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ABSTRACT

We model the vertical structure of mass distribution of the Milky Way galaxy in the framework of a finite-width global disk model.
Assuming only the Galactic rotation curve, we tested the predictions of the model inside the solar orbit for two measurable pro-
cesses that are unrelated to each other: the gravitational microlensing that allows one to fix the disk width-scale by the best fit to
measurements, and the vertical gradient of rotation modeled in the quasi-circular orbits approximation. The former is sensitive to
the gravitating mass in compact objects, the latter to all kinds of gravitating matter. The analysis points to a small width-scale of the
considered disks and an at-most insignificant contribution of non-baryonic dark matter in the solar circle. The predicted high vertical
gradient values in the rotation are consistent with the gradient measurements.
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1. Introduction

The Milky Way (MW) is an example of a galaxy with high ver-
tical gradients of rotation measured at low altitudes above the
mid-plane (Levine et al. 2008). It is interesting to see the ef-
fect of the disk thickness on the gradient value prediction and
to compare it with the analogous prediction in an infinitesimally
thin global disk model (Jatocha et al. 2010).

The gravitational microlensing phenomenon provides an-
other constraint on the mass distribution, independent of the ver-
tical gradient structure. In particular, the amount of mass seen
through the gravitational microlensing measurements inside the
solar orbit was shown to be consistent with the dynamical mass
ascertained from the Galactic rotation that is reduced by the
gas contribution that is undetectable by the microlensing (Sikora
et al. 2012).

In the present paper we use microlensing measurements to
constrain the disk width and compare the resulting vertical gra-
dient predictions with the gradient measurements. In our sev-
eral previous studies, e.g., Jatocha et al. (2010, 2011), we mod-
eled spiral galaxies in the approximation of an infinitesimally
thin disk. In this framework, we easily obtained high values of
the vertical gradient of rotation, in accord with gradient mea-
surements. However, the model does not account for the vertical
structure in the mass distribution in the direct neighborhood of
the mid-plane (the z = 0 vicinity). This structure can be modeled
by considering a finite-width disk with an assumed vertical pro-
file of mass density. We presented a preliminary step towards this
in Sikora et al. (2012), where a column mass density of a disk
with the exponential vertical profile was identified with the sur-
face density of an infinitesimally thin disk. But this was a simple

* Appendix A is available in electronic form at
http://www.aanda.org
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de-projection that did not take into account the redistribution of
mass required to preserve the shape of the rotation curve in the
vicinity of the Galactic center.

In the next approximation considered in this paper, in
Sects. 2 and 3, we find the volume mass densities of two exam-
ple finite-width disks by iterations. These disks exactly account
for the tabulated rotation curve of the MW and their width-scales
are constrained by the gravitational microlensing measurements.
In Sect. 4 we compare the predictions of the two models with the
measurements of the vertical gradient of rotation.

2. Finite-width disk model

We assumed the following factorized form of a volume mass
density p(r, z) = o(r) f(z), with factors normalized so that o(7) is
the column mass density and the vertical profile f(z) is integrable
to unity: f_ D; f(z)dz = 1. We considered the exponential vertical
profile (for its simplicity) and the Mexican hat profile (because
it is frequently used in star count models that are motivated by
Spitzer 1942 analysis):

1
2w

exp(—g), f@)= 2—1hsech2 (%) (1)

f(@) =

The width-scale parameters 4’ and & can be related by equating
their effective disk thicknesses: 2 42" and ~1.49 h, respectively,
defined by the 1/e criterion'.

1" We formulate the 1/e criterion as follows: the effective width-scale

h’ of a vertical profile f(z) integrable to unity is defined by comparing
its mass inside a shell |z] < &’ with that of an exponential one with a

% % ,
scale-width A’: f f(»dz = f C;I”ll,h dz=1- % In particular, for the
,h/ 7h!

Mexican hat profile we obtain tanh (h/h') = 1 — % or2h ~ 1.49h.
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The gravitational potential at a point X = [R,0,Z] as-
sociated with a mass element dm = p(r,z)rdrd¢dz lo-
cated at another point ¥ = [rcos¢, rsing,z], is =Gdm -\ here

|Y-Xx1°
Y — X| = \/R2 + (2 — Z)? + r2 — 2rR cos ¢. By substituting ¢ =
2a — m, using the symmetry ¢ — —¢, integrating over @ €
(0,7/2) and using the definition of of the elliptic integral of
the first kind K (Gradshtein et al. 2007), one arrives at an

expression for the total potential W(R,Z) at X: Y(R,Z2) =

rK(Jarg e

-4G f dr_ f dz N e . With the help of the identity
K' (k) = y (El(_kzz) - K(k) (Gradshtein et al. 2007), it can be shown

that ROg¥Y(R,Z) = 2G f dr f dzp(r,z) J(r,R,z — Z). Function

0 —00
J is an integration kernel that will frequently appear later:

4rR
(R+1?*+?

r(KGo - 2325 B
JOLR,0) = ( e ) )=

The expression for RARY(R,Z) can be used to compute the
rotation velocity vs(R,Z) in the quasi-circular orbits approxi-
mation studied in Jalocha et al. (2010). In this approximation,
vé(R, Z) = RORY, and the resulting vertical gradient of rotation
is dzv4(R, Z). The latter quantity would involve differentiation of
the kernel J under the integration sign. However, since p(r, z) is
of the form o (r) f(z), with f(z) being known in an analytic form,
falling off fast enough as |z] — oo, and satisfying the reflection
symmetry f(z) = f(—z), it is more convenient to integrate by
parts Noting that 9,/ = —dzJ, we are led to the following ex-
pressions for the circular velocity and its vertical gradient (by
the assumed reflection symmetry of f, the integration has been
restricted to z > 0):

= 2Gfdrfdzp(r,z)
0 0

X[J(r,R,z—=2Z)+ J(r,R, 2+ Z)],

G [oe] (o9
m Ofdrbfdzabo(r,z)

X[J(r,R,z—Z) —

vy(R.2)

(2)
d704(R. Z) =

Jr,R,z+2)]. (3)

(The derivatives of J have been eliminated from Eq. (3)
by means of an integration by parts.) We stress that these
two expressions are only valid in the quasi-circular orbit
approximation.

The above integral expressions are particularly suited for
the exponential vertical profile, in which case they reduce to
vé(R, Z)=1_+1, and 0zv4(R,Z) = 2/&/&’ where I_ and I, are
appropriate integrals involving J(r,R,z — Z) and J(r,R,z + Z),
respectively.

For a more explicit derivation of the above results, we refer
to the appendix.

2.1. Determining p(r,z) from the rotation curve by iterations

We used the smoothed-out MW rotation curve from Sofue et al.
(1999), which adopts Galactic constants R, = 8 kpc and Q, =
200 kms™!. Its inner part, inside the solar circle, which is of
interest in our paper, is relatively well determined and was
obtained by simple averaging of various CO and HI tangent
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velocity data. The uncertainty lies mostly in the velocity pa-
rameter of the standard of rest at the Sun position, €2, and the
radius of solar orbit R,. For larger radii, outside the region of
our interest, the rotation curve is less certain and even model
dependent. Furthermore, as follows from the analysis in Bratek
et al. (2008), the uncertainty in the external rotation curve im-
plies some uncertainty in the internal mass determination be-
cause of a backward-interaction characteristic of flattened mass
distributions. However, in Sikora et al. (2012) we found this in-
fluence to be marginal for the purpose of the present study. It is
more important to reduce the uncontrolled numerical errors that
arise because of singular kernels in integrals Eqs. (2) and (3). To
achieve this, we applied a cubic spline interpolation to the ro-
tation points. This way we obtain a continuously differentiable
interpolating rotation curve (see Fig. 1).

We obtain a primary approximation to the column mass
density, og(R), from the interpolating rotation curve in the in-
finitesimally thin global disk model by iterations similar to those
described in Jatocha et al. (2008), with the help of the follow-
ing integral transforms, which are mutual inverses of each other
(Sikora et al. 2012),

oo (R) f” 1110;)] 1[/«_0;)]} Uzl(:;w 0. @
0
and
) ch Kl | E[k(X)]]O'o(RX)X o, )
. +x 1-x
with k(y) = _x in both cases. The transforms relate the rotation

law in the galactic mid-plane to the surface mass density in that
plane. Here, R is the radial variable in the disk plane, K and E are
complete elliptic integrals of the first and second kind as defined
in Gradshtein et al. (2007), and y is a dimensionless integration
variable. The surface mass density oo(r) obtained this way gives
a primary approximation py(r, z) = 0o(7) f(z) of the volume mass
density, which should be close to the mass density in a finite-
width disk (the results of Sikora et al. (2012) were based on
this approximation). But evaluating integral Eq. (2) with po(7, z)
substituted for p(r, z), gives a U;,O(R’ 0) different from v2(R) by
a small amount Avé’o(R) measuring the discrepancy between
the predicted and the observed rotation. Now, by inserting the
Avé’O(R) in place of v* in Eq. (4), we obtain a correction Aco(R)
to the column mass density. Hence, the surface mass density in
the next approximation is?> o1 (R) = 0o(R) + A - Aop(R) and gives
rise to a corrected volume mass density p(r,z) = o(r)f(2),
which in turn, from Eq. (2), gives the corresponding corrected
rotation curve vy 1(R,0). Next, we shift all indices by +1 and
repeat the previous step. This correction process can be con-
tinued recursively until it converges to the desired density pro-
file p(r,z) for which the discrepancy Av becomes negligible.
The resulting recursion sequence of volume densities p (R, Z) =

Pji-1(R,Z) + A - f(Z)Ac;-1(R) is quickly converging to a limit
p(R,Z) = lim p;(R,Z) which, on substituting to Eq. (2), yields

j—)OC

a curve vg(R,0) that nicely overlaps the interpolating rotation
curve. The iteration process is illustrated in Fig. 1.

In Sect. 3 we use this method of finding column mass densi-
ties o(R) corresponding to various vertical profiles f(z). They all

2 The free parameter A can be used to control the rate of convergence
of the iteration process. We used A = % instead of 1.
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Fig. 1. Column mass densities and the corresponding rotation curves
of finite-width disks with a Mexican hat vertical profile (2 = 117 pc),
shown at several steps of the iteration method of Sect. 2.1, starting
from the surface density of an infinitesimally thin disk. Top panel: col-
umn mass densities at various iteration steps (thin gray lines), surface
mass density of the infinitesimally thin disk model (the starting point of
the iteration, triangles), MW column mass density in the final iteration
step (it gives the interpolating rotation curve in the bottom panel, solid
circles). Bottom panel: (open circles) MW rotation curve points from
Sofue et al. (1999), (thin gray lines) rotation curves at various iteration
steps, and (thick line) rotation curve in the final iteration step (it strictly
overlaps with a spline interpolation of the MW rotation curve points).

give rise to rotation laws that overlap in the mid-plane the MW
rotation curve.

3. Gravitational microlensing

The phenomenon of the gravitational light deflection in point
mass fields, called gravitational microlensing, may be used to
trace the mass distribution. This can be achieved by inferring the
amount of mass in compact objects scattered along various lines
of sight that join the observer and remote sources of light that
are distributed in the vicinity of the Galactic center. Because it is
not directly linked to the Galaxy dynamics, the gravitational mi-
crolensing provides an independent tool that is useful in testing
Galactic models.

The original idea comes from Paczynski (1986), who sug-
gested that gravitational lensing can be used to answer the ques-
tion of whether or not the spheroidal component of the Galaxy
is dominated by massive compact objects. Observations towards
Great and Small Magellanic Clouds, e.g., Alcock et al. (2000);
Wyrzykowski et al. (2011), indicated that the contribution from
such objects cannot dominate in the standard three-component
Galactic model. On the other hand, the microlensing method
can also be used to estimate the distribution of compact ob-
jects in the direction towards the Galactic center. Such measure-
ments can help to improve models of the Galactic interior, see
e.g., Bissantz et al. (2004). It should be pointed out that in most

of these models, the dark matter component becomes necessary
only beyond some particular distance from the Galactic center.
For example, in the model by Bissantz & Gerhard (2002), the
dark matter halo is irrelevant for distances smaller than 5 kpc
from the center.

The aim of the present work is to examine in the context
of the microlensing observations a Galactic model in which the
dynamics is dominated by baryonic matter distributed in direct
neighborhood of the Galactic mid-plane.

3.1. Optical depth

The most important quantity to be determined in the microlens-
ing method is the optical depth 7. It is defined as the probability
of finding a compact object (a lens) on the line of sight between
the observer and the source of light, when a lens is located within
its Einstein radius

B \/4GM Dy (Ds — Dy)
B 6‘2 Ds

on a plane perpendicular to the line of sight. Here, M denotes
the lens mass, Ds is the distance from the observer to the source,
and Dy is the distance between the observer and the lens. In this
particular configuration, a double image of the source is pro-
duced each time a lens passes between the source and the ob-
server. Although the two images cannot usually be resolved be-
cause of very small deflection angles, their appearance can still
be indirectly detected by measuring the associated image mag-
nification. A microlensing event of this kind is agreed to have
been occurred when the magnification exceeds a threshold value
of u = 1.34. Because the probability of microlensing events is
very low (on the order of 107), a great number of sources (about
a million) must be monitored during a period of a few years to
determine the optical depth. A detailed discussion of such obser-
vations and their theoretical description can be found in Moniez
(2010).

The principle result of the microlensing theory is the follow-
ing integral that relates the mass density of compact objects p(x)
and the optical depth 7:

_ 4nG

Ds Dy (Ds — D)
T = -_—

R Dy p(x(Dv))dDy. (6)
Although it is well known, we re-derived this formula for com-
pleteness in our previous paper (Sikora et al. 2012). The integra-
tion in Eq. (6) is carried out along a given line of sight between
the observer’s position x, = [R,, 0, 0] and the source of light lo-
cated at xg = Xo + (1 + )R, [—cosbcosl,—cosbsinl,sinb].
The angle [ is the Galactic longitude, b is the Galactic lati-
tude, and y is a dimensionless distance parameter, such that
Ds = R, (1 + x). Using the following parameterization of the
line of sight x(s) = x5 + s(xg — Xp), Eq. (6) can be rewritten
such that 7 becomes an explicit function of the source position
(1, b, x) (Sikora et al. 2012),

4nGR?
Cz

1
7(l,b,x) = f (1+x)* s(1 = 5) p(r(s), 2(s)) ds, (7
0

where 7(s) = R, y/1+s(1+x)cosb [s(1 +x)cosbh—2cosl]
and z(s) = R, s (1 + ) sinb. Given a density distribution p(r, z),
the above formula enables one to calculate the corresponding
optical depth.
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3.2. Data

The model optical depth, calculated with the help of Eq. (7),
must be compared with the observations. For that purpose, we
used data collected by several leading collaborations, in partic-
ular MACHO (Popowski et al. 2005), EROS (Hamadache et al.
2006), OGLE (Sumi et al. 2006), and MOA (Sumi & et al. 2003).
These data were collected and analysed in detail in a review
(Moniez 2010).

Below, we restrict our analysis to the bright stars subsample.
This is a commonly used strategy in minimizing blending pro-
cesses that affect the optical depth results. A discussion of the
blending effect can be found in Alard (1997) and Smith et al.
(2007). The data we used are represented as a function of lat-
itude 7(b), and for each b the optical depth was averaged over
the longitudinal angle in the interval / € (=5°,5°). The result-
ing function 7(b) allows us to study the vertical structure of the
Galaxy.

3.3. Previous results in view of the present study

In our previous paper (Sikora et al. 2012), we used a surface
mass density o(r) that accounts for the Galactic rotation curve
in the infinitesimally thin disk model to obtain a volume mass
density p(r, z) corresponding to o<(r), assuming the standard ex-
ponential vertical profile p(r,z) = p(r,0)e " Following the
EROS collaboration, e.g., Derue et al. (2001), we set the value of
the width-scale parameter to be i’ = 325 pc. With this p(r, z) we
showed that the resulting optical depth was consistent with the
observational data at a reasonable confidence level. In addition,
we investigated several problems that might influence the optical
depth, among them the uncertainty of the solar Galacto-centric
distance R,, the problem of a precise determination of the rota-
tion curve, the difference between a single exponential vertical
profile and a double exponential profile, and the structure of the
central bulge. We pointed out that the optical depth uncertainty
connected with each of these factors was relatively small and
could not spoil the consistency between the model predictions
and the observations.

The purpose of the present work is to check the microlensing
optical depth predictions within a finite-width disk model frame-
work, assuming a spatial mass distribution derived directly from
the interpolating rotation curve, as described in Sect. 2.1. In this
model the disk thickness is crucial and affects the distribution of
column mass density, which can change, while keeping the pre-
dicted rotation unchanged and identical with the interpolating
rotation curve of Sect. 2.1. As mentioned earlier, we assumed
a volume mass density of the form p(r,z) = o(r)f(z), where
o(r) is the column mass density and f(z) is either the normal-
ized Mexican hat or exponential vertical profiles given in Eq. (1).
Each of these profiles is defined by its own characteristic width-
scale, h or h’, which are free parameters. Their optimal values
can be constrained with the help of microlensing measurements,
as we show in the next subsection.

3.4. Microlensing in a finite-width disk model

The sources of light observed in the microlensing events are ran-
domly distributed in the vicinity of the Galactic center. This re-
quires some averaging in the latitudinal angle b. Hence, the opti-
cal depth observable (as a function of ) should be understood as
a moving average. It is frequently assumed that the sources are
located on the symmetry axis. We adopted this simplification in
calculating 7(b) by substituting / = 0 and y = 0 in Eq. (7).

A87, page 4 of 11

6-06 -
b *  OGLE all stars
1 A MOAall stars
i O MACHO all stars
5e-06 % OGLE bright stars
| & MACHO (1 year)
4 ®  MACHO bright stars
g _ O EROS (3years)
4e-06 — ®  EROS bright stars
e ] N\
£ B
e ]
; 3e-06 \K B
S
g 4 4
° b 1 3) T
20-06 | t \l
1 "4 \
: _% "
1e-06 \
0 T T T T T
1.5 2 25 3 3.5 4 4.5 5 5.5

b [deg]

Fig. 2. Optical depth 7(b) in the finite-width disk model for the Mexican
hat vertical profile, with the width-scales (1) 4 = 180 pc; (2) & = 150 pc;
(3) h = 117 pc /the best fit/; and (4) h = 100 pc (solid lines). The points
with error bars represent the measurement data collected by several col-
laborations (references in the text).
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Fig.3. Optical depth 7(b) in the finite-width disk model for the expo-
nential vertical profile with the width-scales (1) i’ = 325pc; (2) i’ =
200pc; (3) i = 150pc; (4) I’ = 100pc; (5) h' = 88 pc /the best fit/
(solid lines). For comparison, the thick gray line represents the 7(b)
in the infinitesimally thin disk model for which the equivalent volume
mass density was obtained assuming the exponential vertical profile
with &/ = 325 pc. The points with error bars represent measurements
data collected by several collaborations (references in the text).

Our idea of determining 7(b) is simple. For a fixed width-
scale i or i/, we obtain a volume mass density p(r, z) from the
Galactic rotation curve, as described in detail in Sect. 2.1. With
this p(r, z) we calculate the optical depth 7(b) from Eq. (7), sub-
stituting [ = 0 and y = 0. The results for the vertical density
profiles Eq. (1) are shown in Figs. 2 and 3. The curves, cor-
responding to different width-scale values, are shown together
with the observed data points described in Sect. 3.2. We recall
that we are only interested in the bright stars subsample.

To measure the accuracy of the fitting curves obtained for
various width-scales, we calculated the reduced chi-squared,
X?e o that is, the chi-squared divided by the number of the de-
grees of freedom (the fit residuals from the bright stars subsam-
ple were taken into account). The sze 4 are plotted in Fig. 4 for
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Fig. 4. Reduced chi-squared, X?c +» as a function of the width-scale pa-
rameter: & (for the Mexican hat vertical profile (fop panel) or i’ (for the
exponential vertical profile (bottom panel)). The values of the width-
scales that minimize the y2 , are & = 117 pc and i’ = 88 pc.

several width-scales & (black dots in the top panel) and 4’ (black
dots in the bottom panel). By cubic-spline-interpolating the sze &
we may regard it as a smooth function of the width-scale. This
allows us to determine the optimum width-scale at the minimum
of each sze 4+ The width-scales obtained this way are h = 117 pc
and i’ = 88 pc for the Mexican hat and the exponential vertical
profiles.

Finally, we need to verify whether the approximation of
sources aligned with the symmetry axis is justified. To this end
we performed a Monte Carlo simulation. We randomly chose a
number of n = 10* pairs (1, y) in the range y € (-0.125,0.125)
(corresponding to +1 kpc) and I € (-5°,5°) for each fixed
latitude b, with the probability weight directly proportional to
p(r,z), simultaneously finding the corresponding 7(1, b, x) as
defined in Eq. (7). The resulting mean optical depth and its
standard deviation are shown as functions of b in Fig. 5. The
mean value is close to 7(0, b, 0) (solid line), which proves the
approximation to be quite accurate.

4. Vertical gradient of rotation

In Jatocha et al. (2010) we modeled the vertical gradient of the
MW rotation in the framework of the infinitesimally thin disk
model. We compared the predicted high absolute gradient val-
ues with the gradient measurements by Levine et al. (2008) and
found them to be consistent. In what follows, we repeat these
studies in a more accurate model that accounts for a finite disk
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Fig. 5. Results of a Monte Carlo simulation: the mean optical depth and
its standard deviation for a sample of sources chosen randomly with a
probability distribution proportional to p(r, z), (points+error bars). For
comparison, the (solid line) shows the optical depth calculated with the
help of the integral of Eq. (7) with / = 0 and y = 0. Top panel: results for
the Mexican hat vertical profile with 1 = 117 pc. Bottom panel: results
for the exponential vertical profile with 4’ = 88 pc.

thickness, to see the influence of the vertical structure of mass
distribution on the gradient value and its behavior.

The microlensing results of Sect. 3.4 imply a width-scale
of 117 pc for the disk with the Mexican hat vertical profile,
and 88 pc for that with the exponential vertical profile. With the
corresponding mass distributions substituted in Eq. (3), we find
our prediction for the vertical gradient of rotation in the rectan-
gular measurement region of Levine et al. (2008): r € (3, 8) kpc
and z € (0, 1.8). Our predictions for the gradient in this region
are shown in Fig. 10, where they are also compared with the pre-
dictions of the infinitesimally thin disk model and with those of
finite-width disks with the exponential vertical profile.

For all finite-width disks, the gradient falls off to 0 at z = 0,
owing to the smoothness and z-reflection symmetry of the mass
distribution (then, the gradient is z-antisymmetric), while for
the infinitesimally thin disk with a mass distribution singular
on the symmetry plane, the gradient attains a finite and high
value at z = 0 (this requires the gradient line to be discontinuous
at z = 0). For low altitudes, the gradient behavior is dependent
on the particular structure of mass distribution decided by the
parameter i, which introduces a characteristic length that scales:
the altitudinal extent of the “turn-overs” (seen in the gradient
lines with /2 > 0), their local minimum positions, and the degree
of their curvatures. Another feature evident from Fig. 10 is the
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Fig. 6. Vertical gradient of rotation in finite-width disk models as a func-
tion of altitude above the mid-plane z = 0, shown at various radii:
gradient for a disk with the Mexican hat vertical profile (2 = 117 pc,
solid lines), and gradient for a disk with the exponential vertical profile
(W' = 88 pc, dashed lines). To emphasize the universal gradient behavior
at higher altitudes for various disks of the same mass, the results for an
infinitesimally thin disk model (with the surface mass density identified
with the column mass density of the disk with the Mexican hat vertical
profile) is shown (dotted lines).
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Fig.7. Vertical gradient of rotation in a finite-width disk model with
the Mexican hat vertical profile (solid lines), as a function of the alti-
tude above the mid-plane (z = 0), shown at r = 4 kpc for various width-
scales h. For comparison, the (dotted line) shows the gradient behavior
in the limit of the infinitesimally thin disk model (2 — 0). The conver-
gence on that limit is point-wise continuous, although not uniform — the
gradient for 4 = 0 is discontinuous at z = 0. For higher altitudes, the
gradient behavior is universal beyond the main concentration of masses.

fact that there is little difference between disk models with the
exponential and with the Mexican hat vertical profile.

Figure 7 shows the behavior of the gradient as a function
of z at r = 4 kpc for the Mexican hat profile with various width-
scales h. The smaller h, the higher the absolute value of the
gradient, but the gradient is almost independent of /4 already
for |z] > 0.4 kpc. For all finite-width disk, the smaller the width-
scale, the lower the altitude above the mid-plane at which the
high gradient values characteristic of the infinitesimally disk are
obtained. With increasing and large enough z, the gradient in
finite-width disks gradually overlaps that of the infinitesimally
thin disk. For sufficiently large |z, the differences between the
predictions for disks with various / cease to be visible and a uni-
versal asymptotics can be seen. (Note that the total disk mass
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depends on i, which explains the tiny differences in the asymp-
totics, which could be formally eliminated by rescaling masses
of all disks to the same value.) Physically, this behavior is clear:
for high enough altitudes, the gravitational field of the infinitesi-
mally thin disk of comparable mass perfectly approximates that
of a finite-width disk beyond the main concentration of mass in
the mid-plane vicinity. Mathematically, this behavior becomes
clear by examining the asymptotics of the integral Eq. (3), as
shown in the appendix.

To understand the behavior of the gradient lines, it is useful
to remember that the infinitesimally thin disk can be considered
as a limit & — O of finite-width disks of various vertical pro-
files. This property is readily seen in Fig. 7. The gradient lines
of finite-width disks converge point-wise on the gradient lines
of the infinitesimally thin disk, although this convergence is not
uniform. Owing to this fact, the gradient lines of finite-width
disks are globally continuous, but there is a discontinuity at z = 0
in the gradient lines for the infinitesimally thin disk. From this
convergence and the universal asymptotics referred to above, one
can also infer the presence of the turn-overs of the gradient lines
for finite-width disks (the reason is given in the appendix).

Figure 8 shows the gradient as a function of radius at fixed z
for the Mexican hat profile with various width-scales 4 and also
for the exponential vertical profile (2" = 88 pc). Similarly as be-
fore, the thinner a disk, the higher the absolute values of the
gradient. At the same time, the difference between the Mexican
hat vertical profile and the exponential one is negligible. From
this figure one can also see that the radial variations of the ver-
tical gradients reflect the behavior of the radial gradients of the
rotation curve.

4.1. Comparison of the vertical gradient predictions
with the observations

The measurements of the vertical gradient in the rotation of
our Galaxy within the radial distance 3—8 kpc and for altitudes
above the mid-plane out to 100 pc give high gradient absolute
values of 22 + 6 kms~! kpc (Levine et al. 2008). For the rotation
curve used, such high gradients may still be obtained in more re-
alistic disk models with finite thickness, provided that the width-
scales of the disks are sufficiently small. Figure 7 shows that
with the width-scale of 7 = 117 pc for the Mexican hat vertical
profile the gradient absolute value may exceed 20 kms~! kpc.
This width-scale is favored by the analysis of the gravitational
microlensing of Sect. 3.4 for the same rotation curve, assuming
Q, = 200 kms™! for the circular speed of the standard of rest
at the position of the Sun. If this rotation curve, in conjunction
with the finite-width disk model, correctly describes the Galactic
dynamics, then the Galactic disk has a small thickness, as sug-
gested by our analysis. However, an increase by 10% in the ro-
tation velocity due to the uncertain value of the speed parame-
ter €, might result in a similar increase in the absolute gradient
value, which follows from the scaling of velocities by a (possibly
r-dependent) factor.

It should be noted that some authors obtain high Q,, e.g.,
239 kms~! (Bovy et al. 2009) or even higher, as suggested by
other studies. Furthermore, a change in Q, may also result in
a change in the predicted width-scales of the disk models: for
a higher Q, we expect a corresponding increase to occur in
the width-scale. For example, by rescaling the gradients lines
in Fig. 7 by a factor >1, a fixed gradient value at a fixed alti-
tude will be attained on a gradient line corresponding to a higher
h. Similarly, if the absolute gradient value reaches the higher
end of the range from 16 kms~! kpc to 28 kms~! kpc, which is
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Fig. 8. Vertical gradient of rotation of MW in a finite-width disk model
with a Mexican hat vertical profile as a function of the radial variable,
shown for various width-scales % and altitudes z above the mid-plane.
Top panel: gradient at an altitude of 100 pc; — 4 = 100 pc (dashed line),
—h = 117 pc (solid line), and & = 150 pc (uppermost dash-dotted line).
(For comparison, the (dash-dotted line) in the middle shows the gradient
in a disk model with the vertical exponential profile and the width-scale
I = 88 pc at the same altitude.) Upper middle panel: vertical gradient
of rotation at various altitudes for 4 = 117 pc. To enable the comparison
of structures in the vertical gradient with those in the rotation curve and
in the column mass density, Lower middle panel: MW rotation curve,
and bottom panel: column mass density for a finite-width disk model
with a Mexican hat vertical profile (h = 117 pc).

possible according to the Levine et al. (2008) measurements, the
predicted width-scales should become accordingly larger.

5. Column mass density in the vicinity of the Sun
5.1. Rotation curve in axial symmetry

We can regard the fragment of rotation curve (Fig. 1) inside the
solar radius as reliable. It is determined using a tangent point
method applied to rotation data with relatively small scattering.
Most importantly, no mass model was involved. Under the as-
sumption of axial symmetry (concentric circular orbits), the tan-
gent point method locates osculating points at extrema in the
Doppler image along lines of constant Galactic longitude (the
method distinguishes the observer at the Sun position). The un-
certainty in the resulting rotation curve lies mainly in the free
parameters R, and €Q,, which must be taken from elsewhere.
For consistency with the assumptions of the method, the result-
ing rotation curve must be modeled under axial symmetry (non-
axisymmetric features in the rotation or in the derived quantities,
such as the predicted column mass density, are beyond the scope
of this method).

In contrast to the situation inside solar circle, the rotation
curve outside solar circle is not reliable, the rotation measure-
ment data are characterized by large scattering and are inter-
preted within an assumed mass model on which the resulting
external rotation curve is largely dependent.

5.2. Comparison of the local measurement with a prediction
of the axisymmetric model

The locally measured column mass density from star counts in
the solar vicinity (a calm and empty region) is unlikely to be
representative for the entire solar circle. The real column den-
sity is not axisymmetric, mostly because of the spiral structure.
This factor should be taken into account when comparing a local
measurement with a model prediction. In particular, the locally
measured value of the column mass density does not have to
agree with that predicted at the position of the Sun in the frame-
work of an axisymmetric disk model. This only partly explains
the discrepancy between the locally determined value in vicin-
ity of the Sun and that inferred from the rotation curve in the
axisymmetric disk model.

The locally determined value of ~71 + Mg pc~2 (all gravi-
tating matter below |z| < 1.1 kpc) was inferred from solving the
vertical Jeans equation for a stellar tracer population (Kuijken
& Gilmore 1991). In a recent paper (Zhang et al. 2013) a simi-
lar analysis implied that the total gravitating column mass den-
sity is 67 My pc2 (|z] < 1.0 kpc), of which the contribution
from all stars is ~42 M pc~2 and that from cold gas 13 Mg pc2.
The value of ~140 M, pc~? inferred in disk model in this paper
should be compared with the local value ~70 Mg pc~2, since the
disk model describes total dynamical mass accounting for the
rotation curve.

Another contribution to this discrepancy, which seems more
important, may point to problems with the rotation curve outside
the solar circle, as we illustrate below with the help of a toy
model.

A toy model. For a flattened mass distribution, the relation
between the rotation curve and the resulting column mass den-
sity is nonlocal. The local density value is strongly dependent on
the local radial gradient in the rotation curve, and it also depends
on the external part of rotation curve. On larger scales this rela-
tion is less important and the amount of mass counts more, like
in a spherical model. In consequence of this, the local value of
the surface density at the solar circle will depend on the accuracy
of determining the rotation curve outside the solar circle.
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Fig.9. Comparison of column mass densities for two rotation curves
that are identical inside solar circle and differ from each other outside
the circle. Top panel: original rotation curve as in Figs. 1, 2, (solid line),
toy model rotation curve described in the text (dashed line); botrom
panel: corresponding column mass densities for a finite-width disk with
the Mexican hat vertical profile and height scale of 117 pc.

This influence is illustrated in Fig. 9. To obtain the part of
the toy model rotation curve outside the solar circle, we calcu-

lated a moving average of the scattered data (r, fv %) for
20 kpc > r > 7 kpc (open circles in Fig. 9), taking the » > 8 kpc
part alone. Inside the solar circle, the rotation curve was left un-
changed because it is well determined. We joined the internal
and external part so as to satisfy the constraint 200 kms™' at
8 kpc. For this rotation curve, the density at the solar position
r = 8 kpc reduces to a value ~70 My pc~2.

We see from this example that the problem of discrepancy
in the density lies mainly in the rotation curve close to and out-
side the solar circle. It follows that to prepare a better rotation
curve in the future, it may be necessary to take into account
constraints from the local mass density. Clearly, the density is
higher with the original rotation curve. For a less flattened curve,
the local density could be made to agree with the low value of
about 70 Mg, pc~2 at 8 kpc, consistent with the results of Kuijken
& Gilmore (1991) and Zhang et al. (2013). With the toy model
curve, the results for the vertical gradient of rotation inside the
solar circle is not changed significantly in a large region, as
shown in Fig. 10, even though the predicted column density at
the solar circle is significantly changed, by a factor of 2. This
change would also not much influence the results well inside the
solar circle for quantities that are integrals over a large region,
such as the integrated optical depth we modeled here.
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Fig.10. Vertical gradient of rotation at z = 100 kpc for the original
rotation curve and for the toy model curve. The gradient prediction is
still high and not significantly changed in a region 0—7 kpc, compared
with its absolute value. (The local minimum close to 8 kpc is a result of
a discontinuity in the toy model curve.)

6. Summary and concluding remarks

We obtained the mass distribution in finite-width disks in an it-
erative fashion from a given rotation curve. We assumed that the
volume density p(r, z) could be factorized as p(r,z) = o(r)f(2),
where f(z) is a normalized vertical profile, with a characteris-
tic width-scale that is a free parameter. We did not assume any
constraints on the column mass density o(r), so that its func-
tional dependence was governed entirely by the shape of the ro-
tation curve. The density effectively describes all forms of the
dynamical mass inferred from the Galactic rotation, therefore,
the disk-width should not be confused with the width-scale pa-
rameters measured in the vicinity of the Sun for various stellar
subsystems?.

Based on the gravitational microlensing measurements, it
was possible within the disk model framework to determine
the effective width-scales. We tested the mass distributions by
comparing the model predictions for the vertical gradient of the
azimuthal velocity with the gradient measurements.

The (integrated) optical depth from the microlensing mea-
surements is influenced by the amount of mass distributed along
the lines of sight towards the Galactic center, whereas the de-
tails of the distribution are less important. We inferred the opti-
mum width-scales of the considered disks by means of finding
the best fits to the optical depth measured along various lines
of sight. This shows that microlensing can be used as a tool
to independently constrain the mass distribution models. With
these width-scales, the resulting prediction for the behavior of
the vertical gradient of rotation was compared with the gradi-
ent measurements in the mid-plane vicinity. This comparison is
consistent with a small disk thickness. (Interestingly enough, for
these width-scales, the effective disk widths defined by the 1/e
criterion are almost equal: 24" = 176 pc and ~1.49h = 174 pc,
respectively, for the exponential and for the Mexican hat vertical
profiles).

The behavior of the vertical gradient of the azimuthal ve-
locity and its value, when calculated at low altitudes above the
mid-plane, is very sensitive to the width-scale parameter. At a
given altitude in the gradient measurements region, the calcu-
lated gradient value changes significantly with the width-scale

3 Incidentally, the obtained width-scale of ~100 pc is consistent with

the distribution of massive stars in the vicinity of the Sun. However,
massive stars are rare locally and do not contribute substantially to the
mass for any proposed IMF.
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parameter. When the parameter is too high, the absolute gradi-
ent value is too low compared with the measurements. Higher
absolute gradients at low altitudes above the mid-plane suggest a
smaller effective thickness of the Galactic disk. The rotation ve-
locity is another factor that governs the gradient value. In partic-
ular, given a disk thickness and the gradient behavior, one could
constrain the allowable range for the motion of the standard of
rest at the position of the Sun (the width-scale could be increased
for higher Q,). Testing the vertical structure of the mass distri-
bution with the help of the gradient measurements is thus a par-
ticularly sensitive tool, and it is therefore important to have high-
accuracy measurements of the gradient at low altitudes above the
mid-plane.

The column mass density of flattened mass distributions is
sensitive to uncertainties in the circular velocity. This sensitiv-
ity can be observed in the approximation of infinitely thin disk
model (Binney & Tremaine 1987). It is therefore important to
have reliable rotation curves when studying flattened galaxies.
However, Galactic rotation is relatively well known inside the
solar circle, therefore, with better data, we can expect some dif-
ferences in the column density to occur close to or outside the so-
lar circle. These changes probably do not significantly influence
the results for global quantities inside the solar circle, such as the
predicted integrated optical depth or vertical gradient inside the
solar circle. In particular, as shown in Sect. 5, with a suitably
changed external part of the rotation curve, the disk model pre-
diction for the column density at the solar circle of ~140 M pc~2
made with the present rotation curve could be reduced to a lo-
cal value of ~70 M pc~2 inferred in the vicinity of the Sun from
Jeans modeling (Kuijken & Gilmore 1991; Zhang et al. 2013).
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Fig.A.1. Contour plots of tanh (J(r,R,{)) and tanh (R()(J(r,R, {)).

These functions are singular at » = R and { = 0 and continuous else-
where.

Appendix A
A.1. Derivation of Egs. (2) and (3)

The kernel function J defined in the introduction is singular at an
isolated point (£ = 0,7 = R) and is continuous elsewhere. This
singularity is integrable in the principal-value sense in Egs. (2),
and (3). Function J is scale-invariant. In particular, J(r,R,{) =
J(r/R, 1,/R), which means that J is effectively dependent only
on two variables: r/R and {/R. This property allows us to repre-
sent J on a plane as in Fig. A.1.

Differentiation and taking limits can be interchanged with
the integration only under particular conditions imposed on the
function under the integration sign. If not said otherwise, we as-
sume that these conditions are met. For this reason, the case of
an infinitesimally thin disk (with f(z) = d(z)) must be treated
separately.

The expression for R 9P (R, Z) in Sect. 2 involves an integral

I = fdzp(r,z)J(r,R,z—Z).

0
The integral can be written as a sum J = f dzp(r,2)J(r,R, z —

Z) + fdzp(r, 2)J(r,R,z — Z) if the two summands exist. By

0
substituting z — —Z, the first integral can be rewritten as
0

f(—dZ) o(r,=2)J(r,R,—[Z + Z]), and next, since p(r,—{) =

+00

p(r,{) and J(r,R,—{) =

Finally, by renaming 7 — z, we obtain

+00
J(rR.0), as [ dZp(r,2)J(r,R.Z + Z).
0

I=fdzp(r,z)-[J(r,R,z+Z)+J(r,R,z—Z)].
0

This proves Eq. (2).

The integral expression for the vertical gradient of rotation
in the quasi-circular orbit approximation can be proved by per-
forming a partial differentiation of 7 under the integration sign:

0,1 = fdzp(r,z)-[6ZJ(r,R,z+Z)+6ZJ(r,R,Z—Z)]-

+0,J(r,R,z +
[0.J(r,R,z+Z) - 3. J(r,R,z - Z)].

Now, 0zJ(r,R,z + Z) = Z), which implies

that 9,7 = [dzp(r,2) -
0
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Integration under usual conditions

01 =

by parts
B - fdzc?zp(r,z) .

0
(Zl_i)rglwp(r,z) [(J(rnR,z+2Z)-J(r,R,z—-2)]) —

(o(r, O [J(r,R,Z) — J(r,R,—Z)]) is a boundary term. The
expression in the first round bracket in this term is zero for any
finite Z, R, r, on account of the vanishing of the difference in
the square bracket and the vanishing of p in the same limit (it
suffices to assume a finite support of p). The expression in the
second round bracket also vanishes for finite p(r, 0) since J is
an even function of the third argument. Hence, the boundary
term B also vanishes. Formally, one should also verify whether
the integration with respect to r and taking the above limit
7 — +oo commute, as there is an integration over r present in
the expression for R dg'¥. When this requirement is met, we
have

gives
[J(r,R,z+Z) — J(r,R, z - Z)],

where 8 =

00

62 dr]:fdr
0

0 0

00

dz 0.0(r,2)- [J(r,R,z—Z) - J(,R,z+ Z)],

which proves Eq. (3).

A.2. A special case: the exponential vertical profile

In the case of the vertical exponential falloff of the density pro-
file, p(r, 2) = S~

5~ 0°(r), the calculation of the integrals in Egs. (2)
and (3) can be simplified. Then, 12(R.Z) = G f dr f dzo(r) S

[J(nR,z—=2Z)+ J(r,R,z+ Z)] and 62v¢(R Z) =

s [dr [dzo(n =5 - UnRz-2)=J(nR.z+Z)].
0 0

Now, both v4(R, Z) and 0zv4(R, Z) can be expressed in terms of
two integrals 7, and /_:

f o(r)dr f dze " J(r,R,z £ 7).
0 0

FIQ

Namely, for p(r,z) = %o-(r), v(R,Z) = I, +1_ and
dz0s(R.2) = 535

A.3. Qualitative properties of the vertical gradient of rotation
and the presence of turn-overs

Equation (3) involves an integral fdzf’(z) [J(r,R,z — Z)
0

—J(r,R,z + Z)] that equals K = [ dzf"(z) J(r,R,Z - z), ow-

ing to the symmetry of J and f. Now, consider |Z] > A > 0
large enough, beyond the main mass concentration, such that
A

+00
[f(2)dz ~ 1 (by assumption [ f(z)dz = 1). For such Z, only

—00

a region |z| < |Z| contributes to K, and we can use the approx-

imation formula J(r, R Z -2 —-J(rhR,Z) ~ —z(’)ZJ(r R,7) to
obtain K ~ J(r,R, Z) f f(2)dz—02J(r,R,Z) f zf’(z)dz. Since
f(z) and zf(z) vamsh at the infinity, 1ntegrat1ng by parts gives

K ~ dzJ(r,R,Z) f f(z)dz = 8zJ(r,R,Z). On the other hand,

—00
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for f(z) = 6(z) and for Z # 0, K = [ dz8'(2)J(nR.Z - 2) =

—00

- f dz0(2)0.J(r, R, Z—-z) = 07J(r, R, Z). Hence, we obtain an in-
tu}tively clear result: for all finite-width thin disks with the same
column mass density o(r), the behavior of the vertical gradient
at high enough altitudes is universal and the same as for an in-
finitesimally thin disk with surface mass density o (r).

Another qualitative result is obtained in the limit Z — 0. For
Z+0,KR,r,-Z) = -K(R,r,Z), thus %irr(l)‘K = 0 by continuity

of K as a function of Z, and the vertical gradient is zero at Z = 0,
at least for the mass distributions for which the usual theorems
on the continuity of functions defined by integrals Eq. (3) apply.

However, there is an exception from the above continuity
behavior of the gradient lines at Z = 0. It is important to
remember that the operation of taking various limits and the
operation of integration are not interchangeable in general.
In particular, an integral of a function sequence consisting
of continuous functions with a parameter can result in a
discontinuous function of that parameter. For f(z) = 0,(2),
where ¢, is a functional sequence representing the Dirac
0, the result of continuity of the gradient does not neces-
sarily follow and we can have a nonzero value in the same
limit, in which case the integral Eq. (3) is discontinuous at

= 0. To give a simple example of what then may happen,

2 2
atl then

consider a function sequence u,(x,y) = m

+00

[ e y)dy = gu(x), with g,(x) =

—00

sider a limiting function g(x) =

N
—mx ___ Now, con-
(1+x2) V1+n2x2

lim g,(x) and see if it is
n—+oo

continuous at x = 0. For x = 0, g(0) = lim ¢,(00) = 0,
n—+oo
whereas for x # 0, g(x) = lim g,(x) = L5 # 0, thus,

n—+oo

g0)=0+#1= hn(l) g(x), therefore g(x) is discontinuous at x = 0.

Now, think of the gradient lines in Fig. 7 — then the finite disk
corresponds to the situation described by g,(x) (h = n!'>0),
whereas the infinitesimally thin disk corresponds to the situation
of discontinuous g(x) (h = 0).

Finally, we may try to understand the occurrence of the turn-
overs in the gradient lines for 2 > 0, such as those seen in Fig. 10
or Fig. 7. First, note that a gradient line must asymptotically con-
verge to zero, which is the universal asymptotics property dis-
cussed earlier. Second, the gradient line starts from 0 at Z = 0,
which we have also seen above. Now, we perform a mapping of
the region 0 < Z < +4co to an interval 0 < Z < 1 by means
of a transformation Z — tanh Z. Then the transformed gradient
lines are continuous for 0 < Z < 1 and vanish at the boundaries.
Next, we apply the Rolle theorem on continuously differentiable
functions that vanish on the boundaries of a compact and sim-
ply connected interval, and we infer that there must be at least
one point inside the interval where the gradient line has a local
minimum, which explains the presence of a turn-over. The Rolle
theorem does not apply to gradient lines of the infinitesimally
thin disk, because of the discontinuity, and the analogous turn-
overs do not have to occur, which is the case in Figs. 7 or 10.
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