
Hindawi Publishing Corporation
Journal of Chemistry
Volume 2013, Article ID 684134, 6 pages
http://dx.doi.org/10.1155/2013/684134

Research Article
Nucleophilicity Index Based on Atomic Natural Orbitals

Dariusz W. Szczepanik and Janusz Mrozek

Department of Computational Methods in Chemistry, Faculty of Chemistry, Jagiellonian University,
St. Ingardena 3, 30-060 Cracow, Poland

Correspondence should be addressed to Dariusz W. Szczepanik; szczepad@chemia.uj.edu.pl

Received 30 May 2013; Accepted 21 August 2013

Academic Editor: K. R. S. Chandrakumar

Copyright © 2013 D. W. Szczepanik and J. Mrozek. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A simple method of evaluating a semilocal (regional) nucleophilicity is introduced.The concept involves use of the natural orbitals
for atomic populations to identify the most “reactive population” of electrons on particular atom in molecule. The results of test
calculations considering the regioselectivity problem in electrophilic aromatic substitution to the benzene derivatives are presented
and briefly discussed.

1. Introduction

There is a wide variety of reactivity predictors for electron-
transfer-controlled reactions among which the Fukui func-
tion, originating from the density functional theory (DFT), is
one of the most fundamental ones [1, 2]. Within the orbital-
based calculations one of the simplest methods to interpret
and implement is the condensed Fukui index [3–6] (a coarse-
grained atom-by-atom representation of the Fukui function)
which can be determined from electron population analysis.
There are many arguments [7, 8] in favor of the condensed
Fukui index based on the Hirshfeld’s populational scheme
[9]; however, other population analysis methods, including
the Mulliken’s [10–13] and Löwdin’s [14] as well as the NPA
schemes [15] are also in common use (e.g., [16–18]).

In this paper we briefly introduce and test a new simple
method of evaluating the relative (with respect to particular
atom in two “homologous” molecules) reactivity of nucle-
ophiles, based on the natural orbitals for atomic population
of electrons [19] and involving their energies as well as
occupation numbers. The method is related to the Fukui
function concept and its approximation within the frame-
work of FrontierMolecular Orbital (FMO) theory [20–22]. In
this workwe take into consideration the well-known problem
(somewhat trivial but illustrative) of regioselectivity predic-
tion in the electrophilic aromatic substitution to the fol-
lowing benzene derivatives: fluorobenzene (C

6
H
5
F), aniline

(C
6
H
5
NH
2
), phenol (C

6
H
5
OH), nitrobenzene (C

6
H
5
NO
2
),

benzoic acid (C
6
H
5
COOH), and benzaldehyde (C

6
H
5
CHO).

In general, functional groups –OH and –NH
2
are clas-

sified as electron donating and strongly activating in the
electrophilic substitution reactions while functional groups
–NO
2
, –COOH, and CHO remove electron density from

the benzene ring and thus strongly deactivate the molecule.
Functional groups from the former class tend to be ortho/para
directing while those from the latter one direct electrophiles
to attack the benzene molecule at the meta position. In flu-
orobenzene (likewise in other benzene halides) the benzene
ring is weakly deactivated due to inductive withdrawal of
electrons by electronegative atom F. However, the resonance
donation of nonbonding electrons of fluorine atom to the
benzene ring causes that the most preferable positions of
electrophilic attack are ortho and para.

2. Method Details

Let us assume the closed-shell molecular system with𝑁 elec-
trons doubly occupying 𝑛 lowest molecular orbitals |𝜑𝑜⟩ =

{|𝜑
1
⟩, . . . , |𝜑

𝑛
⟩ ≡ |𝜑

∗
⟩}, generated as linear combinations of

orthogonalized atomic orbitals (OAO) |𝜒⟩,

𝜑𝑖 ⟩ = ∑

𝛼

𝜒𝛼⟩ ⟨𝜒𝛼 | 𝜑𝑖⟩ = ∑

𝛼

𝜒𝛼⟩𝐶𝛼,𝑖 , (1)
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or in matrix form,
𝜑
𝑜
⟩ =

𝜒⟩ ⟨𝜒 | 𝜑
𝑜
⟩ =

𝜒⟩C
𝑜
, (2)

where the rectangular matrix C𝑜 groups the relevant LCAO
MOexpansion coefficients. It follows directly from the super-
position principle of quantummechanics that the conditional
probability of “finding electron” from 𝑖th occupied molecular
orbital on 𝛼th atomic orbital reads

𝑃
𝑖 (𝛼) = ⟨𝜒𝛼 | 𝜑𝑖⟩ ⟨𝜑𝑖 | 𝜒𝛼⟩ = ⟨𝜒𝛼


�̂�
𝑖


𝜒
𝛼
⟩ =

𝐶𝛼,𝑖


2
. (3)

Hence, the LCAO MO expansion coefficient 𝐶
𝛼,𝑖

can be
regarded as the conditional-probability amplitude. Alterna-
tively, one can relate 𝐶

𝛼,𝑖
to the amplitude of the probability

of “finding electron” from 𝛼th atomic orbital on 𝑖th canonical
molecular orbital. Then

𝑃
𝛼 (𝑖) = ⟨𝜑𝑖 | 𝜒𝛼⟩ ⟨𝜒𝛼 | 𝜑𝑖⟩ = ⟨𝜑𝑖


�̂�
𝛼


𝜑
𝑖
⟩ =

𝐶𝛼,𝑖


2
. (4)

Similarly, by replacing the operator �̂�
𝛼
with the operator �̂�

𝑋

projecting onto the subspace of all OAOs centered on atom
𝑋, we get the conditional probability of the event that the
electron from electron population on atom𝑋 can be ascribed
to 𝑖th molecular orbital,

𝑃
𝑋 (𝑖) =N

𝑋
⟨𝜑
𝑖


�̂�
𝑋


𝜑
𝑖
⟩ =N

𝑋

𝑋

∑

𝛼

⟨𝜑
𝑖


�̂�
𝛼


𝜑
𝑖
⟩

=N
𝑋

𝑋

∑

𝛼

𝐶𝛼,𝑖


2
,

(5)

where normalization constant reads

N
𝑋
= [

𝑛

∑

𝑖

𝑃
𝑋 (𝑖)]

−1

= [

𝑛

∑

𝑖

𝑋

∑

𝛼

𝐶𝛼,𝑖


2
]

−1

. (6)

The corresponding 𝑛 × 𝑛 matrix P
𝑋
(𝜑

o
,𝜑

o
) of elements rep-

resenting projections of 𝑗th occupied MO onto 𝑖th occupied
MO through the subspace of AOs assigned to atom𝑋 [23],

P
𝑋
(𝜑
𝑜
,𝜑
𝑜
)

= {𝑃
𝑋
(𝑖, 𝑗) =N

𝑋

𝑋

∑

𝛼

⟨𝜑
𝑖


�̂�
𝛼


𝜑
𝑗
⟩ =N

𝑋

𝑋

∑

𝛼

𝐶
𝛼,𝑖
𝐶
𝛼,𝑗
} ,

(7)

is obviously not diagonal. It follows directly from orthonor-
mality of molecular orbitals that regarding the whole (molec-
ular) electron population𝑁,

P (𝜑𝑜,𝜑𝑜) = ∑
𝑋

P
𝑋
(𝜑
𝑜
,𝜑
𝑜
)

=N⟨𝜑
𝑜



∑

𝑋

�̂�
𝑋



𝜑
𝑜
⟩ =N ⟨𝜑

𝑜
| 𝜑
𝑜
⟩ =

1

𝑛
1
𝑛
.

(8)

The representation of orbitals |𝜃
𝑋
⟩,

𝜃𝑋⟩ =
𝜑
𝑜
⟩ ⟨𝜑
𝑜
| 𝜃
𝑋
⟩ =

𝜑
𝑜
⟩C𝜃
𝑋
, (9)

in which off-diagonal elements of matrix (7) are zeroes,
{𝑃
𝑋
(𝑖, 𝑗) = 𝛿

𝑖,𝑗
}; one can straightforwardly obtain fromdiago-

nalization of P
𝑋
(𝜑
𝑜
,𝜑
𝑜
)

P
𝑋
(𝜑
𝑜
,𝜑
𝑜
) = C𝜃
𝑋
p𝜃
𝑋
C𝜃†
𝑋
. (10)

The diagonal matrix of electron probabilities p𝜃
𝑋
can be used

to calculate the electron populations n𝜃
𝑋
of the corresponding

natural orbitals for electron population of atom𝑋, |𝜃
𝑋
⟩,

n𝜃
𝑋
= 𝑁
𝑋
p𝜃
𝑋
, where 𝑁

𝑋
=2

𝑛

∑

𝑖

𝑋

∑

𝛼

𝐶𝛼,𝑖


2 (11)

stands for the electron population on atom 𝑋. The corre-
sponding matrix of the 1-electron orbital “energies” 𝜀𝜃

𝑋
(i.e.,

expectation values of 𝐹𝜑 in |𝜃
𝑋
⟩) can be determined as

follows:
𝜀
𝜃

𝑋
= ⟨𝜃
𝑋


𝐹
𝜑
𝜃
𝑋
⟩ = C𝜃†

𝑋
⟨𝜑
𝑜 
𝐹
𝜑
𝜑
𝑜
⟩C𝜃
𝑋
= C𝜃†
𝑋
𝜀
𝑜C𝜃
𝑋
.

(12)

Here, 𝐹𝜑 is the Fock operator, and diagonal matrix 𝜀𝑜
collects orbital energies of occupied canonical MOs. Since
natural orbitals |𝜃

𝑋
⟩ are not the eigenvectors of 𝐹𝜑, the

matrix of orbital energies (12) is not diagonal. Orbital ener-
gies of both frontier canonical molecular orbitals, HOMO
(𝜀
∗
≡ 𝜀

HOMO
≡ 𝜀
𝑛,𝑛
, ) and LUMO (𝜀

LUMO
≡ 𝜀
𝑛+1,𝑛+1

, ), are
known to be useful qualitative indicators of chemical reac-
tivity. Thus, it is of our special interest to investigate how the
expectation values of operator 𝐹𝜑 within representation of
|𝜃
𝑋
⟩managewith evaluation of the reactivity of the particular

atom𝑋. However, due to nonorthogonality of natural-orbital
sets for different atoms, only the relative changes of 𝜀𝜃

𝑋
for the

same𝑋 in two homologous species should be compared.
One of the standard frontier-orbital treatments of chem-

ical reactivity is the regioselectivity problem, for example,
in the electrophilic aromatic substitution to the benzene
derivatives. The standard FMO theory analysis of the effect
of substituent groups involves the electron populations of
the highest occupied molecular orbital (HOMO), whereas
within the newly proposed “reverse scenario” we focus on the
electron population of particular atom first and then analyze
the highest “energies” of occupied atomic NOs.

3. Numerical Results

To examine the presented methodology we have used state-
functions calculated at RHF(ROHF for cations)/STO-3G,
RHF(ROHF)/6-31G∗ as well as DFT/B3LYP/aug-cc-pVDZ
theory levels, using the standard ab initio quantum chemistry
package GAMESS [24], for the following benzene derivatives:
fluorobenzene, aniline, phenol, nitrobenzene, benzoic acid,
and benzaldehyde. The highest energies of occupied natural
orbitals and the corresponding electron populations were
comparedwith two standardMO-based atomic descriptors of
reactivity: the atomic index of nucleophilicity [25] involving
only the highest occupied MO, |𝜑∗⟩,

𝑅
𝑋
=
∑
𝑋

𝛼

𝐶𝛼,𝑛


2

(1 − 𝜀
𝑛,𝑛
)
=
∑
𝑋

𝛼

𝐶
∗

𝛼



2

(1 − 𝜀
∗
)
, (13)
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Table 1: Atomic indices of nucleophilicity (13) and condensed atomic Fukui indices (14) for selected benzene derivatives. For asymmetric
species, the position refers to carbon atom with larger electron population. Methods: RHF/ROHF, basis sets: STO-3G, 6-31G∗.

Molecule Position STO-3G 6-31G∗

𝑅
M
𝑋

𝑅
L
𝑋

𝐹
M
𝑋

𝐹
L
𝑋

𝑅
M
𝑋

𝑅
L
𝑋

𝐹
M
𝑋

𝐹
L
𝑋

Fluorobenzene
ortho 0.083 0.083 0.063 0.074 0.076 0.076 0.039 0.065
meta 0.046 0.046 0.037 0.040 0.057 0.058 0.013 0.056
para 0.236 0.236 0.136 0.185 0.250 0.247 0.142 0.227

Aniline
ortho 0.093 0.093 0.075 0.094 0.099 0.099 0.077 0.103
meta 0.032 0.031 0.013 0.008 0.033 0.035 −0.025 0.012
para 0.205 0.205 0.104 0.140 0.218 0.214 0.137 0.207

Phenol
ortho 0.103 0.103 0.084 0.104 0.104 0.103 0.065 0.096
meta 0.026 0.026 0.017 0.012 0.030 0.033 −0.017 0.021
para 0.221 0.221 0.124 0.168 0.238 0.235 0.142 0.220

Nitrobenzene
ortho 0.000 0.000 0.036 0.039 0.180 0.179 0.034 0.038
meta 0.000 0.000 0.020 0.020 0.182 0.180 −0.004 0.023
para 0.000 0.000 0.052 0.068 0.003 0.006 0.050 0.083

Benzoic Acid
ortho 0.050 0.050 0.042 0.047 0.143 0.142 0.038 0.047
meta 0.065 0.065 0.017 0.015 0.220 0.217 −0.002 0.022
para 0.222 0.222 0.051 0.067 0.010 0.012 0.042 0.074

Benzaldehyde
ortho 0.051 0.051 0.050 0.057 0.017 0.019 0.046 0.058
meta 0.069 0.069 0.016 0.014 0.226 0.223 −0.008 0.016
para 0.227 0.227 0.061 0.080 0.117 0.117 0.053 0.089

and the Fukui nucleophilic reactivity index [26] involving
electron populations on atom 𝑋 in cation, 𝑁+

𝑋
, and neutral

molecule,𝑁
𝑋
,

𝐹
𝑋
= 𝑁
𝑋
− 𝑁
+

𝑋
. (14)

Both indices were calculated only within basis sets STO-3G
and 6-31G∗, since larger basis sets (especially those including
diffuse functions, e.g., aug-cc-pVDZ) are well known to dra-
matically lose their “atomic attributeness” of AOs, and, con-
sequently, many population-type descriptors usually assume
completely unreasonable values. Two alternative procedures
of population analysis were used in calculation of indices (13)
and (14): the Mulliken’s scheme (superscript M) [10–13] and
the Löwdin’s one (superscriptL) [14], involving the standard
“geometrical” orthogonalization of atomic orbitals.

The results presented in Table 1 clearly indicate that only
index 𝑅

𝑋
calculated within extended basis set allows one

to correctly predict the position of electrophilic attack in
all molecules under consideration. The Fukui nucleophilic
reactivity index 𝐹

𝑋
properly copes with ortho/para directing,

but it completely fails with respect to meta directing. It
is worth notice that indicator 𝑅

𝑋
, involving only electron

populations and energies of HOMO, is far less sensitive to
population analysis method than index 𝐹

𝑋
. Furthermore, if

one excludes the results formeta directing groups, there is no
significant difference between 𝑅

𝑋
calculated within STO-3G

and 6-31G∗ basis sets.
We performed a similar analysis using the newly pro-

posed method based on natural orbitals |𝜃
𝑋
⟩. Table 2 collects

orbital occupation numbers 𝑛∗
𝑋
and the corresponding rela-

tive “energetic effects”,Δ𝜀∗
𝑋
, calculated as a difference between

the highest energy of occupied natural orbitals of particular
carbon atoms in benzene and its derivative:

Δ𝜀
∗

𝑋
= 𝜀
∗

𝑋
(derivative) − 𝜀∗

𝑋
(benzene) . (15)

Even a cursory analysis of occupation numbers in Table 2
allows one to correctly predict the preferential ortho/para
or meta directing of substituent groups, regardless of basis
sets used in calculations. However, evaluation of energetic
effects provides more detailed information about activat-
ing/deactivating influence of substituent groups on particular
carbon atoms. For example, –NH

2
is properly recognized

as the best activator, and the most activated carbon atom
is in position para (activated for about 11 kcal⋅mol−1), while
substituent group –NO

2
strongly deactivates themolecule for

about 20–25 kcal⋅mol−1, and the most active population of
electrons is then located on carbon atom in position meta.
For the majority of cases orbital energies properly predict the
position of electrophilic substitution.

In calculations of natural orbitals from Table 2 we used
the standard Löwdin’s orthogonalization procedure to obtain
orthogonal AOs. However, it was of our interest to find how
𝜀
∗

𝑋
and 𝑛

∗

𝑋
depend on the orthogonalization procedure.

Table 3 contains the same data as Table 2 but is calcu-
lated within representation of “physically” orthogonalized
atomic orbitals (superscript P) [27–29]. At first glance one
can observe a small improvement of electron populations
from DFT/B3LYP/aug-cc-pVDZ. Also, in contrast to cal-
culations involving “geometrical” orthogonalization, Δ𝜀∗P

𝑋
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Table 2: Occupation numbers (11) and differences between the highest NO “energies” (15) in [kcal⋅moL−1] for benzene and its derivatives,
calculated within representation of “geometrically” orthogonalized atomic orbitals. For asymmetric species, the position refers to carbon
atom with larger electron population. Methods: RHF/STO-3G, 6-31G∗, and DFT/B3LYP/aug-cc-pVDZ.

Molecule Position STO-3G 6-31G∗ Aug-cc-pVDZ
𝑛
∗L
𝑋

Δ𝜀
∗L
𝑋

𝑛
∗L
𝑋

Δ𝜀
∗L
𝑋

𝑛
∗L
𝑋

Δ𝜀
∗L
𝑋

Fluorobenzene
ortho 1.039 −2.5 1.033 −8.2 0.786 −7.3
meta 0.985 −7.3 0.958 −10.0 0.760 −7.5
para 1.020 −1.3 1.013 −4.2 0.778 −3.7

Aniline
ortho 1.057 3.8 1.073 8.2 0.803 9.0
meta 0.983 −1.4 0.949 −1.6 0.760 3.6
para 1.035 6.7 1.047 10.4 0.794 11.0

Phenol
ortho 1.046 5.0 1.048 3.5 0.793 3.3
meta 0.979 −3.7 0.949 −4.4 0.758 −0.9
para 1.035 4.3 1.037 4.6 0.788 4.8

Nitrobenzene
ortho 0.971 −23.7 0.928 −27.2 0.738 −23.0
meta 0.999 −19.6 0.992 −20.8 0.763 −19.1
para 0.968 −20.5 0.930 −24.2 0.744 −20.6

Benzoic acid
ortho 0.974 −7.0 0.936 −12.2 0.737 −11.2
meta 1.005 −6.3 0.999 −8.5 0.767 −9.0
para 0.978 −7.5 0.940 −12.0 0.748 −10.9

Benzaldehyde
ortho 0.989 −6.7 0.954 −14.8 0.739 −14.5
meta 1.004 −6.6 0.996 −10.9 0.768 −11.9
para 0.984 −6.3 0.943 −13.1 0.746 −13.3

Table 3: Occupation numbers (11) and differences between the highest NO “energies” (15) in [kcal⋅mol−1] for benzene and its derivatives,
calculated within representation of “physically” orthogonalized atomic orbitals. For asymmetric species, the position refers to carbon atom
with larger electron population. Methods: RHF/STO-3G, 6-31G∗, and DFT/B3LYP/aug-cc-pVDZ.

Molecule Position STO-3G 6-31G∗ Aug-cc-pVDZ
𝑛
∗P
𝑋

Δ𝜀
∗P
𝑋

𝑛
∗P
𝑋

Δ𝜀
∗P
𝑋

𝑛
∗P
𝑋

Δ𝜀
∗P
𝑋

Fluorobenzene
ortho 1.035 −2.8 1.059 −8.7 0.984 −6.2
meta 0.981 −7.3 0.961 −9.9 0.984 −8.3
para 1.018 −1.8 1.028 −5.3 1.000 −4.5

Aniline
ortho 1.053 5.6 1.100 5.5 1.033 6.7
meta 0.978 −1.2 0.945 −1.1 0.989 2.2
para 1.034 6.3 1.068 8.2 1.019 9.5

Phenol
ortho 1.041 4.5 1.068 2.2 1.014 3.8
meta 0.975 −3.9 0.947 −4.7 0.983 −1.7
para 1.033 3.8 1.056 3.5 1.016 4.3

Nitrobenzene
ortho 0.959 −23.6 0.900 −26.5 0.910 −21.5
meta 0.998 −19.6 1.013 −21.1 0.992 −20.0
para 0.963 −21.1 0.927 −25.5 0.945 −21.8

Benzoic acid
ortho 0.967 −7.3 0.920 −12.3 0.945 −11.3
meta 1.007 −6.3 1.023 −8.6 0.997 −9.4
para 0.976 −7.8 0.942 −12.8 0.955 −11.9

Benzaldehyde
ortho 0.986 −7.0 0.959 −15.0 0.959 −14.7
meta 1.004 −6.5 1.016 −10.8 0.997 −12.2
para 0.982 −6.6 0.947 −13.7 0.956 −14.0

for benzaldehyde in STO-3G basis set correctly predict
meta directing of substituent group. In general, however,
calculated energies are similar to those from Table 2 (average
distances between the respective energies calculated within

“geometrically” and “physically” orthogonalized AO repre-
sentations are: 0.4 (STO-3G), 0.8 (6-31G∗), and 0.9 (aug-cc-
pVDZ) [kcal⋅mol−1]) and thus allow one to draw almost the
same conclusions about reactivity of particular carbon atom.
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The energetic effects from Tables 2 and 3 are relatively
small (but comparable with differences between stabilization
energies of the corresponding Wheland intermediates [30]).
For comparison, below we present several simple species
ordered with respect to relative nucleophilicities (from weak
to very good nucleophiles) and the corresponding energies
Δ𝜀
∗L
𝑋

[kcal⋅mol−1] (of orbitals identified as lone pairs in
all cases) calculated at DFT/B3LYP/TZP with model core
potential [31, 32]:

CH
3
COOH <H

2
O < NH

3
< CH

3
O− < CH

3
S−,

0.0
(reference) 11.8 61.1 217.9 232.4.

4. Summary

In this work we have briefly introduced a simple method of
evaluating the relative nucleophilicity in energy scale. The
concept involves the use of natural orbitals for atomic popula-
tion of electrons and their energies (i.e., expectation values of
Fock operator) as well as occupation numbers to identify “the
most reactive population of electrons” on particular atom (or
molecular fragment). Such scenario is directly related to the
standard FMO theory treatment involving atomic popula-
tions of electrons of the highest occupied molecular orbital
(HOMO); in the newly proposed approach we first focus on
the electron population of particular atom and then analyze
energies of occupied natural orbital. This strategy has been
examined on the regioselectivity problem in the electrophilic
aromatic substitution to the benzene derivatives. Analysis of
the results allows one to draw the conclusion that evaluation
and comparison of relative chemical nucleophilicities of
atoms in an energy domain are more reliable and advan-
tageous than analyses involving other popular MO-based;
this seems to be somehow obvious since, in contradistinc-
tion to the majority of condensed atomic indices, energetic
descriptors converge systematically to the complete-basis-set
limit. It has to be noticed, however, that electron population
of the highest occupied natural orbital of a particular atom
in molecule is somewhat insensitive to basis set variations
and the corresponding energy seems to exhibit the basis set
dependence quite consistent with the variational principle.

The presented methodology is still in need of thorough
analysis and examination. Also, it is of our special interest
to take advantage of the approach based on natural atomic
orbitals involving virtual molecular orbitals to evaluate the
energetic descriptor of electrophilicity of atoms and molecu-
lar fragments.
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