Polish Journal of Microbiology 2013, Vol. 62, No 4, 465-466

SHORT COMMUNICATION

# CAMP test Detected *Staphylococcus delphini* ATCC 49172 β-Haemolysin Production

VINCENZO SAVINI<sup>1</sup>, MAJA KOSECKA<sup>2</sup>, ROBERTA MARROLLO<sup>1</sup>, EDOARDO CARRETTO<sup>3</sup> and JACEK MIĘDZOBRODZKI<sup>2</sup>

 <sup>1</sup> Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara (PE), Italy
<sup>2</sup> Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Kraków, Poland
<sup>3</sup> Microbiology, IRCCS Arcispedale S. Maria Nuova, Reggio Emilia (RE), Italy

Submitted 10 October 2013, revised 26 October 2013, accepted 16 November 2013

#### Abstract

Through a CAMP test, we first observed a *Staphylococcus delphini* strain (ATCC 49172) to release  $\beta$ -haemolysin. Production of the latter in this coagulase-positive species of the '*Staphylococcus intermedius* Group', in fact, has been labeled to be undetermined, thus far. Of course, a wider number of strains have to be investigated in order to define whether this property is constitutive (like in *Staphylococcus (pseud)intermedius*), or strain-dependent (like in *Staphylococcus aureus*), and which clinical impact it has; nevertheless, we can state that *S. delphini* ATCC 49172 indeed produces this toxin.

Key words: Staphylococcus delphini,  $\beta$ -haemolysin, CAMP test

In 1944, Christie and Atkins observed that arrowshaped haemolysis (called "candle flame-shaped" or "arrowhead") occurred when *Streptococcus agalactiae* (group B streptococcus, GBS) was grown in a zone of *Staphylococcus aureus*  $\beta$ -haemolysin activity (Christie *et al.*, 1944; Darling 1975). This phenomenon was later called 'CAMP test', after the names of authors who first studied it (Christie, Atkins, and Munch-Petersen) and is currently used in microbiology laboratories as one among the most reliable methods to identify GBS, *Listeria monocytogenes* and *Rhodococcus equi* (Darling 1975; Munch-Petersen *et al.*, 1945; Ramsey *et al.*, 2010; Savini *et al.*, 2011).

To perform the assay, reference *S. aureus* strains that produce  $\beta$ -haemolysin are streaked perpendicularly to the tested isolate, and arrowheads are observed after 24 h incubation. Indeed, any  $\beta$ -haemolysinproducing *S. aureus* isolate may be used (Darling 1975); among coagulase-positive microorganisms other than *S. aureus*, nevertheless,  $\beta$ -haemolysin is constitutively produced by *Staphylococcus* (*pseud*)*intermedius* (Ramsey *et al.*, 2010; Devriese *et al.*, 2005), while production by *Staphylococcus delphini* (that forms, together with *S. (pseud)intermedius*, the '*Staphylococcus inter*- *medius* Group') is labeled as undetermined (Devriese *et al.*, 2005; Savini *et al.*, 2013; Van Hoovels *et al.*, 2006; Varaldo *et al.*, 1988).

Therefore, we carried out a CAMP test by streaking *S. delphini* strain ATCC 49172 on a sheep blood plate perpendicularly to *S. agalactiae* (identification confirmed through latex agglutination) (Ramsey *et al.*, 2010) and observed arrowhead (Fig. 1), surprisingly, meaning *S. delphini*  $\beta$ -haemolysin production. As a confirmation, strain ATCC 49172 was cultivated on horse and rabbit blood media, where the dark, *S. (pseud)intermedius*-like,  $\alpha$ -haemolytic band (which is  $\beta$ -haemolysin-related) was not formed; it was instead clearly visible on sheep blood (Darling 1975; Dinges *et al.*, 2000; Savini *et al.*, 2013).

β-haemolysin, in fact, has been known to be highly haemolytic for sheep but not rabbit and horse erythrocytes, and is neither lethal in mice nor dermonecrotic in guinea pigs (Darling 1975; Dinges *et al.*, 2000). It is secreted into the culture medium as an exotoxin by certain *S. aureus* strains, particularly those from animal habitats, as well as from all *S. (pseud)intermedius* isolates (Dinges *et al.*, 2000; Savini *et al.*, 2013). Although its role in disease pathogenesis is not completely

<sup>\*</sup> Corresponding author: V. Savini, Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara (PE), via Fonte Romana 8, CAP 65124, Italy; phone: +39-340-7379737; e-mail: vsavini2013@gmail.com

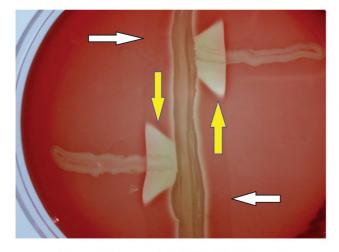



Fig. 1 - CAMP test with S. delphini (ATCC 49172). Horizontal inocula: GBS strains; vertical inoculum: S. delphini A (ATCC 49172) – yellow arrows indicate zones of CAMP reaction; white arrows indicate edges of the  $\beta$ -haemolysin-related incompletely haemolytic band ( $\alpha$ -haemolysis).

understood, thus far, high level expression in veterinary strains seem to indicate that producing organisms garner selective advantages from this toxin secretion (Dinges *et al.*, 2000).

We first showed that an *S. delphini* strain produces  $\beta$ -haemolysin; however, this species is rarely isolated and further studies on a wider number of strains are needed, as soon as they are collected and identified, to define whether production is constitutive (like in *S. (pseud)-intermedius*) or strain-dependent (like in *S. aureus*). Nevertheless, we suggest, for the moment, that *S. delphini*  $\beta$ -haemolysin production be no more considered to be undetermined, but potential, and observed.

### Acknowledgments

This study was supported in part by the grant NCN 401 017740 from the Polish Ministry of Science and University Education.

#### **Conflict of interests statement**

The authors have no conflict of interest to declare.

## Literature

Christie R., N.E. Atkins and E. Munch-Petersen. 1944. A note on a lytic phenomenon shown by group B streptococci. *Aust. J. Exp. Biol. Med. Sci.* 22: 197–200.

**Darling C.L.** 1975. Standardization and evaluation of the CAMP reaction for the prompt, presumptive identification of *Streptococcus agalactiae* (Lancefield group B) in clinical material. *J. Clin. Microbiol.* 1: 171–174.

Devriese L.A., M. Vancanneyt, M. Baele, M. Vaneechoutte, E. De Graef, C. Snauwaert, I. Cleenwerck, P. Dawyndt, J. Swings, A. Decostere and F. Haesebrouck. 2005. *Staphylococcus pseudintermedius* sp. nov., a coagulase-positive species from animals. *Int.* J. Syst. Evol. Microbiol. 55: 1569–1573.

Dinges M.M., P.M. Orwin, Pand and M. Schlievert. 2000. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13: 16–34.

Munch-Petersen E., R. Christie, and R.T. Simmons. 1945. Further notes on a lytic phenomenon shown by group B streptococci. *Aust. J. Exp. Biol. Med. Sci.* 23: 193–195.

Ramsey, K.J., E.C. Carter, M.L. McKee, and B.J. Beck. 2010. Reclassification of the Listeria-CAMP test strain ATCC 49444 Staphylococcus aureus as Staphylococcus pseudintermedius. J. Food. Prot. 73: 1525–1528.

Savini V., C. Passeri, G. Mancini, O. Iuliani, R. Marrollo, A.V. Argentieri, P. Fazii, D. D'Antonio and E. Carretto. 2013. Coagulase-positive staphylococci: my pet's two faces. *Res. Microbiol.* 164: 371–374.

Savini, V., P. Salutari, M. Sborgia, I. Mancini, G. Masciarelli, C. Catavitello, D. Astolfi, C. D'Amario, G. Fioritoni, A. Spadano, and D. D'Antonio. 2011. Brief tale of a bacteraemia by *Rhodococcus equi*, with concomitant lung mass: what came first, the chicken or the egg? *Mediterr. J. Hematol. Infect. Dis.* 3: e2011006.

Van Hoovels L., A. Vankeerberghen, A. Boel, K. Van Vaerenbergh, and H. De Beenhouwer. 2006. First case of *Staphylococcus pseudintermedius* infection in a human. J. Clin. Microbiol. 44: 4609–4612.

Varaldo P.E., M. Vancanneyt, M. Baele, M. Vaneechoutte, E. De Graef, C. Snauwaert, I. Cleenwerck, P. Dawyndt, J. Swings, A. Decostere, F. Haesebrouck. 1988. *Staphylococcus delphini* sp. nov., a coagulase-positive species isolated from dophins. *Int. J. Syst. Bacteriol.* 38: 436–439.