

S∗(xc, x, uc) =

∫
d4x∗g(x∗)δ(t− tc − T )δ(x− xc −X)

×δ(y − yc − Y )δ(z − zc − Z) , (20)

where

T = cosh ηc (t
∗ cosh θc + x∗ sinh θc) + z∗ sinh ηc ,

X = x∗ cosφc cosh θc − y∗ sinφc + t∗ cosφc sinh θc ,

Y = y∗ cosφc + x∗ cosh θc sinφc + t∗ sinφc sinh θc ,

Z = sinh ηc (t
∗ cosh θc + x∗ sinh θc) + z∗ cosh ηc . (21)

Integration over d4x∗ is easy and gives

S∗ = g(t̂, x̂, ŷ, ẑ) (22)

with

t̂ = (T ′ cosh ηc − Z ′ sinh ηc) cosh θc − (Y ′ sinφc +X ′ cosφc) sinh θc ,

x̂ = −(T ′ cosh ηc − Z ′ sinh ηc) sinh θc + (Y ′ sinφc +X ′ cosφc) cosh θc ,

ŷ = Y ′ cosφc −X ′ sinφc ,
ẑ = −T ′ sinh ηc + Z ′ cosh ηc , (23)

and X ′µ ≡ [T ′, X ′, Y ′, Z ′] = (x− xc)µ.

3. Momentum distribution

By definition, the integral of the source function S(x, p) over the space-
time coordinates gives the momentum distribution

dN

dyd2p⊥
=W (p) =

∫
d4xS(p, x) . (24)

The explicit calculation starting from Eq. (3) yields

W (p) =

∫
d4x∗

∫
dΣµ(xc)p

µe−βp
µuµ(xc)f(xc)g(x

∗)

=

∫
dΣµ(xc)p

µe−βp
µuµ(xc)f(xc) . (25)
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Thus, the particle momentum distribution is given by the same expression
as that used in the standard Cooper–Frye formula (with the particle space-
time coordinates replaced by the cluster coordinates). The integration over
d4x cancels the four Dirac delta functions appearing in (20) and leads to the
formula

W (p) = m⊥

∫
rcdrcf(rc)

∫
dηc

∫
dφc cosh(ηc − y)e−U cosh(ηc−y)+V cosφc ,

(26)
with

U = βm⊥ cosh θc , V = βp⊥ sinh θc . (27)

Integration over ηc and φc gives

W (p⊥) = m⊥

∫
rcdrcf(rc)K1(U)I0(V ) , (28)

which agrees with a formula commonly used to interpret the transverse-
momentum spectra [9].

4. HBT correlation function

Assuming that one can neglect correlations between the produced parti-
cles5, the distribution of two identical bosons can be expressed in terms of
the Fourier transform of the source function

W (p1, p2) =W (p1)W (p2) + |H(P,Q)|2 (29)

with
H(P,Q) =

∫
d4xeiQ·xS(x, P ) . (30)

Here Q = p1 − p2 and ~P = (~p1 + ~p2)/2. The time-component of the four-
vector P is not uniquely defined. We shall adopt the convention P0 =√
m2 + |~P |2 [21]. In Appendix E, we discuss the consequences of another

relation, P0 = (p01 + p02)/2 [16].
The source function S(x, P ) appearing in (30) is given by our initial

definition, see Eq. (3), with p replaced by P , namely

S(x, P ) =

∫
d4x∗g(x∗)

∫
dΣµ(xc)P

µ exp (−βPµuµ(xc)) f(rc)

×δ (t− tc − T ) δ(z − zc − Z)δ (x− xc −X) δ (y − yc − Y )

=

∫
dΣµ(xc)P

µ exp (−βPµuµ(xc)) f(rc)S∗(xc, x, uc) . (31)

5 Although, as pointed out in [20], this assumption may distort significantly the results
for Q exceeding the inverse size of the system, it is not restrictive at small Q, the
region which is of interest in this paper.
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In the last line in (31) we used our definition of the function S∗(xc, x, uc),
see Eq. (20).

Equations (30) and (31) allow us to write the compact expression for the
Fourier transform of the source function

H(P,Q) =

∫
dΣµ(xc)P

µ exp (−βPµuµ(xc)) f(rc)eiQ·xcG(xc, Q) , (32)

where
G(xc, Q) =

∫
d4x∗ exp [i(Q ·X)] g(x∗) (33)

with Xµ given by Eq. (21).

5. Kinematics of the Fourier transform

We shall work in the so-called LCMS system (i.e. our HBT system
is the LCMS system) in which Pz = 0, i.e. p1z = −p2z and ypair = 0.
In this frame, the substitution p → P is simply realized by the change
m⊥ →

√
P 2
0 − P 2

z = P0. Starting directly from (30) and (31), we find

H(P,Q) = P0

∫
d4x∗

∫
rc drcf(rc)

∫
dφc

×
∫
dηc cosh ηce

−U cosh ηc+V cosφc−iΦg(x∗) , (34)

where now U = βP0 cosh θc, V = βP⊥ sinh θc, and the phase Φ is given by
the formula

Φ = −Q0(tc + T ) +Qz(zc + Z) +Qx(xc +X) +Qy(yc + Y ) . (35)

The phase Φ depends on the relative direction of ~P = (P⊥, 0, 0) and ~Q. One
considers three regimes:

(i) long direction: Qx = Qy = 0 , Qz = q , and Q0 = 0 ,

Φlong = qχlong , χlong = τf sinh ηc + Z ; (36)

(ii) side direction: Qx = Qz = 0 , Qy = q , and Q0 = 0 ,

Φside = q χside , χside = rc sinφc + Y ; (37)

(iii) out direction: Qy = Qz = 0 , Qx = q and

Q0 =
√
m2 + (P⊥+ q/2)2 −

√
m2 + (P⊥− q/2)2 , (38)

Φout = q χout , χout = −
Q0

q
[τf cosh ηc + T ] + rc cosφc +X . (39)
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For small q, which is sufficient to obtain the HBT radii (as described
in more detail below), we find Q0/q ≈ P⊥/

√
m2 + P 2

⊥ ≡ ζ. For arbitrary
values of q, one should use explicitly formula (38).

With the help of the notation introduced above, the three desired ver-
sions of the Fourier transform may be written as one universal formula

Hd(P⊥, q) = P0

∫
d4x∗g(x∗)

∫
rc drcf(rc)

∫
dφce

V cosφc

×
∫
dηc cosh ηce

−U cosh ηce−iqχd ≡ H(P⊥, q = 0)
〈
e−iqχd

〉
. (40)

The subscript d stands for “long”, “side”, and “out”.
If clusters are not present, Hd(P⊥, q) can be explicitly expressed in terms

of integrals of Bessel functions. The corresponding formulae are given in
Appendix D.

Equation (40) is the basis for the consideration of the “numerator” con-
tributions to the HBT radii discussed in Appendix B. The complementary
“denominator” contributions are discussed in Appendix C. Let us note that
sometimes it is assumed that the denominator does not contribute to the
HBT radii [16].

6. The HBT radii

Experiments usually measure the correlation function defined as

C(p1, p2) ≡
W (p1, p2)

W (p1)W (p2)
− 1 =

|H(P,Q)|2

W (p1)W (p2)
. (41)

The measured HBT radii are obtained from the fit to the correlation function
in the Gaussian form separately for each of the directions long, side and out

C(p1, p2) = e−R
2
HBTq

2
(42)

with q given by (37). This means that they can be evaluated as the loga-
rithmic derivative at q = 0

R2
HBT = −d log[C(p1, p2)]

dq2
≡ R2

H −R2
W (43)

with

R2
H = −

{
dH(P, q)/dq2

H(P, q)
+
dH∗(P, q)/dq2

H∗(P, q)

}
q=0

,

R2
W = −

{
dW (p1)/dq

2

W (p1)
+
dW (p2)/dq

2

W (p2)

}
q=0

. (44)
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Using the formulae of the previous section, it is thus possible to derive the
expressions for the HBT radii for all the three configurations. In this section,
we only give the final results. The algebra is outlined in Appendices B and C.

In Appendix B it is shown that

R2
Hd =

〈
χ2
d

〉
− 〈χd〉2 =

〈
(χd − 〈χd〉)2

〉
, (45)

where the average 〈∅〉 is defined as

〈∅〉 =
∫
rcdrcf(rc)dφcdηc cosh ηce

−U cosh ηceV cosφc
∫
d4x∗g(x∗)∅∫

rcdrcf(rc)dφcdηc cosh ηce−U cosh ηceV cosφc
∫
d4x∗g(x∗)

. (46)

These averages can be expressed in terms of integrals of Bessel functions
as shown in Appendix D. The results are listed below. Denoting

ρ2 ≡
〈
x∗2
〉
=
〈
y∗2
〉
, ρ2z =

〈
z∗2
〉
, ρ2t =

〈
t∗2
〉
, δt = 〈t∗〉 , (47)

where 〈∅∗〉 ≡
∫
d4x∗∅ g(x∗), one obtains

〈χlong〉 = 〈χside〉 = 0 ,

〈χout〉 =

∫
rcdrcf(rc)λ1I1(V )K1(U)∫
rcdrcf(rc)I0(V )K1(U)

−
∫
rcdrcf(rc)λ2I0(V )K ′′0 (U)∫
rcdrcf(rc)I0(V )K1(U)

, (48)

where
λ1 = rc + δt sinh θc , λ2 = ζ (τf + δt cosh θc) . (49)

The average
〈
χ2
long

〉
is given by the formula

〈
χ2
long

〉
=

∫
rcdrcf(rc)λ2I0(V )

[
κl[K

′′
1 (U)−K1(U)] + ρ2zK

′′
1 (U)

]∫
rcdrcf(rc)I0(V )K1(U)

(50)

with
κl = τ2f + ρ2t cosh

2 θc + ρ2 sinh2 θc + 2τfδt cosh θc . (51)

For the side direction the result is

〈
χ2
side

〉
=

∫
rcdrcf(rc)

[
κs[I0(V )− I ′1(V )] + ρ2I ′1(V )

]
K1(U)∫

rcdrcf(rc)I0(V )K1(U)
(52)

with
κs = r2c + ρ2 cosh2 θc + ρ2t sinh

2 θc + 2rcδt sinh θc , (53)
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while for the out direction we find

〈
χ2
out

〉
= ζ2

∫
rcdrcf(rc)I0(V )

[
κ1K

′′
1 (U) + ρ2z[K

′′
1 (U)−K1(U)]

]∫
rcdrcf(rc)I0(V )K1(U)

−2ζ
∫
rcdrcf(rc)κ2I1(V )K ′′0 (U)∫
rcdrcf(rc)I0(V )K1(U)

+

∫
rcdrcf(rc)[κ3I

′′
0 (V ) + ρ2[I0(V )− I ′′0 (V )]]K1(U)∫

rcdrcf(rc)I0(V )K1(U)
(54)

with

κ1 = τ2f + ρ2t cosh
2 θc + ρ2 sinh2 θc + 2τfδt cosh θc ,

κ2 = τf(rc + δt sinh θc) + rcδt cosh θc +
[
ρ2 + ρ2t

]
sinh θc cosh θc ,

κ3 = r2c + ρ2 cosh2 θc + ρ2t sinh
2 θc + 2rcδt sinh θc . (55)

Evaluation of R2
W is given in Appendix C. The results for different di-

rections are as follows
R2
W,long = 0 , (56)

R2
W,side = −

1

4M2
⊥

(57)

−β
2

4

∫
dr2cf(rc)

[
sinh2 θc (I

′
0(V )/V )K1(U) + cosh2 θcI0(V )K ′1(U)/U

]∫
dr2cf(rc)I0(V )K1(U)

,

R2
W,out =

P 2
⊥ −m2

4M4
⊥

+
β2

4

[∫
dr2cf(rc) [sinh θcI

′
0(V )K1(U) + cosh θcI0(V )K ′1(U)ζ]∫
dr2cf(rc)I0(V )K1(U)

]2
−β

2

4

∫
dr2cf(rc)[sinh

2 θcI
′′
0 (V )K1(U) + 2 sinh θc cosh θcI

′
0(V )K ′1(U)ζ]∫

dr2cf(rc)I0(V )K1(U)

−β
2

4

∫
dr2cf(rc) cosh

2 θcI0(V )K ′′1 (U)ζ2∫
dr2cf(rc)I0(V )K1(U)

−β
2m2

4M2
⊥

∫
dr2cf(rc) cosh

2 θcI0(V )K ′1(U)/U∫
dr2cf(rc)I0(V )K1(U)

, (58)

where ζ = P⊥/M⊥.



1894 A. Bialas, W. Florkowski, K. Zalewski

For the reader’s convenience, we also include below all the needed rela-
tions for the Bessel functions:

K ′1(a) = −K0(a)−K1(a)/a ,

K ′′1 (a) = K0(a)/a+K1(a) + 2K1(a)/a
2 ,

K2(a) = K0(a) + 2K1(a)/a ,

I ′0(a) = I1(a) ,

I ′′0 (a) = I ′1(a) = I0(a)− I1(a)/a . (59)

7. Summary

The observed success of the statistical model in explaining many fea-
tures of particle production processes in high-energy collisions suggests that
particles are produced in form of “thermal clusters” which decay into the
observed final state. In the present paper, we discussed how this mechanism
can influence measurements of quantum interference. To this end, we have
generalized the well-known blast wave model [9] to include the production
of thermal clusters. The novel element of our approach is introducing the
final size and life-time of a cluster which, as one may expect, modifies the
interpretation of the HBT measurements and makes the model more flex-
ible. The explicit formulae for the correlation functions and for the HBT
radii have been derived in a form which is ready for direct application.

As the presence of thermal clusters is an almost unavoidable consequence
of the success of the statistical model of particle production, we feel that our
work provides the necessary tools which may serve to verify the statistical
picture on a more fundamental level.

Furthermore, determination of the cluster parameters and verification if
they reveal some universal features may be an important contribution to
understanding of the statistical model.

In conclusion, we have shown that the presence of the thermal clusters
does not invalidate the significance of the measurements of quantum interfer-
ence but, on the contrary, allows to extract from them even more interesting
information.

This investigation was supported in part by the Polish National Science
Centre Grants UMO-2013/09/B/ST2/00497 and DEC-2012/06/A/ST2/
00390.
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Appendix A

Lorentz transformation connecting the cluster’s rest frame
and the HBT frame

The active Lorentz transformation Lc leading from the cluster rest frame
(CRF), where its velocity is u∗ = (1, 0, 0, 0), to the HBT frame, where the
velocity is uc, may be represented as a composition of three Lorentz trans-
formations: a Lorentz boost along the x-axis,

L(x)(θc) =


cosh θc sinh θc 0 0
sinh θc cosh θc 0 0

0 0 1 0
0 0 0 1

 , (A.1)

a rotation around the z-axis,

R(xy)(φc) =


1 0 0 0
0 cosφc − sinφc 0
0 sinφc cosφc 0
0 0 0 1

 , (A.2)

and a boost along the z-axis,

L(z)(ηc) =


cosh ηc 0 0 sinh ηc

0 1 0 0
0 0 1 0

sinh ηc 0 0 cosh ηc

 . (A.3)

Indeed, by direct multiplication of the matrices one can check that

uc = Lc u
∗ = L(z)(ηc)R(xy)(φc)L(x)(θc)u

∗ . (A.4)

In order to change from the HBT frame to CRF, we perform simply the
inverse transformation

u∗ = L−1c uc = L−1(x)(θc)R
−1
(xy)(φc)L

−1
(z)(ηc)uc

= L(x)(−θc)R(xy)(−φc)L(z)(−ηc)uc . (A.5)

In the HBT frame, the fluid element with four-velocity uc is placed at
the space-time point xc with the coordinates

xc = (τ cosh ηc, rc cosφc, rc sinhφc, τ sinh ηc) , (A.6)
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and a particle is emitted from the space-time point

x = (t, x, y, z) . (A.7)

Then, the Lorentz transformation of the coordinate difference x∗ ≡ [t∗, x∗,
y∗, z∗] is

xµ − xµc = Lc x
∗

=


cosh ηc (t

∗ cosh θc + x∗ sinh θc) + z∗ sinh ηc
x∗ cosφc cosh θc − y∗ sinφc + t∗ cosφc sinh θc
y∗ cosφc + x∗ cosh θc sinφc + t∗ sinφc sinh θc
sinh ηc (t

∗ cosh θc + x∗ sinh θc) + z∗ cosh ηc

 . (A.8)

Appendix B

HBT radii — numerator contributions

As demonstrated by Eq. (40), for small values of the momentum differ-
ence Q, the Fourier transform appearing in the numerator of the correlation
function can be schematically written as

H =

∫
dΩs(Ω,P )eiQ·x , (B.1)

where Ω = [rc, φc, ηc;x
∗] denotes, symbolically, all variables to be integrated

over, dΩ = rcf(rc)drcdφcdηc cosh ηcd
4x∗g(x∗), and

s(Ω,P ) = P0e
−U cosh ηceV cosφc . (B.2)

For the three directions, we write Q · x = qχ, where χ is independent of q
and the three relevant options for χ are given by Eqs. (36)–(39).

We need to evaluate the derivative d logH/dq2 at q = 0. To this end, we
observe that, up to the second order in q,

logH = log

[∫
dΩs(Ω,P )

(
1 + iqχ− q2χ2/2

)]
= log

[∫
dΩs(Ω,P )

]
+ log

[
1 + iq〈χ〉 − q2

〈
χ2
〉
/2
]
, (B.3)

where

〈∅〉 ≡
∫
dΩs(Ω,P )∅∫
dΩs(Ω,P )

. (B.4)
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Consequently, one finds

R2
H = −

[
d logH

dq2
+
d logH∗

dq2

]
q=0

=
〈
χ2
〉
− 〈χ〉2 =

〈
(χ− 〈χ〉)2

〉
, (B.5)

where the asterisk denotes complex conjugation. Using these formulae and
the explicit expressions (36), (37), and (39), one can evaluate the radii for
all directions. The symmetries of s(Ω,P ) imply

〈χlong〉 = 〈χside〉 = 0 ,

〈χout〉 = 〈(rc + δt sinh θc) cosφc〉 − ζ 〈(τf + δt cosh θc) cosh ηc〉 . (B.6)

Using the abbreviation (47), we have〈
χ2
long

〉
=
〈
κl sinh

2 ηc + ρ2z cosh
2 ηc
〉
, (B.7)〈

χ2
side

〉
=
〈
κs sin

2 φc + ρ2 cos2 φc
〉
, (B.8)〈

χ2
out

〉
= ζ2

〈
κ1 cosh

2 ηc + ρ2z sinh
2 ηc − 2κ2 cosh ηc cosφc

〉
+
〈
κ3 cos

2 φc + ρ2 sin2 φc
〉

(B.9)

with κl, κs and κ1, κ2, κ3 given by (51), (53) and (55).
Observing that∫

dη

2
coshn ηe−U cosh η = (−1)nd

nK0(U)

dUn
,∫

dφ

2π
cosn φeV cosφ =

dnI0(V )

dV n
, (B.10)

one can express all these averages in terms of Bessel functions. The resulting
formulae are listed in Section 6.

Appendix C

HBT radii — denominator contributions

The contribution of the denominator to the HBT radii is given by the
formula

R2
W = − d

dq2⊥
log [w(~p+)w(~p−)] (C.1)

with ~p± = ~P⊥±~q⊥/2 and where the derivative is evaluated at q⊥ = 0. Since
in the long case q⊥ ≡ 0, we find immediately that R2

W,long = 0. For the
other two cases, the functions w are defined by Eq. (26). To evaluate (C.1),
one needs them only up to second order in q⊥.
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The contributions from the mT factors are easily evaluated. The results
are given as the first terms in (57) and (58). The other contributions are
more involved.

Consider first the side direction. In this case, we have

U(~p±) = U
[
1 + q2⊥/8m

2
⊥
]
, V (~p±) = V

[
1 + q2⊥/8P

2
⊥
]
, (C.2)

where U and V are given by (27). Expanding e−U(~p±) cosh η+V (~p±) cosφ in
powers of q2⊥ and integrating term by term it is straightforward to obtain
Eq. (57). For the out direction, we have

U(~p±) = U
(
~P
) [

1± P⊥q⊥/2m2
⊥ +m2q2⊥/8m

4
⊥
]
,

V (~p±) = V
(
~P
)
[1± q⊥/2] . (C.3)

Consequently, one finds

e−U(~p±) cosh ηeV (~p±) cosφ = e−U cosh η+V cosφ

×
[
1∓ β cosh θq⊥ζ

2
cosh η−

β cosh θq2⊥m
2

8m3
⊥

cosh η+
β2 cosh2 θζ2q2⊥

8
cosh2 η

]
×
[
1± β sinh θq⊥

2
cosφ+

β2 sinh2 θq2⊥
8

cos2 φ

]
. (C.4)

Observing that the terms linear in q⊥ cancel when one considers the loga-
rithm of the product w(~p+)w(~p−), one obtains, after some algebra, Eq. (58).

Appendix D

Angle and space-time integrals

In our analysis, we frequently have to evaluate integrals of the form

G ≡ P0

∫
rcdrcf(rc)

∫
dφ dη cosh ηe−U

′ cosh η+ia sinh ηeV
′ cosφ−ib sinφ . (D.1)

In the case of the long direction, we have: U ′ = U , V ′ = V , a = qτf , and
b = 0. Hence, we may write

Glong = P0

∫
rcdrcf(rc)

∫
dφeV cosφDlong(U, a) , (D.2)

where

Dlong(U, a) ≡
∫
dη cosh ηe−U cosh ηeia sinh η = − d

dU

∫
dηe−U cosh ηeia sinh η .
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Since∫
dηe−U cosh ηeia sinh η =

∫
dηe−

√
U2+a2 cosh(η−η′) = 2K0

[√
U2 + a2

]
,

(D.3)
we finally obtain

Glong = 4πP0

∫
rcdrcf(rc)I0(V )UK1(Ul)/Ul , Ul =

√
U2 + a2 . (D.4)

In the case of the side direction, we have: U ′ = U , V ′ = V , a = 0, and
b = qrc. This leads us to the expression

Gside = P0

∫
rcdrcf(rc)

∫
dη cosh ηe−U cosh ηDside(V, b) , (D.5)

where

Dside(V, b) ≡
∫
dφe−ib sinφeV cosφ =

2π∫
0

dφeVs cos(φ−φ
′) = 2πI0(Vs)

and Vs =
√
V 2 − b2. Thus, finally

Gside = 4πP0

∫
rcdrcf(rc)I0(Vs)K1(U) . (D.6)

If V 2 < Q2r2, Vs is imaginary and the function I0(Vs) should be replaced
by J0(|Vs|). In the case of the out direction, we use: U ′ = U − iQ0τf ,
V ′ = V + iqrc, a = b = 0, and we get

Gout ≡ P0

∫
rcdrcf(rc)

∫
dφe(V+iqrc) cosφ

∫
dη cosh ηe−(U−iQ0τf) cosh η

= 4πP0

∫
rcdrcf(rc)I0(V + iqrc)K1(U − iQ0τf) . (D.7)

Appendix E

The case where P0 = (p10 + p20)/2

In this case, the formulae for R2
H are different from those given in Sec-

tion 5 because the variable U ′ ≡ βP0 cosh θc depends on Q. Indeed

P0 ≡
1

2
(p01 + p02) =

1

2

[√
m2 +

(
~P + ~Q/2

)2
+

√
m2 +

(
~P − ~Q/2

)2 ]
.

(E.1)
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Up to the second order in Q, we obtain

P0 =
√
m2 + P 2

1 + Q2

8(m2 + P 2)
−

(
~P · ~Q

)2
8 (m2 + P 2)2

 . (E.2)

Consequently, up to the second order in Q, we have

e−U
′ cosh ηc = e−U cosh ηc

[
1− q2(U/2)ξ cosh ηc

]
, (E.3)

where U = β
√
m2 + P 2 cosh θc is given by (27) and

ξlong =
1

4m2
, ξside =

1

4m2
⊥
, ξout =

m2

4m4
⊥
. (E.4)

Repeating the argument given in Appendix B, we thus obtain

R2
H =

〈
χ2
〉
− 〈χ〉2 + ξ 〈U cosh ηc〉 − ξ (E.5)

with

〈U cosh ηc〉 = βm⊥

∫
rcdrcf(rc) cosh θcI0(V )K ′′0 (U)∫

rcdrcf(rc)I0(V )K1(U)
(E.6)

and where the last term represents the contribution from the factor P0 in
front of (40). Note that in this case the contribution from the denominator
is always as calculated in the present paper and never put equal to zero [16].
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