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Abstract. Pairs (V, V ′) of commuting, completely non doubly commut-
ing isometries are studied. We show, that the space of the minimal
unitary extension of V (denoted by U) is a closed linear span of sub-
spaces reducing U to bilateral shifts. Moreover, the restriction of V ′ to
the maximal subspace reducing V to a unitary operator is a unilateral
shift. We also get a new hyperreducing decomposition of a single isom-
etry with respect to its wandering vectors which strongly corresponds
with Lebesgue decomposition.
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1. Introduction and Preliminaries

Let L(H) denote the algebra of all bounded linear operators acting on a
complex Hilbert space H. For an operator T ∈ L(H) by its negative power
Tn we understand T ∗|n|. Recall that a subspace L ⊂ H reduces T ∈ L(H)
if and only if T commutes with the orthogonal projection PL onto L. By
the span of E ⊂ H, we always mean the minimal closed linear subspace
containing E.

Recall the classical result of von Neumann-Wold [18]:

Theorem 1.1. Let V ∈ L(H) be an isometry. There is a unique decomposition
of H into a sum of two orthogonal, reducing for V subspaces Hu, Hs, such
that V |Hu

is a unitary operator and V |Hs
is a unilateral shift. Moreover,
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Hu =
⋂

n≥0

V nH, Hs =
⊕

n≥0

V n(ker V ∗). (1.1)

�

For a given isometry V ∈ L(H) by Hu,Hs we always mean the sub-
spaces in the decomposition (1.1). The restrictions V |Hu

, V |Hs
are referred

as the unitary part and the shift part of the considered isometry. A nat-
ural question arises about generalizations for pairs or families of operators.
The most natural generalization, which following [7] is proposed to be called
a multiple canonical von Neumann-Wold decomposition, has been achieved
only in some special cases ([4,16]). In the general case various von Neumann-
Wold type decompositions or models were established ([1–3,5,9,10,14,17]).
Recall that operators T1, T2 ∈ L(H) doubly commute if they commute and
T ∗

1 T2 = T2T
∗
1 . Consider a pair of isometries (V1, V2) on H. One can find a

unique maximal subspace reducing it to a doubly commuting pair. In [16] a
multiple von Neumann-Wold decomposition in the case of doubly commuting
pairs is constructed along with a model for pairs of doubly commuting uni-
lateral shifts. Therefore, we consider only completely non doubly commuting
pairs (i.e. such that the only subspace of H reducing (V1, V2) to a doubly
commuting pair is {0}). Examples of such pairs are: non doubly commuting
unilateral shifts or the so called modified bi-shifts (see [14]). Note that if
operators commute and one of them is unitary, then they doubly commute.
Thus, in completely non doubly commuting pairs both of the isometries have
nontrivial unilateral shift parts and restrictions to any nontrivial subspace
reducing both operators also have a nontrivial unilateral shift part. However,
the unitary part may be, but need not to be trivial.

The property of being bilateral shift is not hereditary (i.e. the restric-
tion of a bilateral shift to some reducing subspace may be not a bilateral
shift). Therefore, usually there cannot be found the largest subspace reduc-
ing a given isometry to a bilateral shift or a span of bilateral shifts (see
Definition 4.8). This means that usually it cannot be constructed a canon-
ical decomposition of an isometry into a bilateral shift (or a span of bilat-
eral shifts) and a completely non bilateral shift operator. However, in Theo-
rem 3.10 we are able to construct a decomposition of a single isometry with
respect to its wandering vectors. One of the summands of the constructed
decomposition contains all the bilateral shifts.

There are known examples of undecomposable pairs where the unitary
part of any isometry is a bilateral shift (the aforementioned modified bi-
shift). We describe the unitary part and the minimal unitary extension of
an isometry which commutes but completely non doubly commutes with
some other isometry. One of our main results contained in Theorem 4.5 and
Corollary 4.9 says that the unitary extension of any member of a completely
non doubly commuting pair is a span of bilateral shifts. Since being a span of
bilateral shifts is not a hereditary property, it does not mean that the unitary
part of a considered isometry is a span of bilateral shifts. In Sect. 5 we show
that the unitary part of an isometry may not contain any subspace reducing
it to a bilateral shift but its unitary extension can be a span of bilateral shifts
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or even a bilateral shift. Denote by Hu1 the maximal subspace reducing the
isometry V1 to the unitary operator and by V2 an isometry commuting with
V1. It is known that Hu1 is a hyperinvariant subspace for V1. Theorem 4.11,
says that V2|Hu1 is a unilateral shift. Moreover it shifts between subspaces
reducing V1. Such a description seems to be useful for building models for
commuting pairs of isometries.

2. Multiple von Neumann-Wold Decomposition for Pairs
of Isometries

Let us recall the notion of multiple canonical von Neumann-Wold decompo-
sitions introduced in [7] in the general case, here taking a simplified form in
the case of a pair of commuting isometries:

Definition 2.1. Suppose (V1, V2) is a pair of isometries on H. The multiple
canonical von Neumann-Wold decomposition is given by a decomposition of
the Hilbert space

H = Huu ⊕ Hus ⊕ Hsu ⊕ Hss,

where Huu, Hus, Hsu, Hss are reducing subspaces for V1 and V2 such that
V1|Huu

, V2|Huu
are unitary operators,

V1|Hus
is a unitary operator, V2|Hus

is a unilateral shift,
V1|Hsu

is a unilateral shift, V2|Hsu
is a unitary operator,

V1|Hss
, V2|Hss

are unilateral shifts.

By [4,16] there are multiple canonical von Neumann-Wold decomposi-
tions in either of the two cases: for doubly commuting pairs of isometries
and for pairs satisfying the conditions dim(ker V ∗

1 ) < ∞ and dim(ker V ∗
2 ) <

∞. Moreover, in the case of doubly commuting isometries, the subspace
ker V ∗

1 ∩ ker V ∗
2 is wandering for the semigroup generated by V1, V2. How-

ever in the general case we have only a weaker result. Recall a definition
from [14].

Definition 2.2. A pair (V1, V2) of isometries is called a weak bi-shift if all the
isometries V1|⋂

i≥0 ker V ∗
2 V i

1
, V2|⋂

i≥0 ker V ∗
1 V i

2
and V1V2 are shifts.

The following general decomposition of pairs of commuting isometries
obtained in [14] is not necessarily a canonical one.

Theorem 2.3. For any pair of commuting isometries (V1, V2) on H there is a
unique decomposition

H = Huu ⊕ Hus ⊕ Hsu ⊕ Hws, (2.1)

such that Huu, Hus, Hsu, Hws reduce V1 and V2 and
V1|Huu

, V2|Huu
are unitary operators,

V1|Hus
is a unitary operator, V2|Hus

is a unilateral shift,
V1|Hsu

is a unilateral shift, V2|Hsu
is a unitary operator,

(V1|Hws
, V2|Hws

) is a weak bi-shift. �
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We are going to focus on the weak bi-shift part. Precisely, we consider a
pair of isometries whose decomposition (2.1), trivializes to the weak bi-shift
subspace. In such a case the subspace reducing our isometries to a doubly
commuting pair is either trivial or reduces the isometries to a pair of unilat-
eral shifts. Indeed, in the other case the decomposition of the restriction to a
doubly commuting pair of isometries would give a non trivial subspace orthog-
onal to Hws. By [14] there can be found a maximal subspace of Hws which
reduces these isometries to a doubly commuting pair of unilateral shifts. Their
model can be found in [16]. Therefore we reduce our attention to completely
non doubly commuting pairs of isometries. Such pairs are a special case of
a weak bi-shift class whose finer, but not fully satisfying decomposition has
been described in [5].

3. Decomposition for Single Isometries

A unitary part of an isometry in a modified bi-shift is a bilateral shift. Our
aim in the present section is to construct a decomposition with respect to
a property which is close to the property of being a span of all the shifts
(bilateral or unilateral). The following example shows that “being a bilateral
shift” is not a hereditary property.

Example 3.1. Let H = L2(m), where m denotes the normalized Lebesgue
measure on the unit circle T. Let V be the operator of multiplication by
the independent variable, (V f)(z) = zf(z) for f ∈ L2(m). Then its spectral
measure F satisfies F (α)f = χαf for f ∈ L2(m) and all Borel subsets α of T.
Let α be a proper subarc of T. Let Vα be the restriction of V to its reducing
subspace F (α)H. Since α is not of total measure in the circle, the operator
Vα is not a bilateral shift.

Note that a canonical decomposition of an operator T ∈ L(H) with
respect to some property is in fact a construction of a unique maximal reduc-
ing subspace Hp ⊂ H such that the restriction T |Hp

has the considered
property. Since being a bilateral shift is not a hereditary property, there is
a problem with construction of a maximal subspace reducing operator to a
bilateral shift. Example 5.2 in the last section will show that such a maximal
subspace is not unique. The construction of any maximal bilateral shift sub-
space can be done by considering a maximal wandering subspace. We follow
the idea of wandering vectors from [5]. Let G be a semigroup and {Tg}g∈G

be a semigroup of isometries on H. The vector x ∈ H is called a wander-
ing vector (for a given semigroup of isometries) if for any g1 �= g2 we have
〈Tg1x, Tg2x〉 = 0. For a semigroup generated by a single isometry we obtain
the following definition of a wandering vector.

Definition 3.2. A vector x ∈ H is a wandering vector of isometry V ∈ L(H)
if V nx ⊥ x for every positive n.

Note that for any wandering vector x the vector x+V x is not wandering.
Indeed, since x is wandering, so is V x. Therefore 〈x + V x, V (x + V x)〉 =
〈V x, V x〉. Thus the only linear V – invariant subspace of wandering vectors is
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the trivial one. Since we are interested in reducing subspaces, there is no point
in considering subspaces of wandering vectors. Instead we consider subspaces
generated by wandering vectors. Note that for a wandering vector x we have
V nx ⊥ V mx for any pair of distinct positive indices n,m. Let H = Hu ⊕ Hs

be von Neumann-Wold decomposition of a given isometry V ∈ L(H). If a
wandering vector x ∈ Hu is chosen, then V nx ⊥ V mx for n,m ∈ Z, n �= m.
However for x ∈ Hs this is not so clear. On the other hand, every vector
in the set

⋃
n≥0 V n(ker V ∗) is wandering, fulfills the orthogonality condition

also for the negative powers and generates the whole Hs. Therefore, despite
Definition 3.2 is ”weaker” it seems to be sufficient.

Theorem 3.3. For any isometry V ∈ L(H) there is a unique decomposition:

H = H0 ⊕ Hw,

reducing operator V such, that
• Hw is a span of all wandering vectors,
• H0 ⊂ Hu.

Proof. Since Hs ⊂ Hw we need to show only that Hw is V -reducing. Obvi-
ously, Hw is V -invariant. Note that for w wandering we have w,PHs

w ∈ Hw

and consequently also PHu
w = w − PHs

w ∈ Hw. Note also that PHu
Hw =

PHu
(Hw � Hs) = Hw � Hs. Thus x ∈ Hw if and only if PHu

x ∈ Hw. Let us
show that PHu

V ∗w ∈ Hw for an arbitrary wandering vector w. For any vector
w ∈ H let wu = PHu

w, ws = PHs
w. By 〈V nw,w〉 = 〈V nwu, wu〉+〈V nws, ws〉

the vector w is wandering if and only if 〈V nwu, wu〉 = −〈V nws, ws〉 for
every positive n. On the other hand 〈V nV ∗wu, V ∗wu〉 = 〈V nwu, wu〉 =
−〈V nws, ws〉. Thus if w = wu ⊕ ws is wandering, then w̃ = (V ∗wu) ⊕ ws

is wandering as well. Moreover, PHu
V ∗w = V ∗PHu

w = PHu
w̃. On the

other hand, since w̃ is wandering, by the previous argumentation we have
PHu

w̃ ∈ Hw. Consequently, PHu
V ∗w ∈ Hw. Since w was an arbitrary wander-

ing vector and Hw is spanned by wandering vectors, we get V ∗PHu
Hw ⊂ Hw.

By the just showed inclusion and inclusion Hs ⊂ Hw we get V ∗Hw ⊂ Hw.
Consequently, Hw reduces V . �
Remark 3.4. Note, that if L ⊂ H reduces V to a shift (unilateral or bilateral),
then L ⊂ Hw.

Remark 3.5. Every invariant subspace of H0 is reducing.

Proof. Let L be an invariant subspace of H0, then the set L � V L consists
of wandering vectors. Thus L � V L = {0}. �

For H2, the Hardy space on the unit circle, the following result is well
known (see [11] p. 53).

Proposition 3.6. Let h be a non-negative Lebesgue integrable function on the
circle. A necessary and sufficient condition that h be of the form h = |f |2,
with f a non-zero function in H2, is that log h is integrable.

Corollary 3.7. Let μ be a non-negative absolutely continuous measure (with
respect to Lebesgue measure m on the unit circle). Let us denote σ := supp μ.
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Assume that the logarithm of the Radon-Nikodym derivative dμ
dm is integrable

on σ.
Then the operator Mμ of the multiplication by independent variable ′′z′′

on the space L2(σ, μ), is unitary equivalent to Mz - the operator of multipli-
cation by independent variable ′′z′′ on the space L2(σ,m).

Proof. Put h := dμ
dm + χT\σ. Obviously, h is positive almost everywhere on

the unite circle T. Since log h(z) = 0 for z ∈ T\σ and log dμ
dm is Lebesgue

integrable on σ then log h is Lebesgue integrable on T.
Consequently, by Proposition 3.6 we have h = |f |2 for some f ∈ H2.

Consider the following operator:

Uf : L2(σ, μ) � u → uf ∈ L2(T,m),

where u is extended to the whole T as usual by taking its value 0 on T\σ. Since
|f |2 = dμ

dm on σ and uf = 0 on T\σ then operator Uf preserves the scalar
product (it is an isometry). It follows also that uf belongs to L2(T,m) if and
only if u ∈ L2(σ, μ). The range space of Uf can be understand as a subspace
of L2(T,m). We will show that R(Uf ) = L2(σ,m) and consequently that Uf

is a unitary mapping onto its range. Since dμ
dm is positive almost everywhere

on σ then f is not equal 0 almost everywhere on σ. Thus for u ∈ L2(σ,m)
we can define u

f . Since u ∈ L2(σ,m) then
∫

σ
|u|2dm exists and is finite. On

the other hand,
∫

σ

|u|2dm =
∫

σ

∣∣∣
u

f
f
∣∣∣
2

dm =
∫

σ

∣∣∣
u

f

∣∣∣
2

|f |2dm =
∫

σ

∣∣∣
u

f

∣∣∣
2

dμ

and integers exists simultaneously. Thus u ∈ L2(σ,m) implies u
f ∈ L2(σ, μ).

Moreover, Mμ = U−1
f MzUf . Consequently, Uf gives the unitary equivalence

between Mμ and Mz. �

Any isometry V acting on a Hilbert space H has Lebesgue decompo-
sition which combined with von Neumann-Wold decomposition gives us the
equality:

H = Hs ⊕ Hac ⊕ Hsing, (3.1)

where the subspaces Hs, Hac, Hsing reduce V , the operator V |Hs
is a unilat-

eral shift, the operator V |Hsing
is unitary singular, i.e. its spectral measure

is singular to the Lebesgue measure on the unit circle and V |Hac
is unitary

absolutely continuous, i.e. its spectral measure is absolutely continuous with
respect to the Lebesgue measure on the unit circle.

Consider unitary extension U ∈ L(K) of V . Then Ksing = Hsing. Every
wandering vector of a unitary operator generates a bilateral shift. Thus such
a vector is contained in Kac. Consequently Kw is orthogonal to Ksing. On
the other hand a wandering vector of V is wandering for U which means
Hw ⊂ Kw. Summing up Hw ⊂ Kw ⊥ Ksing = Hsing.

Theorem 3.8. Let V ∈ L(H) be a non unitary isometry. Then using the
notation of (3.1) we get



Vol. 79 (2014) Shift-Type Properties 113

Hw = Hac ⊕ Hs,

where Hw is a linear subspace generated by all wandering vectors of V .

Proof. Since the singular part subspace Hsing is orthogonal to Hw and reduc-
ing for V we can assume that H = Hac ⊕Hs. Consider a vector x orthogonal
to Hw and assume x �= 0. Define a subspace Hx := Span{V nx : n ≥ 0}.
Since Hx ⊂ H0 is an invariant subspace, then by Remark 3.5, it is reducing.
Moreover, x is a cyclic vector for the restriction V |Hx

.
Therefore, by Theorem IX.3.4 of [8] the operator V |Hx

can be repre-
sented as multiplication by ′′z′′ on the space L2(supp μ, μ), where μ is a
measure absolutely continuous with respect to the Lebesgue measure on the
unit circle T. Since the measure μ is different from 0, we can find ε > 0
such that the set σ := {z ∈ T : dμ

dm (z) > ε} has positive measure. Then
log dμ

dm is integrable on σ. By Corollary 3.7 the operator V |L2(σ,μ) is unitarily
equivalent to multiplication by the independent variable on L2(σ,m). Since
L2(σ,m) ⊂ Hx is orthogonal to Hw, it can not be a bilateral shift. Therefore
T\σ has positive Lebesgue measure. Take h(z) = 1

2 for z ∈ σ and h(z) = 1
for z ∈ T\σ. By Proposition 3.6 there is f ∈ H2 such that |f |2 = h. Since we
assumed isometry V to be non unitary, there is a subspace of Hs reducing V
which is identified with multiplication by ′′z′′ on H2. In other words we can
assume that f ∈ Hs. Take g = χσ√

2
. Note that |f |2 + |g|2 = 1. (To be precise

function g ∈ L2(σ,m) ⊂ L2(T,m) can be understand as defined on the unit
circle). Since f ∈ Hs ⊂ Hw it is orthogonal to g. One can check that

‖f + g‖2 = ‖f‖2 + ‖g‖2 =
1

2π

∫

T

|f |2dm +
1

2π

∫

T

|g|2dm =
1

2π

∫

T

1dm = 1.

Similarly,

〈zn(f + g), f + g〉 = 〈znf, f〉 + 〈zng, g〉
=

1
2π

∫

T

zn|f |2dm +
1

2π

∫

T

zn|g|2dm =
1

2π

∫

T

zndm = 0,

for positive n. It follows that f + g is a non trivial wandering vector. Since
g was orthogonal to Hw we have m(σ)

2 = ‖g‖2 = 〈f + g, g〉 = 0. Thus σ is a
set of measure 0 which contradicts the hypothesis x �= 0. Consequently, the
orthogonal complement of Hw is trivial. �

Corollary 3.9. Let V ∈ L(H) be a unitary operator, such that Hw �= {0}.
Then

Hw = Hac,

where Hw is a linear subspace generated by wandering vectors and V |Hac
is

the whole absolutely continuous part of V in decomposition (3.1).

Proof. Let v ∈ Hw be a nonzero wandering vector. Denote

L := Span{v, V v, V 2v, · · · }, M := {· · · , V ∗v, v, V v, V 2v, · · · }⊥,

K := L ⊕ M.
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The operator V |L is a unilateral shift and V |K is a non unitary isometry. Thus
by Theorem 3.8 we get Kw = L⊕Kac, where the subspaces are denoted as in
Theorem 3.8. Similarly, for any Kn := V ∗nL⊕M we have Kn

w = V ∗nL⊕Kac.
Since every wandering vector is wandering for operator extended to some
superspace then Kn

w ⊂ Hw for every n ≥ 0. Finally, Hac ⊂ ∨
n∈N

V ∗nL ⊕
Kac ⊂ Hw ⊂ Hac. �

Lebesgue decomposition is hyperreducing (see Thm. 2.1 [13] or Thm.
2.2 [12]). It means that the subspaces Hs ⊕Hac and Hsing in (3.1) are hyper-
reducing. Summing up Theorems 3.3, 3.8, Corollary 3.9 and Remark 3.5, we
get

Theorem 3.10. For any isometry V ∈ L(H) there is a unique decomposition:

H = H0 ⊕ Hw,

where Hw is a span of all wandering vectors. Moreover:
• the subspaces H0, Hw are hyperreducing for V ,
• H0 ⊂ Hu, and every V invariant subspace of H0 is V reducing.

In comparison with decomposition (3.1), we have
• if Hw = {0} then H = H0 = Hac ⊕ Hsing,
• if Hw �= {0} then H0 = Hsing, Hw = Hac ⊕ Hs.

Corollary 3.11. Let V ∈ L(H) be an isometry, H = H0 ⊕ Hw a decom-
position like in Theorem 3.10 and L ⊂ Hw a reducing subspace. Then the
decomposition of Theorem 3.10 for V |L is trivial (i.e. L = L0 or L = Lw.)

Proof. Note that Hw is orthogonal to Hsing. It follows Lsing = {0}. Thus,
by Theorem 3.10 either Lw = {0} or Lw = Lac ⊕ Ls = L. �

4. Decomposition for Pairs of Isometries

In this section we take the advantage of the decomposition obtained in Theo-
rem 3.3 and construct a decomposition for pairs of isometries. Despite being
spanned by wandering vectors is not a hereditary property it has a multiple
canonical decomposition.

Theorem 4.1. Let (V1, V2) be a pair of commuting isometries on the Hilbert
space H. There is a decomposition

H = H00 ⊕ H0w ⊕ Hw0 ⊕ Hww,

where the subspaces H00,Hw0,H0w,Hww are such, that:
1. H00 is of type H0 for both operators,
2. H0w is of type H0 for operator V1 and spanned by wandering vectors for

operator V2,
3. Hw0 is spanned by wandering vectors for operator V1 and of type H0 for

operator V2,
4. there are sets W1,W2 of vectors wandering for V1, V2 respectively, each

spanning Hww.
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Proof. Let H = H0 ⊕ Hw be a decomposition for V1. By Theorem 3.10 the
subspaces H0 and Hw are reducing for V2. Let us decompose H0 and Hw

with respect to V2 into H0 = H ′
00 ⊕H ′

0w and Hw = H ′
w0 ⊕H ′

ww. If Hw = {0}
then H ′

00 and H ′
0w are of type H0 with respect to V1. If Hw �= {0} then the

operator V1|H0 is singular. Consequently V1|H′
00

and V1|H′
0w

are singular. In
both cases V1|H′

00
and V1|H′

0w
are of type H0.

By corollary 3.11 either V1|H′
w0

is of type H0 or H ′
w0 is linearly spanned

by vectors wandering for V1. In the first case we take H00 := H ′
00 ⊕ H ′

w0 and
Hw0 = {0}. In the second case we take H00 := H ′

00 and Hw0 = H ′
w0.

Similarly if V1|H′
ww

is of type H0 we take H0w := H ′
0w⊕H ′

ww and Hww =
{0}. If H ′

ww is spanned by vectors wandering for V1 we take H0w := H ′
0w and

Hww := H ′
ww. �

Remark 4.2. The above decomposition is not unique.

Indeed, we have the following example.

Example 4.3. Denote by T the unit circle and

T+ := {z ∈ T : im z ≥ 0}, T− := {z ∈ T : im z < 0}.

Let us consider the space K = L2(T,m)⊕⊕∞
n=1 Kn, where Kn = L2(T+,m).

We can decompose K = L2(T−,m) ⊕ L2(T+,m) ⊕ ⊕∞
n=1 Kn. Let V1 be the

multiplication by independent variable on K. Let V2 be the multiplication by
independent variable on L2(T,m) and be a unilateral shift on

⊕∞
n=1 Kn such

that the wandering space is K1. The isometry V1 is unitary absolutely con-
tinuous and contains a bilateral shift, hence, by Corollary 3.9, its wandering
vectors span K. The isometry V2 is an orthogonal sum of a unilateral shift
and unitary absolutely continuous operator, hence its wandering vectors also
span K (see Theorem 3.10). Thus we have Hww = K.

Unfortunately the decomposition is not unique. For example take H00 =
L2(T−,m) and H0w := L2(T+,m) ⊕ ⊕∞

n=1 Kn.

Recall from [6], that a pair of commuting contractions (T1, T2) is called
strongly completely non unitary if there is no proper subspace reducing T1, T2

and at least one of them to a unitary operator. Moreover, there is a decom-
position theorem ([6], Thm. 2.1):

Theorem 4.4. Let (T1, T2) be a pair of commuting contractions on a Hilbert
space H. There is a unique decomposition

H = Huu ⊕ Hu¬u ⊕ H¬uu ⊕ H¬(uu),

where the subspaces Huu,Hu¬u,H¬uu,H¬(uu) are maximal such, that:
T1|Huu

, T2|Huu
are unitary operators,

T1|Hu¬u
is a unitary operator, T2|Hu¬u

is a completely non unitary oper-
ator,
T1|H¬uu

is a completely non unitary operator, T2|H¬uu
is a unitary oper-

ator,
(T1|H¬(uu) , T2|H¬(uu)) is a strongly completely non unitary pair of con-
tractions.
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The above theorem in the case of pairs of commuting isometries appears
also in [2] or more general in [9]. Can be found also in [14].

Theorem 4.5. Let (V1, V2) be a pair of commuting isometries on a Hilbert
space H. There is a decomposition

H = Huu ⊕ Hus ⊕ Hsu ⊕ HS ,

where
1. Huu is a maximal subspace reducing V1, V2 to a pair of unitary operators,
2. Hus is a maximal subspace reducing V1 to a unitary operator and V2 to a

unilateral shift,
3. Hsu is a maximal subspace reducing V1 to a unilateral shift and V2 to a

unitary operator,
4. HS reduces V1, V2 and there are sets W1,W2 of vectors wandering for

V1, V2 respectively, each spanning HS.

Proof. Since any completely non unitary isometry is just a unilateral shift,
Theorem 4.4 applied to isometries gives a decomposition Huu ⊕Hus ⊕Hsu ⊕
H¬(uu). We need to show that HS = H¬(uu) has suitable properties. We
prove it for the operator V1. Let H¬(uu) = H0 ⊕ Hw be the decomposition of
V1|H¬(uu) given by Theorem 3.3. By Theorem 3.10 the subspace H0 reduces
V1 to a unitary operator and reduces V2. Consequently V1|H0 , V2|H0 doubly
commute and H0 ⊂ H¬(uu). On the other hand,

(
V1|H¬(uu) , V2|H¬(uu)

)
is a

strongly completely nonunitary pair. Thus H0 = {0}. Hence for V1 we have
H¬(uu) = Hw which means that H¬(uu) is spanned by vectors wandering for
V1. �

Note that by the decomposition in the last theorem the subspace HS

reduces V1, V2 to such a pair, that there is no subspace reducing both isome-
tries and at least one of them to a unitary operator. As we recalled earlier such
a pair is called strongly completely non unitary. Using more general language
of [2] such a pair is {1} - pure and {2} - pure. An immediate consequence is
the following:

Proposition 4.6. Let (V1, V2) be a pair of commuting, strongly completely non
unitary pair of isometries on the Hilbert space H. There are sets W1,W2 of
vectors wandering for V1, V2 respectively, each spanning H.

By the proof of Theorem 3.3, the projection of a wandering vector onto
the unitary part subspace of the isometry is in the span of wandering vectors
but may not be wandering.

Remark 4.7. Let V ∈ L(H) be an isometry with a wandering vector w. Note
that for every wandering vector in Hu the equality 〈V nw, V mw〉 = 0 holds
true for every n,m ∈ Z, n �= m. Thus the minimal V -reducing subspace
generated by w is

⊕
n∈Z

V n (Cw). In other words, the minimal V -reducing
subspace generated by a wandering vector in Hu reduces V to a bilateral
shift.

Let us introduce a definition of the following class of operators.
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Definition 4.8. We call an operator V ∈ L(H) a span of bilateral shifts if
there are subspaces {Hι}ι∈I such that H is spanned by

⋃
ι∈I Hι and V |Hι

is
a bilateral shift for every ι ∈ I.

Note that a span of bilateral shifts is a unitary operator.

Corollary 4.9. Let V ∈ L(H) be an isometry and U ∈ L(K) its minimal
unitary extension. Space H is a span of V -wandering vectors if and only if
K is a span of bilateral shifts.

Proof. If V is unitary the corollary is obvious. Thus we may assume that V
is not unitary and consequently that Hw �= {0}. By Theorem 3.10 we get
Hw = Hac ⊕ Hs.

If U is a span of bilateral shifts then Ksing = {0}. On the other hand
Hsing = Ksing. Thus H = Hac ⊕ Hs = Hw.

For the reverse implication note that every V wandering vector w ∈
H is U wandering. On the other hand, U is unitary. According to Remark
4.7 the subspace Lw :=

⊕
n∈Z

V n (Cw) is the minimal U -reducing subspace
generated by w. Since H is spanned by wandering vectors, H is contained in
the span of {Lw : w ∈ W} taken over the set W of all V -wandering vectors.
Since Lw ⊂ K for w ∈ W , by minimality of U as a unitary extension, K
equals to the latter span. On the other hand, U |Lw

is a bilateral shift. This
finishes the proof. �

As a corollary of Proposition 4.6 and Corollary 4.9 we obtain the fol-
lowing result.

Theorem 4.10. Let (V1, V2) be a pair of commuting, completely non doubly
commuting isometries on the Hilbert space H. The unitary extension of each
isometry is a span of bilateral shifts.

The following result shows some geometry of completely non-doubly
commuting pairs of isometries.

Theorem 4.11. Let (V1, V2) be a completely non doubly commuting pair of
commuting isometries on a Hilbert space H. Denote by H = Hui⊕Hsi the von
Neumann-Wold decomposition for the isometry Vi. Then there are subspaces
Wi ⊂ Hui reducing Vi for i = 1, 2, such that

Hu1 =
⊕

n≥0

V n
2 (W1), Hu2 =

⊕

n≥0

V n
1 (W2).

Proof. We make the proof for i = 1. By (1.1) we conclude that the subspace
Hu1 is hyperinvariant. Thus we can consider the operators

U1 := V1|Hu1 , Ṽ2 := V2|Hu1 ∈ L(Hu1).

Since the pair (V1, V2) is completely non doubly commuting, it is a weak
bi-shift. Consequently, the product V1V2 is a unilateral shift. It implies that
U1Ṽ2 is a unilateral shift and

Hu1 =
⊕

n≥0

(U1Ṽ2)n(ker(U1Ṽ2)∗).



118 Z. Burdak, M. Kosiek, P. Pagacz and M. S�lociński IEOT

Since U1 is unitary, ker(U1Ṽ2)∗ = ker Ṽ ∗
2 . By a similar argument applied for

the operators Un
1 , Ṽ n

2 we obtain ker(Un
1 Ṽ n

2 )∗ = ker Ṽ ∗n
2 for any n. Note that

(U1Ṽ2)n(ker(U1Ṽ2)∗) = ker(U1Ṽ2)∗(n+1) � ker(U1Ṽ2)∗n

= ker Ṽ
∗(n+1)
2 � ker Ṽ ∗n

2 = Ṽ n
2 (ker Ṽ ∗

2 ).

Consequently

Hu1 =
⊕

n≥0

Ṽ n
2 (ker Ṽ ∗

2 ) =
⊕

n≥0

V n
2 (ker Ṽ ∗

2 ).

Note also, that ker Ṽ ∗
2 is U∗

1 – invariant. Since U1 commutes with Ṽ2 and is
unitary, they doubly commute. Consequently, Ṽ n

2 (ker Ṽ ∗
2 ) is U∗

1 – invariant.
Since Hu1 � Ṽ n

2 (ker Ṽ ∗
2 ) =

⊕
k≥0,k 	=n V k

2 (ker Ṽ ∗
2 ) is also U∗

1 – invariant then
the subspace Ṽ n

2 (ker Ṽ ∗
2 ) is U1 – reducing for every n. We have showed the

theorem with W1 = ker Ṽ ∗
2 . �

A similar result is known for a normal operator and a unilateral shift
(see [15] Proposition 9). Consequently we have:

Corollary 4.12. The conclusion of the Theorem 4.11 holds true also for com-
pletely non unitary pairs of isometries.

Proof. Any pair of commuting isometries can be decomposed into a doubly
commuting pair and a completely non doubly commuting pair. In the case of
doubly commuting pair we need to consider only pairs consisting of a unitary
operator and a unilateral shift for which the result is trivial. It can be deduced
from the mentioned result ([15] Proposition 9) or from the model in [16]. �

Theorem 4.11 can be deduced also from [2]. By von Neumann-Wold
decomposition for the operator V1 and by Theorem 4.11 we get

Corollary 4.13. Let (V1, V2) be a completely non doubly commuting pair of
commuting isometries on the Hilbert space H. Then there exist a subspace W
which is wandering for V2 such that

H =
⊕

n≥0

V n
1 (ker V ∗

1 ) ⊕
⊕

n≥0

V n
2 (W ).

In the corollary above we get an orthogonal decomposition of H into
two orthogonal sums of subspaces wandering for V1 and V2 respectively. In
Proposition 4.6 for each of the isometries V1, V2 we can find a collection of
wandering vectors spanning H.

Summing up, Corollary 4.13 is stronger with respect to the orthogonality
of wandering subspaces. On the other hand, Proposition 4.6 is stronger with
respect to the fact that the space H is spanned by wandering vectors of a
single arbitrarily chosen isometry.
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5. Examples

We are going to conclude by having a closer look at several examples. The
first is an example of an isometry V ∈ L(H) such that Hs �= {0} and H is
not spanned by wandering vectors. It is trivial example where the unitary
part is singular according to the Lebesgue decomposition. We give it for the
sake of completeness.

Example 5.1. Let us consider an orthonormal collection of the form {f} ∪
{ei : i ∈ Z+} in some Hilbert space. Define a new Hilbert space H :=
Cf ⊕ ⊕

i∈Z+
Cei and the isometry V ∈ L(H) by V f = f, V ei = ei+1 for

i ∈ Z+. Assume that H is spanned by vectors wandering for V . Then there
is a wandering vector w, such that PHu

w �= 0. Obviously, Hu = Cf . Assume
for the convenience that w = f + v where v ∈ Hs =

⊕
i∈Z+

Cei. By the proof
of Theorem 3.3, since w is wandering we have 〈V nf, f〉 = −〈V nv, v〉. By the
definition of V we obtain ‖f‖2 = −〈V nv, v〉 = −〈v, V ∗nv〉. Since v ∈ Hs, the
sequence V ∗nv converges to zero. Consequently we obtain a contradiction
1 = ‖f‖2 = limn→∞ −〈v, V ∗nv〉 = 0. Thus H can not be spanned by V –
wandering vectors.

The next is an example of a span of bilateral shifts which is not a bilat-
eral shift. We would like to thank Professor László Kérchy for this example.
Denote by T the unit circle in the complex plane.

Example 5.2. Denote α := {z ∈ T : arg z ∈ [23π, 4
3π]}. Then α ∪ α2 = T. Let

H = L2(α) ⊕ L2(α2) ⊕ L2(α) and U ∈ L(H) be multiplying by ′′z′′. Then
H0 = {0}. If the operator would be unitarily equivalent to some bilateral
shift then their spectral multiplicities would be equal. However, the spectral
multiplicity of a bilateral shift is constant, while in our example it is not.

It is clear that wandering vectors of an isometry V ∈ L(H) span the
whole subspace Hs. On the other hand by Remark 4.7 any wandering vector in
a subspace Hu fulfills the orthogonality V nw ⊥ V mw for every distinct integer
powers. The natural question is what will be changed if we make a definition
of wandering vectors stronger in the following sense. We call a wandering
vector w strongly wandering if it fulfills the condition V nw ⊥ V mw for every
n,m ∈ Z, n �= m. Denote by Hws the minimal subspace spanned by strongly
wandering vectors and by Hw the subspace spanned by wandering vectors.
Obviously, Hws ⊂ Hw and both subspaces are reducing for our isometry V .
As we know, the subspace Hw is invariant for every isometry commuting with
V , but Hws does not need to be. We have the following lemma:

Lemma 5.3. Let H = Hu ⊕ Hs be the von Neumann-Wold decomposition of
an isometry V ∈ L(H). Then the following conditions hold:
1. for x a strongly wandering vector, also xu := PHu

x, xs := PHs
x are

strongly wandering vectors,
2. W = Hs ⊕ Wu where W,Wu denote subspaces generated by strongly wan-

dering vectors for V and V |Hu
respectively.

Proof. Since Hu,Hs reduce V and x is wandering we have 〈V nxu, V mxu〉 =
−〈V nxs, V

mxs〉 for every m,n ∈ Z, m �= n. On the other hand
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〈V nxu, V mxu〉 = 〈V ∗kV nxu, V ∗kV mxu〉 = lim
k→∞

〈V n−kxu, V m−kxu〉 = . . .

for n �= m as well as for n − k �= m − k and consequently

· · · = lim
k→∞

−〈V n−kxs, V
m−kxs〉 = 0.

Thus xu is a wandering vector and by 〈V nxu, V mxu〉 = −〈V nxs, V
mxs〉, also

xs is wandering.
For the second part, note that V n(ker V ∗) for every n ≥ 0 is a set of

V – strongly wandering vectors. Thus Hs ⊂ W . Since Hu reduces V , every
vector wandering for V |Hu

is wandering for V . Thus Wu ⊂ W . By the first
part of the lemma, the reverse inclusion W ⊂ Hs ⊕ Wu follows. �

We want to show that unitary extension can be a span of bilateral
shifts and Hilbert space H is not spanned by strongly wandering vectors.
This follows from the next example:

Example 5.4. Consider Example 5.2, put K = L2(α) ⊕ L2(α2) ⊕ L2(α) and
denote by U the operator of multiplication by ′′z′′. Find a wandering subspace
W for the bilateral shift in L2(α2) ⊕ L2(α) such that L2(α2) ⊕ L2(α) =⊕

n∈Z
UnW . Then take H = L2(α) ⊕ ⊕

n≥0 Un(W ). The restriction U |H
is an isometry with its unitary part acting on L2(α), and U is its minimal
unitary extension. Since σ(T |Hu

) does not contain the unit circle, there is no
subspace reducing it to a bilateral shift. Consequently, Hu does not contain
any wandering vector and Hws = Hs =

⊕
n≥0 UnW . On the other hand, the

unitary extension U of U |H is a span of bilateral shifts.

We follow the same idea to show an example of an isometry having
unitary part of H0 type, but whose unitary extension is a bilateral shift.

Example 5.5. Denote

T+ := {z ∈ T : im z ≥ 0}, T− := {z ∈ T : im z < 0}.

Let L2(T), L2(T+), L2(T−) be the subspaces of functions on T, T+, T− respec-
tively, which moduli are square summable with respect to Lebesgue measure
and let H2(T) be the Hardy subspace of L2(T). Consider H = L2(T−) ⊕⊕

n≥0 H2(T) and the isometric operator Mz of multiplication by ′′z′′. Then
the unitary part of Mz acts on L2(T−). Since the spectrum of Mz restricted
to L2(T−) does not contain T it is not a span of bilateral shifts. On the
other hand Mz extends to a unitary operator of multiplication by ′′z′′ on the
space K = L2(T−)⊕⊕

n≥0 L2(T). Since we have the decomposition L2(T) =
L2(T+) ⊕ L2(T−) we obtain K = L2(T−) ⊕ L2(T+) ⊕ L2(T−) ⊕ L2(T+) ⊕
L2(T−) ⊕ · · · =

⊕
n≥0 L2(T). Thus the unitary extension is a bilateral shift.
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