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Abstract Information channels from SCF MO calculations using different basis sets
and their entropic bond descriptors are compared within the orbital communication
theory. In this information-theoretic (IT) treatment of communications between basis
functions the overall covalency and ionicity bond components reflect the average com-
munication noise and information flow, respectively, in the resolution level specified by
the adopted set of basis functions. The basis-set dependence of the orbital conditional
probabilities and their entropic descriptors of the information covalency/ionicity con-
tent is explored. Compared to the minimum setχ of the occupied atomic orbitals of the
separated constituent atoms, the extended basis sets of Gaussian orbitals and/or their
formal contractions generally give rise to a higher IT-covalency and lower IT-ionicity
descriptors of the system chemical bonds. In the augmented set case, χaug. = (χ ,ψ),
containing the polarization function complement ψ of χ , the use of only χ → χ

communications is advocated in a semi-quantitative chemical interpretation of the IT
bond indices. The maximum-overlap criterion is used to transform the general (ortho-
normal) extended basis ξ to its semi-augmented form χ̃aug. = ˜ξ = (χ̃ ,˜ψ), in which
χ̃ ≈ χ and ˜ψ ≈ ψ , which facilitates the near minimum basis set interpretation of bond
descriptors and extraction of communications involving the polarization functions ˜ψ .
A similar transformation using the minimum information distance criterion can be

Throughout the paper A, A and A denote the scalar quantity, row-vector and square/rectangular matrix,
respectively.
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also envisaged. The effect of the atomic reduction of the molecular channels, which
misses the effect of the “internal” communications (bonds) on constituent atoms, is
also examined. As intuitively expected, the IT descriptors of such reduced channels
are found to be less sensitive to the basis set enlargement.

Keywords Basis set dependence · Bond covalency/ionicity · Chemical bond
multiplicities · Entropic bond descriptors · Information theory · Maximum overlap
criterion · Minimum information distance rule · Molecular information channels ·
Orbital communication theory

1 Introduction

The information theory (IT) [1–7] has recently been effectively used as a unifying
concept in physics [8] and in an exploration of the electronic structure of molecules
[9–11]. The effective state of bonded atoms relative to the corresponding free atoms
defining the system promolecule has been probed [12–20] and the IT justification
[10–20] of the stockholder principle of Hirshfeld [21] for partitioning the molecular
electron distribution into atomic pieces was given. The IT approach has also been
applied to detect/index the system chemical bonds [9–11,22–29]. The molecular dis-
placements of the entropy/information quantities due to bond formation, relative to the
initial (promolecular) densities and their free-atom components, have been advocated
as efficient probes of the chemical bonds [22–29].

It has also been argued that a network of the system chemical bonds, generated
by the occupied molecular orbitals (MO), determines the communication channels
for the probability/information delocalization throughout the whole molecular system
[9–11,30–38]. It generates the communication noise in the ground-state propagation
of signals of the electron allocations to basis functions of SCF MO calculations,
e.g., the (orthogonalized) atomic orbitals (AO), and gives rise to an effective flow of
information contained in the electron probability distributions. The former has been
linked to the molecular overall bond-covalency, while the latter reflects the associ-
ated bond-ionicity. Together they index the resultant IT bond multiplicity (in bits)
[6,7,9–11,30–38].

The entropic manifestations of electron redistributions due to chemical bonds, e.g.,
those reflected by the Fisher [1], Shannon [2] or Kullback-Leibler [4,5] measures of
the information content, have been used in probing the chemical bonds of a molecule
[9–20]. For example, the non-additive part of the Fisher information in MO resolu-
tion [25] has been shown to generate the familiar electron localization function (ELF)
[39–41], while the associated AO-resolved measure provides the basis of the Con-
tra-gradience (CG) probe [10,11,26] of the chemical bond localization in molecular
systems [10,11,26–29]. These novel IT criteria complement the familiar density-dif-
ference analysis reflecting the reconstruction of the initial densities of free atoms of
the promolecule through the polarization (promotion) of the constituent atoms and the
charge-transfer (CT) between them.

The molecular channel is defined by the conditional probabilities between the ele-
mentary events of ascribing electrons to the basis functions in the “input” and “output”
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of the communication network. It reflects the probability propagation between these
elementary functions, e.g., those of the Gaussian expansion of AO. Its average noise
(covalency, delocalization) and information flow (ionicity, localization) descriptors,
defined by the complementary conditional-entropy and mutual-information quanti-
ties, then measure the “scattering” and “deterministic” aspects of the information
system in question. They have been established as convenient tools for characteriz-
ing the chemical bonds in the orbital communication theory (OCT) [10,11,31–38].
The promolecular reference, of the non-bonded atoms in their molecular positions,
constitutes a natural initial stage in the bond-formation process. It has to be used to
determine the difference aspect of the chemical bond, i.e., the “history” of the bond
formation. A use of the AO-resolved information channels also allows one to connect
to the standard orbital interpretations and SCF LCAO MO computations of molecular
electronic structure, in both the Hartree-Fock (HF) or Kohn-Sham (KS) theories.

These molecular communications can be explored within any type of the basis set,
e.g., the primitive Gaussians and/or their formal contractions. Since each selection of
the basis functions determines its own set of the electron-allocation events in OCT
their entropy/information descriptors are by definition basis set dependent. It is the
main purpose of the present work to examine this dependence in some detail and pro-
pose adequate platforms for their comparison in the chemically meaningful terms and
a subsequent interpretation of the information origins of the chemical bond.

More specifically, the orbital maximum overlap and the minimum information-dis-
tance criteria can be used to transform the arbitrary basis functions to equivalent
orbitals resembling AO, and to produce the associated, chemically relevant commu-
nication systems. In this numerical analysis both the fully resolved and reduced chan-
nels [9,42] of communications between the atomically-centered basis functions will
be compared. The entropic descriptors are measured in bits, the unit corresponding to
the basis 2 of the logarithmic measure of information.

2 Molecular conditional probabilities and their information descriptors

In OCT using the given (othonormal) basis χ = {χk ≡ |k〉} the molecule is viewed
as the communication channel (see Fig. 1), in which “signals” conveying a message
about the electron distribution among these elementary functions are transmitted from
the molecular “source” (input) a = {χi ≡ |i〉} = χ , to the molecular “receiver”
(output) b = {χ j ≡ | j〉} = χ ′, both consisting of all basis functions used to repre-
sent the system MO. It should be emphasized, that the multiple (cascade) scatterings
are also admissible, since each AO in the molecular system both emits and receives

Fig. 1 The information
channels for determining the
(molecular) IT-covalency (a)
and the (difference) IT-ionicity
(b) bond descriptors in OCT

(a)

(b)
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signals of electron allocations [11,43–47]. The conditional probabilities for the direct
(single-stage) in such a transmission of information,

P(b|a) = {P(χ j |χi ) ≡ P ( j |i) = P(i ∧ j)/pi ≡ Pi→ j } ≡ P(a → b), (1)

where pi stands for the molecular probability of theχi occupancy and P(i ∧ j) denotes
the joint probability of observing the two orbitals in the occupied MO subspace of the
molecule, then generate the so called direct bond multiplicities and their covalency
(noise) and ionicity (deterministic) components. They have been generated [31–36]
from the quatum mechanical superposition principle [48] and the multiple scattering
effects, responsible for the indirect bonds realized through the AO intermediaries, have
been explored [43–47,49].

In the restricted HF (RHF) approximation these direct-scattering probabilities
P(b|a), for the closed-shell molecular configuration of N = 2r electrons can be
expressed in terms of elements of the (idempotent) charge-and-bond-order (CBO),
density matrix

γ = 〈χ |ϕ〉n0〈ϕ|χ〉 ≡ N 〈χ |D̂|χ〉
= 2〈χ |ϕo〉〈ϕo|χ〉 ≡ 2〈χ |P̂b|χ〉 = {γi, j }, γ2 = 2γ, (2)

where the (diagonal) matrix n0 = {nsδs,t } groups MO occupations in the molecular
ground-state, D̂ = |ϕ〉(n0/N )〈ϕ| = |ϕ〉p0,ϕ〈ϕ| stands for the density operator of the
associated MO ensemble, and P̂b = |ϕo〉〈ϕo| denotes the projection onto the bonding
subspace |ϕo〉 = {ϕ1, ϕ2, . . . , ϕr } of r occupied MO in the molecular ground-state.

The normalized probability P ( j |i) ≡ P(i → j) derived from the quantum super-
position principle [48] applied to the occupied subspace of MO then reads [31]:

P( j |i) = Ni | 〈i |P̂b| j〉 |2
= Ni 〈 j |P̂bP̂i P̂b| j〉 ≡ Ni 〈 j |Ŝi | j〉 = (2γi,i )

−1γi, jγ j,i , (3)

where P̂i = |i〉〈i | and Ni = 2/γi,i stands for the normalization constant satisfying
the relevant sum rule:

∑

j

P( j |i) = (Ni/4)
∑

j

γi, jγ j,i = (Ni/2)γi,i = 1. (4)

This probability is seen to be determined by the expectation value in the final (variable,
output) state χ j of the scattering operator Ŝi from the initial (reference, input) state
χi :

Ŝi = P̂b|i〉〈i |P̂b = P̂bP̂i P̂b ≡ |ib〉〈ib| ≡ P̂
b
i , (5)

where |ib〉 = P̂b|i〉 stands for the projection of χi onto the ϕo subspace. Hence, rec-
ognizing the molecular probabilities of basis functions p = {pi = γi,i/N } gives the
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following joint probability of simultaneously observing two functions in the molecular
bond system:

P(i ∧ j) = pi P( j |i) = (2N )−1 γi, jγ j,i , (6)

which satisfy the required partial and overall normalizations:

∑

i

P(i ∧ j) = p j ,
∑

j

P(i ∧ j) = pi ,
∑

i

∑

j

P(i ∧ j) = 1. (7)

The molecular conditional entropy of the outputs-given-inputs in Fig. 1a,

S(b|a) = −
∑

i∈χ
pi

∑

j∈χ ′
Pi→ j log2 Pi→ j

= −
∑

i∈χ

∑

j∈χ ′
P(i ∧ j) log2

P(i ∧ j)

pi
≡ Sχ , (8)

reflects the average noise (IT-covalency), while the the mutual information in the
promolecular input and the molecular output signals of Fig. 1b,

I (a0 : b) =
∑

i∈χ

∑

j∈χ ′
P(i ∧ j) log2

P(i ∧ j)

p0
i p j

=
∑

i∈χ

∑

j∈χ ′
P(i ∧ j) log2

[

P(i ∧ j)

pi p j

(

pi

p0
i

)]

=
∑

i∈χ
pi

∑

j∈χ ′
Pi→ j

[

log2

(

pi

p0
i

)

− log2 p j + log2 Pi→ j

]

=
∑

i∈χ
pi log2

(

pi

p0
i

)

⎛

⎝

∑

j∈χ ′
Pi→ j

⎞

⎠ −
∑

j∈χ ′

⎛

⎝

∑

i∈χ
P(i ∧ j)

⎞

⎠ log2 p j − S(b|a)

= �S(p
∣

∣

∣p0 )+ S(p)− S(b |a ), (9)

measures the channel IT ionicity (information capacity) [9–11,30–38]. In the preced-
ing equation we have recognized the relevant normalization conditions of the molec-
ular probabilities,

�S(p
∣

∣

∣p0 ) =
∑

i∈χ
pi log2

(

pi

p0
i

)

(10)

stands for the cross-entropy (entropy deficiency, missing information) of Kullback and
Leibler [4,5] measuring the information-distance, the similarity measure between the
molecular and promolecular distributions of AO probabilities, while
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S(p) = −
∑

j∈χ ′
p j log2 p j (11)

denotes the familiar Shannon entropy [2,3] of the molecular probabilities of basis
functions.

Therefore, the overall IT-bond index, which combines the above entropy-covalency
and information-ionicity components, gives:

N (a0; b) ≡ S(b|a)+ I (a0 : b) = S(p)+�S(p
∣

∣

∣p0 ). (12)

This equation determines the overall “normalization” of the global bond-multiplicity
index of the IT description in OCT. The first, molecular contribution measures the
overall uncertainty content in the ground-state probability distribution p. The sec-
ond, difference term measured by the information “distance” between molecular and
promolecular AO probabilities reflects the CT changes due to bond formation. Thus,
Eq. (12) explicitly separates the overall molecular delocalization (“covalency”) mea-
sure S(p) from the average entropic displacement (“ionicity”) effect �S(p

∣

∣p0 ) due
to the global displacement of the final electronic probability density from its initial,
promolecular analog.

One also observes that the mutual-information quantity estimated from the purely
molecular channel of Fig. 1a,

I (a : b) = S(p)− S(b|a) ≡ Iχ , (13)

gives rise to the modified overall index

N (a ; b) ≡ S(b|a)+ I (a : b) = S(p), (14)

and hence:

N (a0; b)− N (a ; b) = �S(p
∣

∣

∣p0 ). (15)

In Table 1 we have compared for four representative molecules the illustrative IT
bond descriptors (Eqs. 8, 13 and 14) resulting from the AO-channel, generated by
RHF calculations in the minimum STO-3G basis set, and from the contracted basis set
channel, determined by SCF MO calculations in the extended 6-31G* basis set. These
predictions demonstrate the basis set dependence of entropic bond indices: relative to
the minimum basis AO description the extended set is seen to increase the commu-
nication noise (indeterminacy) descriptor of the bond covalency, while diminishing
the complementary information-flow (determinacy) measure of the bond ionicity. In
the next section we shall develop a common platform for comparing such seemingly
diverse predictions in OCT and establish appropriate means for their the chemically
meaningful interpretation.
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Table 1 Basis set dependence of the entropy/information descriptors of the molecular communication
channels for four illustrative molecules: RHF results in the minimum (STO-3G) and extended (6-31G*)
basis sets

Molecule STO-3G 6-31G*

S(p|p′) I (p : p′) N (p ; p′) S(p|p′) I (p : p′) N (p ; p′)

CH4 1.546 1.576 3.122 2.371 1.153 3.525

NH3 1.201 1.733 2.934 2.102 1.253 3.335

H2O 0.813 1.921 2.734 1.716 1.237 2.953

CO 0.720 2.506 3.226 1.780 0.923 2.703

The molecular input signal has been used to determine both the conditional-entropy and mutual-information
data (Fig. 1a)

3 Molecular communications in the minimum and augmented bases

In the OCT exploration of the molecular bond structure one thus faces the problem
of comparing the orbitally resolved information channels resulting from SCF LCAO
MO calculations using different basis sets. Their conditional-entropy (IT-covalency)
and information-capacity (IT-ionicity) descriptors are sensitive to the type and the
number of basis functions used to represent the occupied MO subspace, which fully
determines the system chemical bonds. Indeed, each basis set determines its own
electron-assignment events in both the input and output of the molecular informa-
tion channel. Therefore, a natural question arrises: how to compare communication
systems generated in a small basis

χ = (χ1, χ2, . . . , χm), (16)

and a larger set

χaug. = [(χ1, χ2, . . . , χm), (ψm+1, ψm+2, . . . , ψm+n)] = (χ ,ψ), (17)

in which m functions of the smaller basis χ are augmented by n polarization func-
tions ψ .

For example, one can envisage a typical scenario, when χ stands for the orthog-
onalized minimum basis of AO, which are occupied in the ground-state of separated
atoms, with ψ then denoting the polarization functions required to account for the
lowered symmetry of atoms-in-molecules (AIM) due to their molecular environment.
Of interest also are the associated entropy/information descriptors of the system chem-
ical bonds and their covalent/ionic components that these channels generate. For rea-
sons of simplicity the closed-shell molecular ground-state is assumed throughout. The
minimum basis set χ delineates the bonding capabilities offered by the active AO of
separated atoms, which are occupied in their respective ground-states, while the polar-
ization complement ψ embodies all purely molecular sources of chemical bonding,
for which atomic promotion to higher (ground-state unoccupied) AO is required.
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Fig. 2 Effective conditional probabilities Pe f f.(χ → χ ′|χaug.) of communications between functions of
the small basis set generated from the cascade scattering involving large (augmented) basis set χaug. =
(χ ,ψ)

One way to transform the communication system for a large basis set χaug. into
an effective probability propagation between basis functions of a small set χ is via
the propability propagation in the information cascade χ → χaug. → χ ′ (shown in
Fig. 2). The large basis calculations generate the associated CBO matrix γaug. (double
the density matrix daug.),

γaug. = 2〈χaug.|P̂b|χaug.〉 ≡ 2daug. = 2

[ 〈χ | P̂b |χ〉 〈χ | P̂b |ψ〉
〈ψ | P̂b |χ〉 〈ψ | P̂b |ψ〉

]

≡
[

γaug.
χ ,χ ≡ {γi, j } γaug.

χ ,ψ ≡ {γi,l}
γaug.
ψ,χ ≡ {γk, j } γaug.

ψ,ψ ≡ {γk,l}

]

, (18)

where P̂b again stands for the bond projector into the subspace of the (doubly occu-
pied) MO. Its blocks determine all elementary stages of the cascade communications
of Fig. 2:

P(χ → χ ′′) = {Pi→ j = γ 2
i, j/(2γi,i ) = d2

i, j/di,i } = P(χ ′′ → χ ′)T,
P(χ → ψ) = {Pi→l = γ 2

i,l/(2γi,i ) = d2
i,l/di,i },

P(ψ → χ ′) = {Pl→ j = γ 2
l, j/(2γl,l) = d2

l, j/dl,l}. (19)

These direct-scattering blocks define the associated (rectangular) matrices P(χ →
χaug.) and P(χaug. → χ ′) of the stage-prababilities in the cascade:

P(χ → χaug.) = [P(χ → χ ′′),P(χ → ψ)] and

P(χaug. → χ ′) =
[

P(χ ′′ → χ ′)
P(ψ → χ ′)

]

, (20)

thus determining the effective probabilities Peff .(χ → χ ′|χaug.) resulting from the
cascade χ → χaug. → χ ′ ≡ χ → [χ ′′,ψ] → χ ′:

123



J Math Chem (2012) 50:1437–1457 1445

Peff .(χ → χ ′|χaug.) = P(χ → χaug.)P(χaug. → χ ′)
= P(χ → χ ′′)P(χ ′′ → χ ′)+ P(χ → ψ)P(ψ → χ ′)

=
{

∑

k

P(i → j ′|k); i ∈ χ , j ′ ∈ χ ′, k ∈ χaug.

}

. (21)

This information channel involves the extended-set of basis functions as intermedi-
ates in the effective communications between the minimum-set AO in the cascade input
and output, which are occupied in the promolecule combining the free atoms placed
in their molecular positions. Therefore, in this cascade information system one effec-
tively accounts for contributions to propagations between basis functions χ and χ ′
originating from the polarization functions ψ . This retains the minimum-basis frame-
work for the subsequent, chemically meaningfull interpretation of bond-multiplicities.
In this way the (implicit) supplement ψ in the extended set of the intermediate stage
of the cascade intervenes only in calculating the effective molecular communications
between the (explicit) minimum basis AO.

Therefore, the cascade of Fig. 2 fully accounts for the effects of ψ-intermediaries
in shaping the resultant communication network between the minimum-set of basis
functions. The effective probabilities of Eq. 21 represent the parallel arrangement of
all single-AO “bridges” {P(i → j ′|k)}, which have recently been introduced to inves-
tigate the implicit (bridge) bond orders realized via the AO intermediaries [43–47].
It should be observed, that the full conditional probability matrix in the large basis
χaug., of the direct χaug. → χaug.′ communications,

P(χaug. → χaug.′) =
[

P(χ → χ ′) P(χ → ψ ′)
P(ψ → χ ′) P(ψ → ψ ′)

]

, (22)

combines the three blocks of Eq. 19 and the scatterings between polarization functions
themselves:

P(ψ → ψ ′) = {Pk→l = γ 2
k,l/(2γk,k) = d2

k,l/dk,k}. (23)

It has been also demonstrated elsewhere [46,47,49], that applying the idempotency
property of the density matrix to the superposition of amplitudes of the elementary
bridge-probabilities {P(i → j ′|k)}, predicts for such a parallel propagation through
the complete bridge χaug., consisting of all (parallel) single-AO bridges,

P(χaug. → χaug.′ |χaug.′′) ≡
∑

k′′
P(χaug. → χaug.′ |k′′) = P(χaug. → χaug.′).

(24)

However, the effective probabilities Peff .(χ → χ ′|χaug.) should slightly differ from
their minimum basis analogs P(χ → χ ′) by additionally incorporating all purely
molecular origins of chemical bonding which are not admissible in the smaller set:

Peff .(χ → χ ′|χaug.) ≈ P(χ → χ ′). (25)
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In the numerical part of this work we shall compare the conditional-entropy (noise)
descriptors of the overall bond covalency in these two communication networks, in
order to extract terms due to these polarizational degrees-of-freedom.

4 Use of the maximum overlap criterion

In a general case of the extended (non-orthogonal) basis ζ , 〈ζ |ζ 〉 = S, of say Gaussian
(G) orbitals or their formal contractions, we first transform the basis functions to their
symmetrically orthogonalized analogs ξ = ζS−1/2, 〈ξ |ξ〉 = I. Since in comparing
the communication channels for ξ and χ the larger set cannot be directly related to
the minimum basis χ of the free-atom occupied AO, e.g., of the STO-nG type, one
should again rotate functions ξ into their optimum (orthonormal) linear combinations,

˜ξ = (χ̃ ,˜ψ) = ξU = ξ [Uχ |Uψ ] = ζC, C = S−1/2U or U = S1/2C, (26)

which generate the m-dimensional subspace χ̃ = ξUχ of orbitals exhibiting the max-
imum pairwise resemblance (overlap) with their minimum basis analogs:

trχ 〈χ | χ̃〉 =
m

∑

i=1

〈

χ i |χ̃ i
〉 ≡ tr˜�χ = maximum. (27)

The relevant Euler equations for this maximum overlap criterion (MOC) are well
known, e.g. [50–52], giving the following optimum transformation in terms of the
rectangular matrix� = 〈χ |ξ〉 of the overlap integrals between functions in these two
basis sets:

χ̃ = ξ
[

�T(��T)−1/2
]

= ξUχ . (28)

The associated representation of the bond-subspace projector of Eq. 18,

γχ̃ = 2〈χ̃ |P̂b|χ̃〉 ≡ 2dχ̃ = 2U†
χ 〈ξ |P̂b|ξ〉Uχ = U†

χ
γξUχ ≡ {γ̃i, j = 2˜di, j }, (29)

then determines the effective communications between optimum functions χ̃ in the
input and output of the molecular information channel:

˜P(χ̃ → χ̃ ′) = {P(χ̃i → χ̃ ′
j ) = γ̃ 2

i, j/(2γ̃i,i ) = ˜d2
i, j/

˜di,i }. (30)

These communications provide the effective minimum-basis description of the prob-
ability propagations in the general extended basis. The IT bond descriptors of this
channel should then be compared with those resulting from the reference basis set χ .
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The remaining blocks of the full CBO matrix in the transformed basis˜ξ read:

γ
˜ξ = 2〈˜ξ |P̂b|˜ξ〉 = 2U†〈ξ |P̂b|ξ〉U = U†γϕU ≡ {γ̃r,s = 2˜dr,s}

= 2

[ 〈χ̃ | P̂b |χ̃〉 〈χ̃ | P̂b
∣

∣˜ψ
〉

〈

˜ψ
∣

∣ P̂b |χ̃〉 〈

˜ψ
∣

∣ P̂b
∣

∣˜ψ
〉

]

≡
⎡

⎢

⎣

γ
˜ξ
χ̃ ,χ̃ ≡ γχ̃ γ

˜ξ

χ̃ ,˜ψ
≡ {γ̃i,l}

γ
˜ξ
˜ψ,χ̃

≡ {γ̃k, j } γ
˜ξ
˜ψ,˜ψ

≡ {γ̃k,l}

⎤

⎥

⎦
. (31)

They in turn determine the “external” communications χ̃ → ˜ψ
′
, ˜ψ → χ̃ ′ and ˜ψ → ˜ψ

′

in the MOC-transformed˜ξ channel,

˜P(χ̃ → ˜ψ
′
) = {P(χ̃i → ˜ψ ′

l ) = γ̃ 2
i,l/(2γ̃i,i )},

˜P(˜ψ → χ̃ ′) = {P(˜ψk → χ̃ ′
j ) = γ̃ 2

k, j/(2γ̃k,k)},
˜P(˜ψ → ˜ψ

′
) = {P(˜ψk → ˜ψ ′

l ) = γ̃ 2
k,l/(2γ̃k,k)},

which generate the associated polarization/promotion contributions to the system IT
bond indices.

To summarize, in a general case of the (orthogonalized) basis set ξ , in which the min-
imum set χ is not directly augmented by its complement ψ of polarization functions,
one first interprets the molecular CBO/probability data in terms of the equivalent, semi-
augmented basis˜ξ , in which the subspaces χ̃ (strongly resembling χ) and hence also
˜ψ(approximating ψ) have been established using MOC. This procedure also offers
some interpretative advantages, by separating the near minimum-basis (internal) and
the remaining polarization (external) communication links and generating their asso-
ciated IT bond multiplicities due to polarization (promotion) in bonded atoms. A more
detailed analysis of chemical implications of these “external” communications will
be the subject of a separate study. The minimum-basis sources of the chemical bond,
due to the internal communications in χ̃ , are then determined by the diagonal block
γχ̃ of the transformed CBO data [Eq. (31)].

Clearly, this MOC procedure can be also regarded as generating the optimum aug-
mented set χ̃aug. = ˜ξ = (χ̃ ,˜ψ) from the initial extended set ξ . Indeed, the MOC
procedure by determining the optimum subspace χ̃ also defines, implicitly, the com-
plementary subspace ˜ψ , i.e., the best polarization/diffuse complement of χ̃ , which
can be derived within the given extended basis ξ .

The performance of this criterion and the quality of the derived MOC fits can
be tested by first comparing some elementary chemical descriptors of the molecular
electronic structure from standard RHF calculations, e.g., the Wiberg [53] bond-orders

WA−B =
∑

i∈A

∑

j∈B

(γi, j )
2 (32)

(see Table 2), in each (ortho-normal) basis set considered. In these numerical tests
performed for illustrative molecules the reference minimum basis set χ contains the
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Table 2 Wiberg [53] bond-orders {WA−B} for illustrative molecules: RHF results in the extended (ξ) and
minimum (χ and χ̃) basis sets

Molecule A—B W ξ
A−B Wχ

A−B W χ̃
A−B Molecule A—B W ξ

A−B Wχ
A−B W χ̃

A−B

H2 H—H 1.000 1.000 1.000 C2H6 C—C 1.099 1.024 1.027

HF H—F 1.049 0.977 0.886 C—H 0.971 0.991 0.990

F2 F—F 1.214 1.000 1.000 C2H2 C—C 3.083 3.003 3.001

NaCl Na—Cl 1.122 1.049 0.834 C—H 0.939 0.992 0.981

H2O O—H 1.028 0.983 0.943 C6H6 o C—C 1.488 1.444 1.444

CO2 C—O 2.348 1.983 1.942 m C—C 0.059 0.001 0.001

NH3 N—H 1.007 0.989 0.977 p C—C 0.111 0.116 0.115

CH4 C—H 0.989 0.998 0.998 C— H 0.933 0.981 0.980

STO-3G expansions, to which the general extended set ξ of the 6-31G** type is then
MOC adjusted to determine the χ̃ subset itself.

5 Atomic reductions and diatomic subchannels

The channel reduction [9,42], by combining contributions due to group of orbitals,
can be used to separate the intra-atomic bond contributions from the truly bond-
ing, inter-atomic ones. For example, adding molecular probabilities due to orbitals
χX = {χ j , j ∈ X} from atom X allows one to generate the corresponding condensed
probability data {PX = ∑

x∈X px } for the atoms as whole building blocks in a mole-
cule. This atomic reduction can be performed in the input and output of the molecular
communication system. As a result the constituent AIM, acting as whole units, then
determine the admissible emitters and receivers of the electron assignment signals
in the molecular communication system. Such AIM-resolved description, which we
call the atomic-frame of the MO channel, can be generated for any adopted basis
set. The question then arises, how sensitive are the entropy/information descriptors
of the scattering and deterministic aspects of the information propagation in such
atomic channels to the basis set quality. It should be realized, that the given determin-
istic communication X → Y, withP (Y|X) = 1, becomes “noisy” in the underlying
orbital resolution {χX → χY}, with communications defined by P(χY|χX), where
∑

x∈X
∑

y∈Y P(y |x ) = 1. The AIM input-reduction scheme thus determines the
group sources of the the chemical bonds which are counted by the accompanying
atomic output-reduction. In this section we briefly summarize the reduction process
of conditional probabilities of the original (fully resolved) communication channel in
the given basis set χ = {χk ≡ k} to the associated atomic-frame.

We recall that these elementary communication links have been expressed as the
expectation values in the output-orbital | j〉 of the scattering operator from the input-
orbital |i〉 (Eq. 5) representing its bond-subspace projector Ŝi = |ib〉〈ib| = P̂b

i ,

Pi→ j = Ni 〈 jb|P̂b
i | jb〉 = Niγi, jγ j,i/4 = (2γi,i )

−1γi, jγ j,i . (33)
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The atomic input-reduction for atom A thus involves the summation over the input
orbitals |i〉 ∈χA, which defines the scattering operator in the molecular bonding sub-
space from this atomic unit as a whole:

ŜA =
∑

i∈A

|ib〉〈ib| = P̂
b
A, (34)

and the associated input-condensed probabilities:

P( j |A) = PA→ j = NA〈 jb|P̂b
A| jb〉 = NA

∑

i∈A

γ j,iγi, j/4

= (2N A)
−1

∑

i∈A

γ j,iγi, j , (35)

where NA = ∑

i∈A γi,i stands for the effective electron population of atom A, and the
normalization constant NA = 2/NA satisfies the condition of Eq. 4:

∑

j

P( j |A) =
∑

A

(NA/4)
∑

i∈A

γ j,iγi, j = 1. (36)

The corresponding output-reduction for atom B involves straightforward summa-
tions of the canonical probabilities of Eq. 33 over the output orbitals | j〉 ∈ χB:

P(B|i) = Pi→B = Ni 〈 jb|P̂b
i | jb〉 = (2γi,i )

−1
∑

j∈B

γ j,iγi, j ,

∑

B

P(B|i) =
∑

j

P( j |i) = 1. (37)

Finally, the simultaneous input and output atomic reductions of the MO channel,
which allows one to determine the IT indices describing the global atomic sources of
the inter-atomic bonds, involve both these condensations of the fully resolved condi-
tional probabilities:

P(B|A) = PA→B = NA

∑

j∈B

〈 jb|P̂b
A| jb〉

= (2NA)
−1

∑

i∈A

∑

j∈B

γ j,iγi, j ,
∑

B

P(B|A) = 1. (38)

They define the associated conditional-entropy (average “noise”) descriptor

Sχ (AB) = −
∑

X∈AB

PX

∑

Y∈AB

P(Y |X ) log P(Y |X ). (39)

It should be emphasized that this totally reduced channel misses some contributions
to these interatomic IT connectivities [9,42], since in the reduced input the atoms are
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treated as whole subsystems thus missing the intra-atomic bond sources due to the
AIM polarization/ promotion. Moreover, since in polyatomics PA + PB < 1, these
diatomic descriptors have to be eventually renormalized to ensure that the diatomic
input signal is complete.

It has been argued elsewhere [36] that by focusing on communications P(χXY|χXY)

in diatomic fragments XY of the molecule, between their constituent orbitals χXY =
(χX,χY), one can derive useful entropy/information indices of the localized bond
X—Y, e.g.,

S(χXY|χXY) ≡ SχXY = −
∑

i∈χXY

pi

∑

j∈χXY

Pi→ j log2 Pi→ j

= −
∑

Z∈(X,Y)

∑

i∈χZ

pi

∑

j∈χZ

Pi→ j log2 Pi→ j

−
⎡

⎣

∑

i∈χX

pi

∑

j∈χY

Pi→ j log2 Pi→ j

+
∑

i∈χY

pi

∑

j∈χX

Pi→ j log2 Pi→ j

⎤

⎦

≡ SχXY(int.)+ SχXY(ext.). (40)

Here, the internal, SχXY(int.), and external, SχXY(ext.), contributions reflect the com-
munication noise generated by the intra- and inter-atomic communication in diatomic
fragment XY. They respectively involve the atom diagonal {P(χX|χX),P(χY|χY)}
and off-diagonal {P(χY|χX),P(χX|χY)} probability scatterings. The latter generate
the conditional entropies which can be expected to be more directly related to the
Wiberg bond multiplicities of the SCF MO theory.

6 Maximum information-similarity criterion

In determining the optimum transformation of a general (orthonortmal) basis set ξ
of Section 4 to the approximate augmented set˜ξ = (χ̃ ,˜ψ), in which the subspace
χ̃ = ξUχ is to resemble as much as possible the minimum set χ of the occupied AO
of the separated constituent atoms, one can also use the relevant information criteria.
For example, one can require the minimum entropy deficiency (information distance)
[4,5] between the electron probability distributions p0(r) and p̃0(r) generated by the
atomically occupied basis sets χ and χ̃ , respectively,

�S[ p̃0 |p ] =
∫

p̃0(r) log
p̃0(r)
p0(r)

dr = minimum. (41)

The reference (orthonormal) AO χ = ξF and their ground-state occupations
ν0 = {νiδi, j } result from the separate SCF MO calculations on the (isolated) con-
stituent atoms. They generate the associated atomic (canonical) CBO matrix, γ0 =
〈ξ |χ〉ν0〈χ |ξ〉 ≡ N 〈ξ |D̂0|ξ〉 = Fν0F†, the associated promolecular electron density
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ρ0(r) = χ(r)ν0χ†(r) = ξ(r)γ0ξ†(r)

=
∑

r,s

γ 0
r,sξ

∗
s (r)ξr (r) ≡

∑

r,s

γ 0
r,s�s,r (r) = tr[γ0�(r)] (42)

and its probability distribution (shape-factor) p0(r) = ρ0(r)/N . Attributing the same
occupations to the approximate orbitals χ̃ then gives the corresponding variational
densities:

ρ̃0(r) = N p̃0(r) = χ̃(r)ν0χ̃†(r) = ξ(r)(Uχν0U†
χ )ξ

†(r) ≡ ξ(r)γ̃0
ξ†(r)

=
∑

r,s

γ̃ 0
r,sΩs,r (r) = tr[γ̃0

�(r)]. (43)

One further observes that for the nonbonded atoms
{

X0
}

of the promolecule M0 =
(

X0
∣

∣Y0
∣

∣ . . .
)

both CBO matrices assume the block-diagonal forms γ0 = {γ0
XδX,Y} and

γ̃0= {γ̃0
XδX,Y} in terms of the atomically arranged basis set ξ = {ξX} with Uχ = {UX}

determining {χ̃X = ξXUX}. Here, ξX combines the basis functions contributed by
atom X, UX groups the relevant expansion coefficients determining its canonical AO.
In this arrangement the basis function distributions �(r) = {Ωr,s(r)} = {�X,Y(r) =
ξ

†
X(r)ξY(r)}. Therefore, the above promolecular traces are given by the sum of the

associated atomic traces,

ρ0(r) =
∑

X

tr[γ0
X�X,X(r)] =

∑

X

ρ0
X(r),

ρ̃0(r) =
∑

X

tr[γ̃0
X�X,X(r)] =

∑

X

ρ̃0
X(r), (44)

where the promolecular densities of nonbonded atoms read:ρ0
X(r) = ∑

x∈X νx |χx (r)|2
≡ N p0

X(r) and ρ̃0
X(r) ≡ N p̃0

X(r) = ∑

x∈X νx |χ̃x (r)|2 ≡ ∑

x∈X ρ̃
0
x (r).

It should be emphasized that in the optimum basis augmentation scheme we are
actually interested in the maximum similarity of each atom ˜X

0
, described by γ̃0

X, to
its reference X0, described by γ0

X, so that the overall information similarity criterion
of Eq. (41) should be replaced by its atomically resolved analog:

�S[˜X0
∣

∣

∣X0 ] =
∑

X

∫

p̃0
X(r) log

p̃0
X(r)

p0
X(r)

dr

=
∑

X

�S[ p̃0
X

∣

∣

∣p0
X ] = 1

N

∑

X

�S[ρ̃0
X

∣

∣

∣ρ
0
X ] = minimum, (45)

or �S[ρ̃0
X

∣

∣

∣ρ
0
X ] = minimum, X = A, B, . . . (46)

In the variational principle the additive functional�S[˜X0 ∣

∣X0 ] must be supplemented
by the associated (canonical) constraints enforcing the prescribed AO occupations
and/or orbital normalization.
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Should the whole basis ξ be used in SCF MO calculations on the ground-states
of the system separated (molecularly placed) atoms, giving the reference orbitals
χX = ξUX, as in determining the counterpoise correction to molecular interactions
[54], then the optimum augmentation scheme should exactly recover the minimum
basis set and the orbital/atomic densities it generates. Indeed, including in this exact
augmentation scheme the relevant constraints of the prescribed atomic numbers of
electrons, N 0

X = ∫

ρ̃0
X(r)dr = ∑

x∈X νx , in the atomically resolved variational prin-
ciple of Eq. 45,

δ

(

∑

X

�S[ρ̃0
X

∣

∣

∣ρ
0
X ] −

∑

X

λX

∫

ρ̃0
X(r)dr

)

≡ δ�[{ρ̃0
X}] = 0. (47)

then reconstructs these densities through the corresponding Euler equations:

δ�[{ρ̃0
X}]

δρ̃0
X(r)

= ln
ρ̃0

X(r)

ρ0
X(r)

+ 1 − λX ≡ fX(r)− λX ≡ ln
ρ̃0

X(r)

GXρ
0
X(r)

= 0. (48)

Indeed, applying the corresponding constraint value gives G X = 1 and hence ρ̃0
X(r) =

ρ0
X(r).

Clearly, by adopting different bases {˜ξX} and {ξX} in the atomic and molecular
calculations, respectively, i.e., {χX = ˜ξX

˜UX} and {χ̃X = ξUX}, can only produce χ̃
resembling χ : {χ̃X ≈ χX}. The independent variational principles for determining the
minimum cross-entropies {�S[ρ̃0

X

∣

∣ρ0
X ],X = A, B, . . .} for the optimum expansion

coefficients UX = (Ux |Ux ′ | . . .) of ρ̃0
X(r) = ρ̃0

X[UX; r] (Eq. 44) of the approxi-
mate (canonical) AO should include the relevant normalization constraints of orbitals
χ̃X = {χ̃x } or their electron densities ρ̃X = {ρ̃0

x (r)},
∫

|χ̃x (r)|2dr ≡ 〈̃x |̃x〉 = 1 = U†
x Ux or

∫

ρ̃0
x (r)dr = νx

∫

|χ̃ x (r)|2dr = νx , x ∈ X, (49)

δ{�S[ρ̃0
X

∣

∣

∣ρ
0
X ] −

∑

x∈X

μx

∫

ρ̃0
x (r)dr} = 0. (50)

The associated Euler equations for the optimum unknowns Ux = {

Ur,x
}

then assume
the form of the eigenvalue problem of the Hermitian matrix HX = ∫

fX(r)�(r)dr :

HXUx = μx Ux , x ∈ X, (51)

and hence:

μx = δ�S[ρ̃0
X

∣

∣ρ0
X ]

δνx

∣

∣

∣

∣

∣

χ̃ x

= U†
x HXUx . (52)
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7 Numerical calculations

The adopted (reference) minimum set χ is the familiar STO-3G basis used in
GAMESS system, while the representative extended set ξ is the split-valence con-
tracted basis 6-31G** also involving a single shell of polarization functions on each
element. The experimental geometries have been used throughout. The results in the
extended set have been subsequently transcribed into the effective minimum set χ̃ , by
using the maximum overlap criterion of Eqs. (27) and (28).

The reported Wiberg indices of bond multiplicities in Table 2 are seen to reflect the
accepted chemical intuition quite well in all basis-set variants reported, but the two
minimum sets are somewhat superior in recognizing the accepted values of the single,
multiple and “half” bonds of the textbook chemistry. For example, as in the Hückel
approximation, these basis sets predict practically 3/2 bond between two ortho-car-
bons, vanishing direct chemical bonding between the two meta-carbons, and approxi-
mately 0.1 cross-ring bond between para-carbons in benzene. One also detects a slight
basis-set dependence of these bond-orders, particularly for CO2 and F2.

A comparison of Table 3 indicates that the MOC of Eq. (27) is indeed quite efficient
in extracting the effective minimum-basis (chemical) interpretation from the extended
basis results. It should also be noticed, that it is the entropy-covalency descriptor S
which exhibits the strongest basis set dependence, with the information-ionicity com-
ponent I remaining practically unaffected by specific choices of basis functions. The
justification of this trend comes from Eq. (9). Indeed, taking into account that for
the given basis set the information distance �S(p |p )= 0, one predicts an increased
invariance of I (p : p) = S(p)− S(p |p ), due to an expected cancellation of increases
in these two entropies accompanying the basis-set enlargement.

A similar conclusion follows from examining Table 4, where the corresponding IT
descriptors of diatomic channels-in-molecules are displayed, both atomically reduced

Table 3 Comparison of the average noise (S) and information-flow (I ) descriptors of the orbital commu-
nications in alternative minimum (χ , χ̃) and extended (ξ) basis sets

Molecule Sξ Sχ Sχ̃ I ξ Iχ I χ̃ �S �I

H2 2.1061 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HF 1.3822 0.3361 0.3209 2.1650 2.1913 2.1910 −0.0152 −0.0003

F2 1.2664 0.1700 0.1735 3.0092 3.1147 3.1114 0.0035 −0.0033

NaCl 0.6172 0.2897 0.2390 3.6895 3.6876 3.7093 −0.0507 0.0217

H2O 1.8818 0.8174 0.7782 1.9218 1.9157 1.9396 −0.0392 0.0239

CO2 1.8695 0.8810 0.8548 2.9669 2.9735 2.9897 −0.0292 0.0162

NH3 2.2851 1.1822 1.1618 1.7280 1.7495 1.7628 −0.0204 0.0133

CH4 2.6874 1.6254 1.6208 1.4774 1.4971 1.5013 −0.0046 0.0042

C2H6 2.5343 1.4337 1.4338 2.4307 2.5151 2.5148 0.0001 −0.0003

C2H2 2.0478 1.0306 1.0294 2.4334 2.4917 2.4910 −0.0012 −0.0007

C6H6 2.5063 1.4248 1.4215 3.5600 3.6835 3.6864 −0.0033 0.0029

The last two columns report deviations in entropic indices: �S = Sχ̃ − Sχ ,�I = I χ̃ − Iχ
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Table 4 The conditional entropies of diatomic fragments in molecules reported in Table 2, obtained from
the RHF calculations for the experimental geometries in the extended (ξ) and minimum (χ , χ̃)) basis sets:
columns 3 and 4 report the average diatomic noise descriptors of the reduced molecular channel in atomic
resolution, while columns 5–8 describe the two fully resolved diatomic communications in the specified
AO bases

Molecule A—B Sξ (AB) Sχ (AB) SξAB SχAB Sχ̃AB �SAB

H2 H—H 1.0000 1.0000 2.1062 1.0000 1.0000 0.0000

HF H—F 0.3532 0.3584 1.3822 0.3361 0.3209 −0.0152

F2 F—F 0.3562 0.3096 1.2664 0.1700 0.1735 0.0035

NaCl Na—Cl 0.2409 0.2288 0.6172 0.2897 0.2390 −0.0507

H2O O—H 0.4175 0.4194 1.3977 0.5138 0.4878 −0.0260

CO2 C—O 0.4642 0.4269 0.9834 0.4464 0.4365 −0.0099

NH3 N—H 0.4703 0.4720 1.2525 0.5283 0.5188 −0.0095

CH4 C—H 0.5081 0.5122 1.0818 0.5685 0.5669 −0.0016

C2H6 C—C 0.4815 0.4638 0.8694 0.3991 0.3991 0.0000

C—H 0.2834 0.2841 0.5465 0.2703 0.2694 −0.0009

C2H2 C—C 0.7822 0.7675 1.4088 0.6715 0.6761 0.0046

C—H 0.3555 0.3614 0.6647 0.3308 0.3289 −0.0019

C6H6 o C—C 0.2243 0.2168 0.4098 0.2199 0.2199 0.0000

m C—C 0.1274 0.1118 0.2565 0.1021 0.1020 −0.0001

p C—C 0.1344 0.1300 0.2584 0.1141 0.1138 −0.0003

C—H 0.1210 0.1213 0.2130 0.1083 0.1078 −0.0005

The last column reports the difference�S between these AO-resolved diatomic networks:�SAB = Sχ̃AB −
SχAB

and in full basis set resolution, respectively. In particular, the entries of the table
last column again demonstrate the MOC efficiency in bringing the extended basis
descriptors to an equivalent minimum basis representation. As expected, the bond
components resulting from the AIM-reduced channels are similar in all representa-
tions. Therefore, they have been numerically validated as practical invariants of any
SCF MO calculations. One also observes that for diatomics in Table 4, for which
PH + PX = 1,X = H, N, O, F, one indeed detects a monotonic decrease in the
entropy-covalency index, as intuitively expected from the increasing electronegativity
of the hydrogen companion.

In the final comparison of Table 5 the overall IT-covalent (unreduced) indices
of Table 4 have been partitioned into the intra-atomic and inter-atomic contribu-
tions of Eq. (40). In terms of these complementary components the basic conclusion
drawn from preceding quantitities still holds: the two minimum variants of the basis
set generate quite similar conditional-entropy descriptors. One also detects, that in
these small-basis descriptions the internal/external communications in or between
the two AIM are comparable, while the large-basis network generates a dramatic
increase in the average noise due to the associated intra-atomic communications
alone.
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Table 5 The intra- and inter-atomic components SζXY(int.) and SζXY(ext.) of the conditional entropies

SζXY, ζ = ξ ,χ andχ̃ , reported in Table 4

Molecule A—B SξAB(int.) SχAB(int.) Sχ̃AB(int.) SξAB(ext.) SχAB(ext.) Sχ̃AB(ext.)

H2 H—H 1.0531 0.5000 0.5000 1.0531 0.5000 0.5000

HF H—F 1.0496 0.1629 0.1444 0.3326 0.1732 0.1765

F2 F—F 1.0472 0.0858 0.0876 0.2192 0.0842 0.0859

NaCl Na—Cl 0.4502 0.1684 0.1327 0.1670 0.1213 0.1063

H2O O—H 1.0009 0.2566 0.2381 0.3968 0.2572 0.2497

CO2 C—O 0.5898 0.2032 0.1954 0.3936 0.2432 0.2411

NH3 N—H 0.8912 0.3020 0.2949 0.3613 0.2263 0.2239

CH4 C—H 0.6576 0.2658 0.2644 0.4242 0.3027 0.3025

C2H6 C—C 0.6172 0.2396 0.2380 0.2522 0.1595 0.1611

C—H 0.3586 0.1471 0.1463 0.1879 0.1232 0.1231

C2H2 C—C 0.7590 0.3051 0.3080 0.6498 0.3664 0.3681

C—H 0.4380 0.1866 0.1867 0.2267 0.1442 0.1422

C6H6 o C—C 0.2448 0.1018 0.1017 0.1650 0.1181 0.1182

m C—C 0.2448 0.1018 0.1017 0.0117 0.0003 0.0003

p C—C 0.2433 0.1018 0.1017 0.0151 0.0123 0.0121

C—H 0.1426 0.0626 0.0624 0.0704 0.0457 0.0454

8 Conclusions

It was the main goal of the present analysis to find satisfactory tools for interpreting
the entropic descriptors of the molecular information channels in orbital resolution,
which are known to be strongly basis-set dependent. The minimum basis of AO occu-
pied in the system “promolecule” generates the most “chemical” account of the bond
covalency or ionicity and its resultant multiplicity, and gives understanding of diverse
factors conditioning the efficiency of the orbital interaction, which can be linked to
the familiar MO diagrams of the textbook chemistry.

Therefore, in this work we have proposed to transform the large-basis commu-
nications into probability propagations in an equivalent (augmented) set, compris-
ing of the effective minimum set of AO determined from the MOC. We have also
numerically confirmed that this fitted small basis and the reference minimum AO set
indeed generate practically identical global and diatomic IT-indices, as well as their
entropy-covalent/information-ionic composition and the internal (intra-atomic)/exter-
nal (inter-atomic) contributions. As expected, the AIM-reduced channels were shown
to be quite insensitive to basis set enlargement, so that the bond descriptors they
generate provide another set of invariants in OCT of the chemical bond.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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22. R.F. Nalewajski, E. Świtka, A. Michalak, Int. J. Quantum Chem. 87, 198 (2002)
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51. A. Gołȩbiewski, Acta Phys. Pol. 23, 243 (1963)
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