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Abstract

In some bird species, both adult and juvenile individuals are often brightly coloured. It has been commonly assumed that
identical plumage colouration present in both sexes results from strong intersexual genetic correlations in colour-related
traits. Here, we aimed at testing this hypothesis in juvenile individuals and looked at genetic parameters describing
carotenoid-based colouration of blue tit nestlings in a wild population. To separate genetic and environmental sources of
phenotypic variation we performed a cross-fostering experiment. Our analyses confirmed the existence of sexual
dichromatism in blue tit nestlings and revealed a significant, although low, genetic component of carotenoid-based
colouration. However, genetic effects are expressed differently across sexes as indicated by low cross-sex genetic
correlations (rmf). Thus our results do not support the prediction of generally high rmf and suggest that intersexual
constraints on the evolution of colouration traits may be weaker than expected. We hypothesise that observed patterns of
genetic correlations result from sex-specific selective pressures acting on nestling plumage colouration.
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Introduction

Genetic correlations (rg) describe the strength of a relationship

between two traits at the genetic level, and usually predict their

concerted evolution [1]. Genetic correlations are usually consid-

ered for pairs of different traits, they can however also describe

genetic relationships within a single trait expressed in different

environments or sexes. It is obvious that males and females should

share 100% genes on their autosomes. Thus, assuming lack of sex-

chromosome linkage, one should expect strong intersexual

correlations (rmf) between genes expressed in males and females

[1,2,3]. Such correlation constitutes a null genetic model for the

studies of intersexual genetic correlations [4].

Intersexual genetic correlations – if present – are likely to

constrain evolutionary potential of one or both sexes [5,6].

However, strong intersexual rmf does not always lead to sexual

conflict constraining evolutionary processes: strong positive

correlation between the two sexes will constrain evolutionary

change if the directions of selection in the separate sexes are

opposite (i.e. bivariate selection vector is (close to being)

perpendicular to the axis of maximum genetic variance; [7]).

Such contrasting selection is usually observed in the form of sex-

specific selection [3,6,8]. Commonness of sexual dimorphism (SD)

in many animal taxa seems contradictory to the expectation of

generally strong and positive cross-sex rmf [2,6]. An array of

mechanisms has been suggested to explain this apparent paradox

[9]. The majority of them assume modification of traits’ genetic

architectures resulting in lowered rmf and relaxed genetic

constraints [6,10,11,12]. Indeed, [3] provides empirical support

for the importance of low rmf for the evolution of sexual

dimorphism by showing that the magnitude of dimorphism and

rmf are negatively correlated.

Virtually all published studies on sexual dimorphism focus on

adult individuals and clearly favour sexual selection as the

preferred explanation of SD. However, accumulating evidence

suggests that sexually dimorphic traits are also observed in

juvenile, non-reproducing individuals, on which sexual selection

is unlikely to operate. Such phenomenon is best known in several

bird species [13,14,15,16]; see also [9]. One type of dimorphism –

i.e. dichromatism – is particularly interesting in this case: brightly

coloured feathers expressed by nestlings are entirely or almost

entirely moulted before the first breeding attempt, which makes

sexual selection an unlikely explanation of the observed colour

dimorphism [17,20]. Comparison of genetic architecture of

juvenile and adult traits could shed some light on the evolutionary

processes involved in the evolution of juvenile SD –however such

studies are lacking. It is particularly interesting whether dimorphic

traits expressed in juveniles are indeed associated with low rmf (as

often observed in adult individuals [3]). In fact such observation

would indicate that – although expressed in the absence of sexual

selection – dimorphic juvenile traits have similar genetic architec-

ture as adult traits. [21] recently addressed the problem of the
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plasticity of genetic correlations between sexes during ontogeny.

Although their review demonstrated that intersexual genetic

correlations tend to decrease over the lifetime of an individual,

their discussion did not address the issue of dimorphic juvenile

traits. Thus, it is still unclear whether juvenile traits expressing

similar dimorphism as adult traits exhibit similar, low levels of

cross-sex genetic correlations.

Our aim was to explore genetic patterns in sexually dimorphic

traits in blue tit (Cyanistes caeruleus) nestlings. In this species, both

adults and juveniles express yellow colouration of breast feathers

[17], which is based on the deposition of various carotenoids,

mainly lutein and zeaxantin [18]. The juvenile breast plumage

colouration shows distinct sexual dimorphism [15]. Importantly,

all yellow feathers are moulted entirely before maturation, within a

few months after fledgling [17]. Thus, juvenile plumage in this

species does not seem to be exposed to sexual selection. However,

based on the clear sexual dimorphism observed in juvenile

plumage, we predict to find a low intersexual genetic correlation in

nestling carotenoid-based colouration.

Materials and Methods

General Methods
The study was conducted in 2007 and 2008 in the population of

blue tits breeding in nest-boxes on the Swedish island – Gotland

(57u039N, 18u179E) (see [22] for a more detailed description of the

study area).

From the end of April we regularly inspected nest-boxes. For

each brood, number of eggs, date of laying and date of hatching

(day 0) were recorded. Nestlings were uniquely marked by nail

clipping on day 2 followed by ringing on day 11. Two days post-

hatching nestlings were blood-sampled for molecular sex identi-

fication (see [23] for details) and half of the brood was cross-

fostered within a dyad of nests containing equal number of

hatchlings (61) of the same age. These nests were also subjects to a

brood-size manipulation experiment – some (randomly selected;

one nest in every dyad) nests were enlarged by adding 3 additional

nestlings (not related to the cross-fostered families, not included in

further analyses) and other were left unmanipulated. Donor

broods from which chicks were moved to enlarge experimental

nests were excluded from all analyses. The effect of this

manipulation was considered in all analyses to account for possible

influence of brood enlargement on colour traits. In total, we

analysed 50 nests forming 25 complete dyads, containing together

594 nestlings.

Breast feathers’ colouration was measured as described in [24].

Briefly, up to 10 feathers were taken from both sides of a nestling’s

breast (14th day post-hatching) and placed between two glass slides

together with colour standards helping to calibrate subsequent

colour sampling. The arrangement of feathers resembled that on

the living bird in such a way that they formed two superimposed

layers. Samples were photographed (Canon 400D with Canon

MP-E 1–56Macro Lens; distance from the lens to the sample:

25 cm) in a black-box using an unidirectional halogen light source.

Photographs were analysed blindly with respect to the origin of the

sample using Colour Analysis Tool software (http://wwwfxc.

btinternet.co.uk). We averaged RGB colour values from ten

262 mm squares per individual. Measurements were highly

repeatable (Table S1 in File S1). RGB values were converted into

hue (perceived colour tone), brightness (total amount of reflected

light) and saturation (intensity of colour) using the formulas from

[25].

Described method of colour quantification is likely to yield

measures not corresponding directly to the way birds perceive

colours [18,26]. Birds have four types of photoreceptors, including

one for ultra-violet light [27], which is impossible to be measured

using photographic methods. However, a number of studies have

shown that such measures of colour provide important, biologi-

cally relevant information and should be considered as valid if they

are standardised, repeatable and blind with respect to sample

identity [14,19,28]. As pointed out by [29] ‘‘for heuristic purposes,

it may be useful to express colour patterns in subjective terms that

humans can readily understand’’. As carotenoids absorb light

mainly in the part of the spectrum visible to the human eye, we

believe that our measurements accurately reflect this component of

colour signal expressed in the plumage of blue tits. It is of course

possible that the UV component constitutes an important part of

carotenoid-based signal. Thus, interpretation of all results

presented here relies on the fact that we analysed only information

directly related to the concentration of respective carotenoids.

Such an approach is also supported by a recent study suggesting,

that UV-part of a carotenoid-based ornament contains no

additional information about the concentration of carotenoids

deposited in feathers [37].

Ethics Statement
This study was performed with accordance to the ethical

regulations of the Swedish Research Council (ethical permit nr S-

53-11). We made all efforts to minimize the time required to

handle the nestlings and thus to decrease the stress associated with

all procedures.

Statistical Analyses
Colour data were analysed with using linear mixed models

implemented using the Markov Chain Monte Carlo method in R

2.9.2 [30] (MCMCglmm package, [31]). We used two sets of

models: (i) univariate models and (ii) bivariate formulations of the

previous, with male and female traits included as separate

dependent variables. Three models were fitted in each of these

two sets, with respect to all three colour variables (hue, saturation,

brightness) as dependent variables.

The models fitted experimental treatment (brood-size manipu-

lation) and year as fixed effects. Additionally, sex was introduced in

the univariate models. All models contained random effects of nest

of origin, nest of rearing and dyad. Inclusion of each of these

effects was decided upon the deviance information criterion (DIC)

(Table S2 in File S1). DIC is commonly used in MCMC-based

analyses as a simple measure of goodness of fit, similarly to AIC in

REML framework. Here we preferred the use of DIC instead of

variance components confidence intervals (CI) as in MCMCglmm

variance estimates are forced to be positive, which makes CIs

inappropriate for testing significance of random effects. Unlike

variances, hypotheses related to covariances (and correlations)

were tested using CIs as covariances (and correlations) are not

restricted to positive values [31]. All reported CIs are Bayesian

highest posterior density intervals (95% credibility intervals).

Using such kind of full-sib analyses assumes that there is no

relatedness between the analysed families. In such a case, nest-of-

origin approximates half of additive genetic variance plus quarter

of dominance variance and maternal effects (ME) if present [1].

Variance component related to nest of origin was used to calculate

broad-sense heritability (H2). Since we defined sex-specific

variances for nest-of-origin effect we were able to estimate also

related covariances. Dividing genetic covariance by geometrical

mean of the respective variances yielded genetic correlations [1].

All analyses were checked for possible problems resulting from

autocorrelations in MCMC time series by visual inspection of the

time-series plots and by the calculation of autocorrelations
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between successive samples. No autocorrelation-related issues

were detected in any of the models. All models were fitted with

relatively uninformative, inverse-Wishart distributed priors (vari-

ance V=1, covariance COV=0, n=1.002). However, all models

were robust to prior modification – changing priors by doubling

variances had no effect on qualitative conclusions drawn from our

analyses.

Methodological Issues
Interpretation of our results relies on one important assumption.

Our estimates of variance components assume all nestlings in a

single nest-of-origin to be full-sibs, which might not be true. Blue

tits in our population exhibit extra-pair paternity (EPP) of about

8% (proportion of nestlings from extra-pair matings in the whole

population, unpublished data). Thus, our estimates of heritability

and genetic correlations might be downwardly biased. It is hard to

quantify the strength of this bias as, to our knowledge, the

influence of misassigned paternities on the estimates of heritability

and genetic correlations has rarely been rigorously assessed [32].

Estimates based on simulations show that the frequency of EPP

observed in our population should not considerably bias estimates

of heritability [32]. Thus, it is very unlikely that estimates

presented in this paper are seriously affected by neglecting

variation related to EPP.

Results

We found evidence for sexual dimorphism in all three colour-

related nestling traits: males were on average brighter, more

saturated (although here intersexual difference was marginally

non-significant) and yellower (univariate analysis, Table S2 in File

S1). The effects of experimental treatment (enlarged vs. control

broods) appeared significant in the case of hue and saturation,

whereas the effect of sex was significant in case of brightness and

hue (univariate analyses, Table S2 in File S1). Variance

components associated with nest-of-origin, nest-of-rearing and

dyad appeared significant in all models (Table S3 in File S1). We

present both DIC values for all models considered (Table S3 in

File S1) and 95% CIs (Table 1). Thus, there is a significant genetic

component of carotenoid-based plumage of blue tit nestlings

(Table 1). Heritability of carotenoid-based colouration is signifi-

cant, although relatively low (H2 for colour related traits reaches

8% (95% CI: lower 4%, upper 18%)), and does not differ

significantly between sexes (see respective CIs in Table 1). The

bivariate analyses revealed weak genetic link between male and

female ornamentation in blue tits as indicated by low intersexual

genetic correlations (rmf) in all three colour traits, with rmf for

brightness being even weakly negative (Table 1). These estimates

of genetic correlations appeared not significantly different from

zero and significantly different from unity, as indicated by

respective confidence intervals.

Discussion

Our analysis revealed that the colour of breast feathers’ is

heritable in the blue tit nestlings, although the contribution of the

genetic component in the total observed variance is relatively low.

Our estimates of heritabilities are similar to published estimates for

blue and great tit nestlings [18,24,33] and add to a growing body

of evidence that carotenoid-based plumage characteristics are

weakly heritable. Estimated heritabilities are moderate to low,

indicating that environmental effects play an important role in

shaping total phenotypic variance in carotenoid-dependent

colouration of blue tit nestlings [26,34].

Nestling ornamentation is usually assumed to result from

selection other than sexual selection [15,20]. Assuming that non-

sexual selection is less likely to produce sex-specific selective

pressures, one would expect such juvenile traits to lack sex-

specificity. In our study genetic parameters lacked any sex-

specificity, i.e. we observed no differences in heritabilities between

Table 1. Variance/covariance estimates and their confidence intervals (in brackets).

Model type Random effect Brightness Saturation Hue

Univariate model O 0.46 (0.21;1,18) 0.57 (0.21;1.20) 0.08 (0.04;0.21)

H2 = 0.08 (0.04;0.18) H2 = 0.08 (0.03;0.18) H2 = 0.05 (0.02;0.13)

R 0.65 (0.23;1.40) 0.58 (0.26;1.58) 0.16 (0.06;0.33)

D 0.48 (0.20;1.28) 0.71 (0.22;1.57) 0.10 (0.04;1.24)

Res 10.65 (9.51;12.14) 10.10 (9.15;11.81) 2.79 (2.44;3.11)

Bivariate model O M 1.11 (0.41;2.34) 0.79 (0.41;2.29) 0.25 (0.12;0.55)

H2 = 0.14 (0.05;0.29) H2 = 0.13 (0.06;0.30) H2 = 0.11 (0.05;0.20)

O F 1.07 (0.39;2.38) 1.07 (0.46;2.40) 0.16 (0.07;0.32)

H2 = 0.17 (0.07;0.37) H2 = 0.17 (0.08;0.36) H2 = 0.18 (0.08;0.33)

O MF 0.02 (20.66;0.8) 0.12 (20.55;0.98) 0.01 (20.11;0.16)

rmf =20.13 (20.50;0.51) rmf = 0.19 (20.36;0.64) rmf = 0.16 (20.42;0.67)

R M 1.17 (0.44;2.61) 1 (0.49;2.58) 0.42 (0.15;0.89)

R F 0.93 (0.39;2.46) 1.3 (0.58;2.71) 0.2 (0.07;0.39)

D M 0.68 (0.22;2.28) 0.72 (0.32;2.3) 0.21 (0.07;0.38)

D F 0.57 (0.22;2.07) 0.73 (0.27;2.04) 0.1 (0.07;0.46)

Res M 11.06 (9.43;13.23) 10.26 (8.92;12.74) 4.2 (3.58;5.05)

Res F 8.45 (7.3;10.11) 8.91 (7.38;10.36) 1.3 (1.06;1.48)

For nest-of-origin variance/covariance broad-sense heritabilities (H2) and cross-sex genetic correlations (rmf) are presented together with respective CIs. Random effects:
O – nest-of-origin; R – nest-of-rearing; D – dyad; Res – residual variance; M/F – male/female specific effects; MF – indicates covariance between males and females.
doi:10.1371/journal.pone.0069786.t001
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sexes. However, we found that male and female blue tit nestlings

are not correlated genetically with respect to their carotenoid-

based colouration, i.e. variation in their ornamentation is largely

influenced by a genotype-by-sex interaction. Presence of such low

rmf suggests recent sexual conflict usually generated by sex-specific

disrupting selection [6,8]. Since sexual selection acting on juvenile

birds is not likely, there must be some other explanations of the

observed lack of genetic intersexual correlations in nestling colour

traits.

Firstly, juvenile plumage may be ontogenetically correlated with

that of adult birds. In such a case juvenile plumage would be a

mere dysfunctional side-product of selection acting on adult

individuals – and all genetic patterns observed in offspring

plumage would in fact reflect underlying genetics of adult traits.

Usually, strong genetic correlations between analogous traits

expressed throughout the ontogeny are expected [9]. However,

concluding that low rmf in blue tit nestlings results from (sexual)

selection acting on adults would require demonstrating that

juvenile and adult plumage traits are strongly correlated geneti-

cally. Compelling evidence for such correlations in blue tits does

not exist. Only one study estimated phenotypic juvenile-adult

correlation (i.e. within the same individuals) in carotenoid-based

plumage traits in a closely related species – the great tit - [19] and

failed to show such correlation. Our unpublished data also do not

support such correlation. However more robust and unequivocal

estimates of the genetic juvenile-adult correlations in plumage

traits are required to reject this explanation.

Secondly, carotenoid-based plumage colouration in juvenile

blue tit might be adaptive at this stage of life independently of its

function in the adulthood. It is unlikely that plumage colouration

plays any role in the competition inside a nest or in parental

favouritism as tits breed in cavities with limited light availability

[20]. Plumage colouration may however play an important role in

the post fledgling period. Several hypotheses have been proposed

here. Some suggest that juvenile colouration may serve as a signal

in establishing social hierarchy in the flock [35,36]. Other suggest

that juveniles might use carotenoid-coloured plumage as signals of

their individual quality to their parents during the post-fledgling

parental care period [20]. The extent to which these mechanisms

may be sex-specific – and as such give rise to lower rmf – remains to

be studied.

To conclude, our results provide first evidence that genetic

constraints on the independent evolution of male and female

ornamentation observed among nestlings may be weak. Lack of

strong intersexual genetic correlation is contrary to a common

assumption of shared genetic background of the sexes. However,

the potential sex-specific selection forces responsible for diminish-

ing the expected genetic correlation between sex remains to be

identified. Further studies, focusing on sex-specific function of

carotenoid-based plumage colouration in juveniles, should explain

evolutionary mechanisms that produce low cross-sex genetic

correlations among nestlings, and will certainly open new and

exciting research perspectives.

Supporting Information

File S1 Tables S1–3 providing repeatabilites of analysed
traits, fixed-effects estimates and DIC-based model
selection.

(DOC)
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