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a b s t r a c t

We show that the equality m1(f (x)) = m2(g(x)) for x in a neighborhood of a point a re-
mains valid for all x provided that f and g are open holomorphicmaps, f (a) = g(a) = 0 and
m1,m2 are Minkowski functionals of bounded balanced domains. Moreover, a polynomial
relation between f and g is obtained.

As a consequence of our considerations we extend the main result of Berteloot and
Patrizio (2000) [2] and we simplify its proof.

We also show how to apply our results to quasi-balanced domains.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of result

The paper is motivated by results obtained in [2]. The main result is as follows.

Theorem 1.1. Let m1 andm2 beMinkowski functionals of bounded balanced domains in Cm and let U be a domain in Ck, k ≥ m.
Let f , g : U → Cm be holomorphic mappings such that f (a) = g(a) = 0 and f and g are open in a neighborhood of a for some
a ∈ U. Let q ∈ R. Assume additionally that m1(f (x)) = (m2(g(x)))q for x in some neighborhood V ⊂ U of a.

Then q is a positive rational number and
(1) m1 ◦ f (x) = (m2 ◦ g(x))q for all x ∈ U,
(2) f and g are related in the following sense: there is a p ∈ N and there are homogeneous polynomials ξk of degree kq, k =

1, . . . , p, (if kq ∉ N, then ξk ≡ 0) such that

f (x)p + f (x)p−1ξ1(g(x))+ · · · + ξp(g(x)) = 0, x ∈ U . (1)

Let us explain the notation occurring above. First of all recall that a mapping f is said to be open in a neighborhood
of a if there is a neighborhood of a such that the restriction of f to this neighborhood is open. For z, w ∈ Cn put
z · w = (z1w1, . . . , znwn); zk, k ∈ Z, is understood analogously (i.e. zk := z · . . . · z, z−1

= (z−1
1 , . . . , z−1

n )).
Moreover, the unit disk in the complex plane is denoted by D and ∂sΩ stands for the Shilov boundary of a bounded

domainΩ in Cn.
Theorem 1.1, interesting in its own, has some important applications. For example, it is the main tool which allows us to

generalize and simplify the proof of the main theorem of [2]. The proof presented here is quite elementary and does not use
advanced tools of pluripotential theory — the key point relies upon the investigation of the Shilov boundaries of bounded
balanced domains.

The paper is organized as follows. We start with the proof of Theorem 1.1 (it is divided into few steps). Next we present
some examples and applications. Moreover, we show how the results for circular domains may be easily extended to quasi-
circular ones.
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2. Proof of the main theorem, remarks and examples

Proof of Theorem 1.1. Losing no generality we may assume that a = 0 andm ≥ 2. Moreover, it is clear that q ∈ Q>0. Take
p1, p2 ∈ N such that q =

p1
p2
.

Step 1′ First we focus our attention on the case when k = m. It follows from Remmert’s theorem (see [7]) that 0 is an iso-
lated point of g−1(0) and f −1(0). Therefore, shrinkingV if necessarywemay assume that f |V is proper onto image.Moreover,
there is a domain V ′ such that 0 ∈ V ′

⊂ V , g|V ′ is also proper onto image and g−1(0) ∩ V ′
= {0}. Put V = g({x ∈ V ′

:

det g ′(x) = 0}) and fix δ > 0 such that Ω2 = {x ∈ Cm
: m2(x) < δ} and Ω1 = {x ∈ Cm

: m1(x) < δq} are relatively
compact in g(V ′) and f (V ), respectively. Since V ′

∩ g−1(0) = {0}, one can see that g−1(Ω2) is a domain.
Take x0 ∈ ∂sΩ2 \ V and let Gj, j = 1, . . . , p, be local inverses to g|V ′ defined in a neighborhood of x0, i.e. g−1

=

{G1, . . . ,Gp}. It follows from the invariance of the Shilov boundary under proper holomorphic mappings (see [5, Theorem
3]) that there is an index i (fixed from now on) such that Gi(x0) ∈ ∂sg−1(Ω2). Put y0 := f (Gi(x0)). Since g−1(Ω2) = f −1(Ω1)
we may apply the argument from [5] again to state that y0 ∈ ∂sΩ1.

We aim at showing that the map

t →
f ◦ Gi(tx0)

tq

(defined in a neighborhood of 1) is constant. Put ψx(t) :=
f ◦Gi(tx)

tq , t ∈ D(1, r) := {λ ∈ C : |λ − 1| < r}, where r is
sufficiently small. This would simply follow from the fact that ψx0 maps D(r, 1) into Ω̄1 and ψ(1) ∈ ∂sΩ1.

Assume the contrary, i.e. ψx0 is non-constant. Then there is 0 < r ′ < r such that y0 ∉ ψx0(∂D(1, r ′)). Using the uniform
convergence argument one can easily see that there is an ϵ > 0 and there is a neighborhood U(x0) ⊂ g(V ′) \ V of x0 such
that ψx is well defined in a neighborhood of D(1, r ′) (decrease r ′ if necessary) and dist(y0, ψx(∂D(1, r ′))) > ϵ whenever
x ∈ U(x0).

Let V (x0) be an open neighborhood of the point x0 such that V (x0) ⊂ U(x0) and dist(y0, V (y0)) < ϵ
2 , where V (y0) =

f (Gi(V (x0))).
Since y0 lies in the Shilov boundary of Ω1, there is an F ∈ O(Ω1) ∩ C(Ω1) such that max{|F(x)| : x ∈ V (y0) ∩ Ω1} >

max{|F(x)| : x ∈ Ω1\V (y0)} (otherwise the Shilov boundary ofΩ1 would be contained inΩ1\V (y0)). Choose ỹ ∈ V (y0)∩Ω1
at which the maximum on the left side is attained and note that taking y′

∈ Ω1 ∩ V (y0) sufficiently close to ỹ we get the
following inequality:

|F(y′)| > max{|F(y)| : x ∈ Ω1 \ V (y0)}. (2)

Let x′
∈ V (x0) be such that y′

= f (Gi(x′)).
First, observe that m1(y′) = m1(f (Gi(x′))) = m2(g(Gi(x′)))q = m2(x′)q, so x′

∈ Ω2. Note also that m1(ψx′(t)) = m2(x′)q,
hence ψx′(D(1, r ′)) ⊂ Ω1. Moreover, ψx′(1) = y′ and ψx′(∂D(1, r ′)) ∩ V (y0) = ∅.

But a function F ◦ ψx′ attains its maximum on ∂D(1, r ′). This contradicts (2).
Step 1′′ It is clear that V ⊂ {x ∈ g(V ′) : Φ(x) = 0} for some holomorphic functionΦ on g(V ′),Φ ≠ 0 (the functionΦ may
be given explicitly — for example one may takeΦ(x) =

p
j=1 det g

′(Gj(x))where Gj are local inverses to g).
Define Ψ̃ (t, x, y) :=


i,j(f (Gi(x)) − tp1 f (Hj(y))), x, y ∈ g(V ′), t ∈ D, where Gi,Hj are local inverses to G defined in a

neighborhood of x and y, respectively. Put Ψ (t, x) := Ψ̃ (t, tp2x, x), x ∈ g(V ′), t ∈ D. It follows easily from Step 1′ that for
every x ∈ ∂sΩ2 \V the mappingΨ (·, x) vanishes in a neighborhood of 1. HenceΨ (t, x) = 0 for any t ∈ D and x ∈ ∂sΩ2 \V .
Therefore, for a fixed t ∈ D themappingΦ ·Ψ (t, ·) vanishes on ∂sΩ2, so by the properties of the Shilov boundaryΦ ·Ψ ≡ 0.
Whence Ψ ≡ 0.

Fix x′
∈ Ω2 \ V, l ∈ {1, . . . ,m} and observe that there is an i such that fl(Gi(tp2x)) = tp1 fl(Gi(x)) for t in a neighborhood

of 1 and x in a neighborhood of x′. We aim at showing that

fl(Gj(tp2x′)) = tp1 fl(Gj(x′)) (3)

for j = 1, . . . , p and t sufficiently close to 1. To prove it put yi = Gi(x′) and yj = Gj(x′). Note that yi and yj may be joined
by a path γ : [0, 1] → g−1(Ω1) \ U, where U = g−1(V). Put Γ = g ◦ γ . A standard compactness argument allows us to
find a partition of the interval 0 = t0 < t1 < · · · < tn = 1 and open balls (Bk)

N
k=1 covering Γ ∗, Bk ⊂⊂ Ω2 \ V , such that

Γ ([tk−1, tk]) ⊂ Bk and preimage g−1(Bk) has exactly p connected components, k = 1, . . . ,N .
There is a unique holomorphic mapping H1 on B1 such that g ◦ H1 = id and H1(Γ (t)) = γ (t) for t ∈ [t0, t1]. Note that

H1 = Gi, so by the identity principle fl(H1(tp2x)) = tp1 fl(H1(x)) for x ∈ B1 and t sufficiently close to 1. Similarly, there is
a holomorphic mapping H2 on B2 such that g ◦ H2 = id,H2(Γ (t)) = γ (t) for t ∈ [t1, t2] and H1 = H2 on B1 ∩ B2. Using
the identity principle again we get the relation fl(H2(t t2x)) = tp1 fl(H2(x)) for x ∈ B2 and t sufficiently close to 1. Proceeding
inductively one may construct a mapping HN holomorphic on BN such that HN = HN−1 on BN−1 ∩ BN , g ◦ HN = id, and
GN(x′) = HN(Γ (tN)) = γ (1) = yj. Moreover fl(HN(tp2x)) = tp1 fl(HN(x)), for x ∈ BN and t close to 1. Note that HN = Gj in
a neighborhood of x′ and this finishes the proof of (3).



Ł. Kosiński / J. Math. Anal. Appl. 409 (2014) 643–648 645

Thus, we have shown that for any x ∈ Ω2 \ V the equality f (Gj(tp2x)) = tp1 f (Gj(x)) remains valid for all j = 1, . . . , p,
and t sufficiently close to 1.

Step 1′′′ For (λi,j)
j=1,...,m
i=1,...,p ⊂ C let us consider the following system of equations:


σ∈Σp

p
k=1

(yjk − λσ(k),jk) = 0, {j1, . . . , jp} ⊂ {1, . . . ,m}, j1 ≤ · · · ≤ jp, (Ď)

with unknowns y = (y1, . . . , ym) ∈ Cm, whereΣp denotes the set of p-permutations. Note that for a given (λi,j)
j=1,...,m
i=1,...,p the

system (Ď) has p solutions given by formulas y = (λi,1, . . . , λi,m), i = 1, . . . , p. To show it observe that (λi,1, . . . , λi,m) solves
(Ď), i = 1, . . . , p. On the other hand any root of the equations in (Ď)with j1 = · · · = jp is of the form (λi1,1, . . . , λim,m). What
remains to do is to show that it is of the form (λi,1, . . . , λi,m). Since these computations are quite elementary and tedious,
we omit them here.

Multiplying out we get mappings ξ Iα , where |α| < p and I = I(j1, . . . , jp), such that
σ∈Σp

p
k=1

(yjk − λσ(k),jk) = p!yj1 . . . yjp +


|α|<p

ξ Iα(λ)y
α.

Observe that ξ Iα are homogeneous of order p − |α| and note that they are quasi-symmetric in the following sense:

ξ Iα(λ1,1, . . . , λ1,m, . . . , λp,1, . . . , λp,m) = ξ Iα(λσ(1),1, . . . , λσ(1),m, . . . , λσ(p),1, . . . , λσ(p),m) for any σ ∈ Σp. (4)

Therefore it is clear that ζ I
α := ξ Iα ◦ f ◦ g−1

:= ξ Iα(f1 ◦G1, . . . , fm ◦G1, . . . , f1 ◦Gp, . . . , fm ◦Gp) is a well defined holomorphic
mapping on g(V ′).

It follows from the above considerations that

ζ I
α(t

p2x) = tp1(p−|α|)ζ I
α(x) for all x ∈ Ω2 and t ∈ D. (5)

Now one may write down the Taylor expansion of ζ I
α around 0 in order to verify that ζ I

α are homogeneous polynomials
of degree q(p − |α|) (obviously, if q(p − |α|) ∉ N, then ζ I

α ≡ 0).
Consider the following system of equations:

ΘI(x, y) := p!yj1 . . . yjp +


|α|<p

ζ I
α(x)y

α
= 0, I = I(j1, . . . , jp), (6)

{j1, . . . , jp} ⊂ {1, . . . ,m}, 1 ≤ j1 ≤ · · · ≤ jp ≤ m. First observe that

ΘI(tp2x, tp1y) = tpp1ΘI(x, y), t ∈ C. (7)

Note also that for x lying sufficiently close to 0 the following property holds:

m2(x)q = m1(y) for any root y the system of equationsΘI(x, ·) = 0. (8)

To prove it take x ∈ g(V ′). It follows from the definition of the mappings ζα that all roots of the Eq. (6) are given by formulas
y = f (xi), where g(xi) = x, i = 1, . . . , p (precisely xi = g−1(x) if x ∉ V). The assumptions of the theorem imply that for
such a solution y

m1(y) = m1(f (xi)) = m2(g(xi))q = m2(x)q,

which proves (8) for x sufficiently close to 0. Making use of (7) we find that the relation (8) holds for all x.
The equalityΘI(g(x), f (x)) = 0 holds in the neighborhood of 0, so by the identity principleΘI(g(x), f (x)) = 0 for x ∈ U .

This means that f (x) is the root of the equationsΘI(g(x), ·) = 0 for any x ∈ U . It follows from (8) thatm1 ◦ f = (m2 ◦ g)q.
In order to prove the second assertion it suffices to repeat the above reasoning to themappings ξ Iα with I = I(j, . . . , j), j =

1 . . . ,m. To be more precise let us define

ξ̃k(x) :=


1≤i1<···<ik≤p

xi1 . . . xik , x = (x1, . . . , xp) ∈ Cp, (9)

ξk(λ) := (ξ̃k(λ1), . . . , ξ̃k(λm)), λ = (λ1, . . . , λm) ∈ (Cp)m. (10)

Put ζk := ξk ◦ f ◦ g−1 and

Θ(x, y) := yp − ζ1(x)yp−1
+ · · · + (−1)pζp(x).

As before we prove thatΘ(f , g) ≡ 0.
Step 2 Now we shall show the theorem for k > m. It follows from Remmert’s theorem that dim0 f −1(0) = k − m. Us-
ing the basic properties of analytic sets one can find an m-dimensional vector space L in the Grassmannian G(m, k) such
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that 0 is an isolated point of L ∩ f −1(0) and L ∩ g−1(0). We lose no generality assuming that the space L is of the form
L = {(x1, . . . , xm,


αm+1
j xj, . . . ,


αk
j xj) : xi ∈ C} for some αl

j ∈ C, j = 1, . . . ,m, l = m + 1, . . . , k. Fix r > 0 such that
the polydisc (rD)k is relatively compact in V . Let B̃ be an arbitrary infinite Blaschke product not vanishing on 1

2D and define
B(λ) = B̃(λr−1), λ ∈ rD.

Put f̃ := (f , ψp1) := (f , ep1ϕ(xm+1 −

αm+1
j xj)p1 , . . . , ep1ϕ(xk −


αk
j xj)

p1) and g̃ := (g, ψp2) := (g, ep2ϕ(xm+1 −
αm+1
j xj)p2 , . . . , ep2ϕ(xk −


αk
j xj)

p2), where ϕ(x1, . . . , xk) :=
1

B(x1)
+ · · · +

1
B(xk)

. Observe that the mappings f̃ and g̃ are

locally open in a neighborhood of 0 (as 0 is an isolated point of the fibers f̃ −1(0) and g̃−1(0)).
Put |y| := |y1| + · · · + |yk−m|, y ∈ Ck−m, and

νi(x, y) :=


mi(x)

1
pi + |y|

1
pi

pi
, (x, y) ∈ Ck

= Cm
× Ck−m, i = 1, 2.

It is clear that the equality ν1(f̃ ) = ν2(g̃)q holds in a neighborhood of 0. Applying the previous stepwe get a natural num-
ber p, homogeneous polynomials ζ̃ I

α and corresponding maps Θ̃I such that Θ̃I(g̃, f̃ ) = 0. Moreover, the system of equalities
Θ̃I(x, y) = 0, x, y ∈ Ck, implies that ν2(x)q = ν1(y).

Expanding we infer that

Θ̃I(g̃, f̃ ) = Θ̃I((g, ψp2), (f , ψp1)) = θI(g, f )+ eϕh1 + · · · + esϕhp

for some s ∈ N, holomorphic maps hi on U and a θI given by the formula θI(x, y) := Θ̃I((x, 0), (y, 0)). Making use of the
construction of ϕ we immediately state that θI(g, f ) ≡ h1 ≡ · · · ≡ hp ≡ 0. Therefore Θ̃I((g, 0), (f , 0)) ≡ 0. Whence
m1(f (x)) = m2(g(x))q for all x ∈ U , as claimed.

The relation (1) may be shown analogously. �

Remark 2.1. The equality m1(f (x)) = m2(x)q in a neighborhood of 0, where f is a proper holomorphic map and m1,m2
are Minkowski functionals of pseudoconvex balanced bounded domains, is the key point of the proof of the main theorem
in [2]. The authors investigated this equality with the help of advanced tools of the projective dynamic.

Note that in Theorem 1.1 the more general equality was considered (we did not even need the plurisubharmonicity) and
the methods we were using were much simpler.

We would like to point out that the proof for the equalitym1(f (x)) = m2(x)q is even much less complicated (in this case
p = 1 and the other steps of the proof are not needed). More precisely, to prove the theorem in this case one may proceed
in the following way: using the invariance of the Shilov boundary from [5] and basic properties of Shilov boundaries we
get that f (tp2x) = tp1 f (x) for x in a neighborhood of 0 and t in a neighborhood 1, where q = p1/p2. From this equality we
deduce that f extends to the whole Cm and f (tp2x) = tp1 f (x) for x ∈ Cn, t ∈ C. Thus f is a polynomial.

Note also, that the argument presented above does not require the theorem of Bell on proper holomorphic mappings
between balanced domains.

Remark 2.2. The statement of Theorem 1.1 is clear ifm1 andm2 are the Euclidean norms and f , g are arbitrary holomorphic
mappings (as the Euclidean norm is R-analytic). One may check that in this case p = 1.

Similarly, the statement of Theorem 1.1 is clear in the case when m1,m2 are operator norms (as the operator norm is
R-analytic except for an analytic set).

Remark 2.3. Note that in the case whenm = k and q = 1, the number p occurring in the statement of Theorem 1.1 is equal
to the multiplicity of the mapping f (restricted to some neighborhood of 0). Note also that for p = 1 the mappings f and g
are not necessary biholomorphic (but then f = ζ1g for a linear mapping ζ1).

Assume that p occurring in Theorem 1.1 is equal to 2. Then we are able to solve the Eq. (1) and state that f (x) =

Q1(g(x)) +
√
Q2(g(x)), where Q1 is linear mapping, Q2 is a homogeneous polynomial of degree 2, and the branch of the

square is chosen so that
√
Q1 ◦ g is holomorphic.

Generally, we cannot conjecture that Q2 vanishes. Consider the following example: mi(x, y) = |(x, y)| = |x| + |y|, i =

1, 2, f (x, y) =
1
2 (x

2
+ 2xy + y2, x2 − 2xy + y2) and g(x, y) = (x2, y2). Then obviously |f (x, y)| = |g(x, y)|,Q1(x, y) =

1/2(x + y, x + y) and Q2(x, y) = xy.

Remark 2.4. The assumptions of the openness of the mappings f and g in a neighborhood of a are important. This is
illustrated by the following example: f (x, y) = (xy, x2y), g(x, y) = (xy, y) and ∥(x, y)∥ = max{|x|, |y|}. Clearly ∥f (x, y)∥ =

∥g(x, y)∥ if and only if |x| ≤ 1 or y = 0.
Note also that for any neighborhood U of 0 the images f (U) and g(U) are not analytic.
It is natural to ask whether the assumption of the openness may be weakened. We would like to point out that the

answer to this question is obvious in the case m = 2 — it is sufficient to consider the Weierstrass polynomials of f and g .
This reasoning however cannot be applied tom ≥ 3.
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3. Quasi-circular domains

Let k1, . . . , kn be natural numbers. A domain D of Cn is said to be (k1, . . . , kn)-circular if

(λk1x1, . . . , λknxn) ∈ D whenever λ ∈ ∂D, x = (x1, . . . , xn) ∈ D. (11)

If the formula (11) holds for any λ ∈ D, then D is said to be (k1, . . . , kn)-balanced (or (k1, . . . , kn)-complete circular).
A domain Ω is called to be quasi-circular (respectively quasi-balanced) if it is k-circular (resp. k-balanced) for some

k = (k1, . . . , kn) ∈ Nn.
For k = (k1, . . . , kn)-balanced domain D ⊂ Cn onemay define its k-Minkowski functional (a quasi-Minkowski functional)

by the following formula:

µD,k(x) := inf{λ > 0 : (λ−k1x1, . . . , λ−knxn) ∈ D}, (12)

x = (x1, . . . , xm) ∈ Cn. The introduced above function has similar properties as the standard Minkowski functional. Recall
them for the convenience of the reader:

µD,k(α
k1x1, . . . , αknxn) = |α|µD,k(x), x ∈ Cn, α ∈ C, (13)

D = {x ∈ Cn
: µD,k(x) < 1}. (14)

For k = (k1, . . . , kn) ∈ N and x ∈ Cn denote k · x := (xk11 , . . . , x
kn
n ).

Let D be a k-balanced domain and µD,k be the quasi-Minkowski functional associated with this domain. Put k̃j :=
k1·...·kn

kj
, k̃ := (k̃1, . . . , k̃n) and define m(x) := µD,k(k̃−1

· x)k1···kn . One may check that m is radial. In particular, m is the

Minkowski functional of a bounded balanced domain and it satisfies the property m(k̃ · x) = µD,k(x)k1···kn , x ∈ Cn. On the
other hand k̃ · f is open provided that f is an open holomorphic mapping.

This simple observation leads us to the following.

Corollary 3.1. Let µ1, µ2 be quasi-Minkowski functionals of quasi-balanced domains. Let f , g : U → Cm be a holomorphic
mapping such that f (a) = g(a) = 0, for some a ∈ U ⊂ Ck, k ≥ m. Assume that q ∈ R. If µ1(f (x)) = (µ2(g(x)))q in a
neighborhood V ⊂ U of a and the restrictions f |V ′ , g|V ′ are open, then µ1 ◦ f (x) = (µ2 ◦ g(x))q for all x ∈ U and q ∈ Q>0.

One can try to derive a counterpart of the second assertion of Theorem 1.1 in the case of quasi-Minkowski functionals.
Since the possible formula is a little complicated and self-evident, we omit it here.

For more information on quasi-circular domains we refer the reader to [6].

4. Some applications

It is well known by Bell’s result (see [1]) that any proper mapping f between complete circular domains such that f is
non-degenerate (i.e. f −1(0) = {0}) is a polynomial. So we may expand f in a series f =

q
j=p Qj, p ≤ q, where Qj are

homogeneous of degree j. Let us introduce the following notation: ρ(f ) := Qp, ϱ(f ) := Qq.
The following was essentially proved in [2].

Proposition 4.1. Let D,Ω1,Ω2 ⊂⊂ Cn be pseudoconvex balanced domains. Let fi : D → Ωi be proper holomorphic mappings
such that f −1

i (0) = {0}, i = 1, 2. Assume that there are m,M > 0 such that m∥f2(x)∥q
≤ ∥f1(x)∥ ≤ M∥f2(x)∥q, x ∈ D. Then

µ1(f1(x)) = µ2(f2(x))q, x ∈ Cn. In particular, µ1(ϱ(f1)(x)) = µ2(ϱ(f2)(x))q and µ1(ρ(f1)(x)) = µ2(ρ(f2)(x))q for x ∈ Cn,
where µ1 and µ2 are Minkowski functionals of Ω1,Ω2, respectively.

Thus, if f1 is a homogeneous polynomial, then f2 is homogeneous, as well.

Proof. It is well known that gΩ1(0, f1(x)) = qgΩ2(0, f2(x)). Therefore µ1(f1(x)) = µ2(f2(x))q for x ∈ Ω . Applying
Corollary 3.1 we state that µ1(f1(x)) = µ2(f2(x))q for x ∈ Cn.

Considering the values of the equations t−n1µ1(f1(tx)) = t−n1µ2(f2(tx))q and tn2µ1(f1(x/t)) = tn2µ2(f2(x/t))q at t = 0
we easily get the second part of the assertion. �

Remark 4.2. Suppose that D is a k-circular domain and consider the mapping π : Cn
∋ z → k.z ∈ Cn. Then D̃ := π−1(D)

is a balanced domain and π : D̃ → D is proper.
Let G be a complete circular domain. A simple argument together with Bell’s theorem shows that any non-degenerate

proper holomorphic mapping f : D → G is a polynomial and that it may be written as f =


j≥p fj, where each term fj is a
k-homogeneous polynomial of order j (i.e. fj(tk1x1, . . . , tknxn) = t jf (x), x ∈ Ω1, t ∈ D).

Recall also that (see e.g. [4]) any bounded complete circular domain D in Cn has a schlicht envelope of holomorphy; what
is more, its envelope of holomorphy D̂ may be realized as a bounded complete circular domain in Cn.
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Example 4.3 (See [3]). LetΩ1 be a bounded complete k-circular domain andΩ2 a bounded balanced domain. Suppose that
f : Ω1 → Ω2 is a proper mapping such that f −1(0) = {0}. Let f =


j≥p fj, where fj is k-homogeneous of order j. Assume

that f −1
p (0) = 0. Then f = fp.

Proof. Repeating the argument used in Remark 4.2 we may assume that Ω1 is a complete circular domain. Moreover, the
mapping f may be extended to a proper holomorphic mapping between envelopes of holomorphy f̂ : Ω̂1 → Ω̂2 such that
f̂ (Ω1) = Ω2 and f̂ −1(Ω2) = Ω1 (see e.g. [4, Theorem 2.12.5]). Therefore, we lose no generality assuming that Ω1 and Ω2
are pseudoconvex.

Then one may easily check that A∥x∥p
≤ ∥fp(x)∥ ≤ B∥x∥p, x ∈ Cn, for some positive A, B (use the fact that fp(x1∥x∥−1,

. . . , xn∥x∥−1) is uniformly bounded for x ≠ 0). This implies that m∥x∥p
≤ ∥f (x)∥ ≤ M∥x∥p, x ∈ Ω1, for some constants

m,M > 0. Now it suffices to apply Proposition 4.1 to get that f is homogeneous. �
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