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Abstract The entropic perspective on the molecular electronic structure is investi-
gated. Information-theoretic description of electron probabilities is extended to cover
the complex amplitudes (wave functions) of quantum mechanics. This analysis empha-
sizes the entropic concepts due to the phase part of electronic states, which generates
the probability current density, thus allowing one to distinguish the information content
of states generating the same electron density and differing in their current densities.
The classical information measures of Fisher and Shannon, due to the probability/den-
sity distributions themselves, are supplemented by the nonclassical terms generated
by the wave-function phase or the associated probability current. A complementary
character of the Fisher and Shannon information measures is explored and the rela-
tionship between these classical information densities is derived. It is postulated to
characterize also their nonclassical (phase/current-dependent) contributions. The con-
tinuity equations of the generalized information densities are examined and the asso-
ciated nonclassical information sources are identified. The variational rules involving
the quantum-generalized Shannon entropy, which generate the stationary and time-
dependent Schrödinger equations from the relevant maximum entropy principles, are
discussed and their implications for the system “thermodynamic” equilibrium states
are examined. It is demonstrated that the lowest, stationary “thermodynamic” state
differs from the true ground state of the system, by exhibiting the space-dependent
phase, linked to the modulus part of the wave function, and hence also a nonvanishing
probability current.
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1 Introduction

In the quantum mechanical description of, say, a single (spinless) particle the prob-
ability density, which defines the classical (Fisher [1] or Shannon [2]) information
content of the particle spatial distribution, is determined solely by the modulus-
part of the complex wave function. The phase-part of the latter, which generates
the probability current, was shown to give rise to additional, nonclassical term in
the gradient (Fisher) measure of the information density of complex quantum states,
proportional to the square of the probability current [3]. This generalized measure
allows one to distinguish the amount of information in two states exhibiting the same
particle density and differing in their phases (currents). A similar extension of the
classical Shannon concept has been suggested [4]. This phase aspect of the molec-
ular quantum mechanics reflects its “entropic” aspect, which still remains largely
unexplored.

In examining this information side of the ground state electronic distribution in
molecules one ultimately arrives at more basic questions about a possible exis-
tence of general information principles governing this equilibrium electron dis-
tribution in molecular systems. It has already been argued elsewhere [3,5] that
the stationary Schrödinger equation (SE), the eigenvalue problem of the elec-
tronic Hamiltonian in the Born–Oppenheimer (adiabatic) approximation, results
from the constrained information principle of the generalized Fisher information,
formulated in terms of the complex probability amplitude of quantum mechanics
(wave function). This Extreme Physical Information (EPI) principle [5] contains
both the “physical” (interaction) and “geometrical” (normalization) constraints. It
is also intriguing to find whether the molecular systems tend to maximize in their
ground states the separate ionic (deterministic) and covalent (indeterministic) bond
components [6] within the Orbital Communication Theory, e.g., [7–9] and refs.
therein.

It is the main goal of the present work to examine general implications of such a
generalized IT description of molecular states. In particular, the relevant information
currents and sources will be identified in the context of the associated probability
and phase continuity equations. The physically constrained information principles
will be used to reconstruct the Schrödinger equations (stationary and time-dependent)
of quantum mechanics. In present work we focus on EPI rule using the nonclassical
Shannon entropy [4]. The lowest entropy-equilibrium state exhibiting the ground-state
probability density will be examined. This “thermodynamic” state will be shown to
exhibit the space-dependent phase linked to the stationary probability density, and
hence the nonvanishing currents, thus differing from the lowest eigenstate of the sys-
tem Hamiltonian.
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2 Classical information measures, phase current and quantum information
continuity

Let us briefly summarize the classical information/entropy quantities, related to prob-
ability distributions. We begin with the gradient measure of Fisher [1,3,5], defined
for the local events of finding an electron at r. In the probability distribution p(r), the
shape factor of the electron density ρ(r) = N p(r), this approach introduces the clas-
sical Fisher information, also called the intrinsic accuracy, reminiscent of the familiar
von Weizsäcker [10] inhomogeneity correction to the kinetic energy functional in the
Thomas–Fermi–Dirac theory:

I [p] =
∫

[∇ p(r)]2/p(r)dr ≡
∫

f clas.(r)dr. (1)

It characterizes the effective “localization” (compactness) of the random (position)
variable around its average value. For example, in the normal (Gaussian) distribution
the Fisher information measures the inverse of its variance, i.e., the invariance. The
functional I [p] can be simplified, when expressed in terms of its classical aplitude
A(r) = √

p(r):

I [p] = 4
∫

[∇ A(r)]2dr ≡ I [A] . (2)

In order to cover the quantum (complex) amplitudes (wave functions) this classical
measure has to be appropriately generalized by using the square of the modulus of
the wave-function gradient [3]. For example, for a single particle of mass m, when
p(r) = ψ∗(r)ψ(r) = |ψ(r)|2,

I [ψ] = 4
∫

|∇ψ(r)|2dr = 8(m/h̄2)T [ψ] ≡
∫

f (r)dr, (3)

where T [ψ] stands for the expectation value of the particle kinetic energy in state ψ .
Therefore, this local measure of Fisher, proportional to the particle average kinetic
energy, probes the length of the amplitude gradient ∇ψ(r).

The other popular information measure has been introduced by Shannon [2]. This
complementary descriptor of the average information content in the continuous prob-
ability distribution p(r), or in its discrete resolution p(r) = ∑

i pi (r) of the orbital
events in the molecule generating the condensed probability vector

p =
{

pi =
∫

pi (r) dr
}
,

∑
i

pi =
∫

p(r)dr = 1,

S [p] = −
∫

p(r)logp(r)dr ≡
∫

sclas.(r)dr or S(p) = −
∑

i
pi logpi , (4)

called the Shannon entropy, reflects the indeterminacy (“spread”) of the random
variable involved around its average value. It measures the average amount of the
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information received, when this uncertainty is removed be an appropriate “localiza-
tion” experiment.

To summarize, the classical Fisher information for locality events reflects the effec-
tive narrowness (“order”) of the probability distribution p(r), while the classical Shan-
non entropy monotonically increases with the spread (“disorder”) of the Gaussian
function, thus providing a measure of its uncertainty/indeterminacy content. The intrin-
sic accuracy and Shannon entropy thus describe the complementary facets of the prob-
ability distribution.

These classical measures probe the real probability amplitude A(r), while the appro-
priate quantum extensions, e.g., that defined in Eq. (3), introduce an additional depen-
dence upon the probability current [3,6] related to the gradient of the phase factor of
molecular states. For simplicity, we consider a single particle moving in an external
potential v(r), described by the Hamiltonian

H(r) = −(h̄2/2m)∇2 + v(r), (5)

e.g., an electron in the Born–Oppenheimer (adiabatic) description, experiencing Cou-
lomb forces due to the atomic nuclei in their fixed positions. The particle is in the
quantum state described by the complex wave function

ψ(r)= R(r)exp[i�(r)]= R(r)[cos�(r)+ isin�(r)] = Re[ψ(r)] + iIm[ψ(r)], (6)

in which the (real) modulus R(r) and phase �(r) functions determine the state two
fundamental “degrees-of-freedom”.

In the familiar Born interpretation of quantum mechanics they determine the parti-
cle spatial probability density, p(r) = ψ(r)ψ∗(r) = R2(r), with R thus representing
the classical amplitude of this probability distribution, and the current density

j(r) ≡ p(r)V(r) = (h̄/m)p(r)∇�(r). (7)

Therefore, the current density per particle (j/p) ≡ V , measuring the local speed V
of this probability fluid, is completely determined by the gradient of the phase part of
the system wave function,

�(r) = (2i)−1 ln[ψ(r)/ψ∗(r)], (8)

∇�(r) = p(r)−1
{
(2i)−1 [ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)]

}

= p(r)1Im[ψ∗(r)∇ψ(r)] = (m/h̄)V(r). (9)

The probability current thus explores the weighted gradient of the wave function
phase, related to the imaginary part (Im) of the product ψ∗∇ψ . It also follows from
the preceding equation that ∇� measures the (m/h̄)-scaled current velocity V .

The generalized Fisher measure [3] of the information content [Eq. (3)] contains
both the classical contribution I [p] [Eq. (1)], due to the probability density p(r), and
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the nonclassical (quantum) correction I [j] involving the current density j(r):

I [ψ] = 4
∫

|∇ψ(r)|2dr = I [p] + 4
∫

p(r)[∇�(r)]2dr

= I [p] + 4 (m/h̄)2
∫

j2(r)/p(r)dr ≡ I [p ]+I [ j] ≡ I [p, j]. (10)

In general, this quantum gradient measure, related to the system kinetic energy, is not
conserved, and exhibits the following full time dependence [9]:

d I [p, j]/dt =
∫
∂ I [p, j]
∂p(r)

dp(r)
dt

dr +
∫
∂ I [p, j]
∂j(r)

· dj(r)
dt

dr

=
∫
∂ I [j]
∂j(r)

· dj(r)
dt

dr = 8m

h̄2

∫
j(r)·F(r)dr ≡

∫
d f (r)

dt
dr, (11)

where the force acting on the particle F(r) = −∇v(r). In the preceding equation we
have used the familiar probability-continuity equation:

dp(r)/dt ≡ σp(r) = ∂p(r)/∂t + ∇ · j(r) = 0 or ∂p(r)/∂t = −∇ · j(r). (12)

It expresses the local balance in probability redistributions and signifies the source-
less (σp(r) = 0) probability redistributions in molecular systems: the local change in
the probability density is solely due to the probability outflow measured by the nega-
tive divergence of the probability current density. It also follows from the preceding
equation that the overall probability normalization, i.e., the squared norm of the wave
function, is conserved in time:

d/dt

[∫
p(r)dr

]
= 0. (13)

The source σ f of this quantum-generalized Fisher information thus reads:

d f (r)
dt

= σ f = 8m

h̄2 j(r) · F(r). (14)

Hence, the local production of this quantum measure of the Fisher information is
proportional to the product of the local force and flow vectors. This is in perfect anal-
ogy to the familiar expression for the entropy source in irreversible thermodynamics
[11], given by the sum of products of the corresponding rates of change (or flows)
of extensive quantities (thermodynamic fluxes) and the conjugate gradients or differ-
ences of intensive “forces” (thermodynamic affinities). In the nondegenerate ground
state, for which the time dependent phase is position independent, the current and
its information contribution identically vanish, so that the current correction I [j] to
the gradient (Fisher) measure of information should be important in the degenerate
stationary states of the particle and in its general (nonstationary) quantum states.
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One similarly introduces [4] the related phase-flow concept, associated with the
other degree-of-freedom of quantum states. By symmetry, it can be expected to be
related to the gradient of the modulus part R(r) = [p(r)]−1/2 of the wave function,

∇ R(r) = p(r)−1/2{[ψ∗(r)∇ψ(r)+ ψ(r)∇ψ∗(r)]/2} = p(r)−1/2Re[ψ∗(r)∇ψ(r)],
(15)

measured by the real part (Re) of ψ∗∇ψ , or the gradients of both factors in ψ(r).
We recall that the current concept, a crucial component of the probability continu-

ity equation in quantum mechanics, emerges in the context of the time dependence
of the system wave function, determined by the Schrödinger equation or its complex
conjugate:

H(r)ψ(r) = i h̄∂ψ(r)/∂t and H(r)ψ∗(r) = −i h̄∂ψ∗(r)/∂t. (16)

Via their straightforward manipulations one obtains from their “weighted” difference
the familiar equation for the local probability continuity,

∂p(r)/∂t = ψ∗(r)[∂ψ(r)/∂t] + ψ(r)[∂ψ∗(r)/∂t] = 2R(r)[∂R(r)/∂t]
= −∇ · j(r) = − (h̄/m) [2R(r)∇ R(r) · ∇�(r)+ R2(r)��(r)]. (17)

Thus, the local change in the probability density (l.h.s. of the preceding equation) is
solely due to the probability outflow (r.h.s.), the magnitude of which is measured by
the divergence of the probability-current density. It also follows from this probabil-
ity-continuity equation that the local time-derivative of the modulus factor R reads:

∂R(r)/∂t = [2R(r)]1∂p(r)/∂t = −[2R(r)]1∇ · j(r)

= − (h̄/m) {∇ R(r) · ∇�(r)+ [R(r)/2]��(r)}. (18)

The “weighted” sum of the Schrödinger equations (16) similarly gives:

ψ∗(r)[∂ψ(r)/∂t] − ψ(r)[∂ψ∗(r)/∂t] = 2i p(r)[∂�(r)/∂t]
= (i h̄/m) {R(r)�R(r)− [R(r)∇�(r)]2}.

(19)

It generates the time-derivative of the wave-function phase,

∂�(r)/∂t = (h̄/2m) {R−1(r)�R(r)− [∇�(r)]2} − v(r)/h̄, (20)

including in the last term the external potential contribution. It thus follows from Eqs.
(18) and (20) that the Schrödinger equation gives rise to a coupled dynamics of both
these components of the complex wave function. Notice, however, that only the phase
function explicitly depends on the system external potential. It is our goal now to
express this phase derivative as a combination of the corresponding divergence of the
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related phase-current and the accompanying phase-source terms, in the associated
phase-continuity equation.

It should be recalled that the continuity balance expresses some basic conservation
law. One could associate the following expectation (average) value of the system phase
corresponding to the particle probability distribution p(r):

〈�〉 =
∫

p(r)�(r)dr ≡
∫
ϕ(r)dr, (21)

with ϕ(r) standing for the particle phase density at r, and the phase factor �(r) now
representing the associated density per electron. In a search for the source σϕ(r) of the
phase distribution ϕ(r) one again calculates the total time derivative (for the moving
monitoring space element),

dϕ(r)/dt ≡ σϕ(r) = ∂ϕ(r)/∂t + ∇ · Jϕ(r), (22)

with the partial derivative measuring the local change in the fixed monitoring volume
around r and the divergence term representing the phase inflow due to the associated
current Jϕ . Since ϕ(r) depends upon both the probability density p(r) and the local
phase �(r),

dϕ/dt = �(dp/dt)+ p(d�/dt) = p(d�/dt), (23)

since the source σp vanishes [Eq. (12)]. Therefore, the continuity equation (22) is fully
determined by the balance equation for the phase factor itself:

d�/dt ≡ σ� = ∂�/∂t + ∇ · J�. (24)

Identification of the phase-current J� and the associated source σ�, both conforming
to the time derivative of Eq. (20) derived from the Schrödinger equation (16), is not
unique and an adoption of the specific form of the phase current implies the conjugate
form of the source. Since the speed (j/p) = V of the probability fluid reflects the
gradient of the complementary phase factor �, one would expect the phase current
to involve the gradient of the amplitude R, or the gradients of both these degrees-of-
freedom of the quantum state ψ .

One observes the following derivative identities containing terms in r.h.s. of
Eq. (20):

∇ · (�∇�) = (∇�)2 +��� and

∇ · (∇lnR) = ∇ · (R−1∇ R) = R−1�R − (R−1∇ R)2. (25)

Therefore, introducing the phase-current J�involving the gradients of both wave func-
tion components,

J� = − (h̄/2m) (R−1∇ R −�∇�), (26)
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gives the following source of Eq. (24):

σ� = (h̄/2m) [(∇lnR)2 +���] − v/h̄. (27)

Similarly, by linking the current solely to the gradient of the amplitude factor,

J′
� = − (h̄/2m) (R−1∇ R) = − (h̄/2m)∇lnR, (28)

yields

σ ′
� = (h̄/2m) [(∇lnR)2 − (∇�)2] − v/h̄. (29)

In the stationary, ground state of one-particle system,

	0 (r, t)= R0(r)exp[i�0 (r, t)]= R0(r)exp(−i E0t/h̄) ≡ R0(r)exp(−iω0t), (30)

corresponding to the sharply specified energy E = E0, the local phase is equalized
throughout the whole physical space,�0(r, t) = �0(t) = −ω0t , and hence: ∇�0 = 0
and 〈�〉 = �0(t). In such states both definitions of the phase current and the associated
source become identical and time independent:

J�[ψ0] = J′
�[ψ0] = − (h̄/2m) R−1

0 ∇ R0 = − (h̄/2m)∇(lnR0),

σ�[ψ0] = σ ′
�[ψ0] = (h̄/2m) (∇lnR0)

2 − v/h̄. (31)

This phase equalization in the stationary quantum state is related to the associated
equalization of the system local energy,

ε(r) = ψ(r)−1H(r)ψ(r), (32)

at the ground-state level:

ε0(r) = ψ−1
0 (r)H(r)ψ0(r) = E0. (33)

3 Quantum extension of Shannon entropy

It follows from the preceding section that a similar generalization of the classical
Shannon entropy S[p] is required in quantum mechanics, in order to include rele-
vant current contribution [4]. Let us briefly summarize the basis of such a quantum
extension of this complementary information measure.

It follows from Eq. (10) that both the electron distribution p(r) and its current j(r)
determine the resultant quantum Fisher information content I [p, j]. Its first, classical
part I [p] explores the information contained in the probability distribution, while the
nonclassical part I [j] measures the gradient information in the probability current,
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i.e., the phase gradient of Eq. (9). Thus, the quantum Fisher functional I [ψ] symmet-
rically probes the gradient content of both aspects of the complex wave-function:

I [p] =
∫ (∇ p√

p

)2

dr ≡
∫
(∇̄ p)2dr, I [j] =

∫ (
2μj

h̄
√

p

)2

dr ≡
∫

j̄
2
dr. (34)

The classical Fisher information measures the length of the “reduced” gradient ∇̄ p
of the probability density, while the other contribution represents the corresponding
“length” of the reduced vector of the probability current density j̄. One also observes
that this generalized measure becomes identical with the classical functional I [p] only
for the stationary quantum states, characterized by the time independent probability
amplitude R(r) = ϕ(r) and the position-independent phase �(t) = −ωt :

	(r, t) = ϕ(r) exp(−i Et/h̄) ≡ ϕ(r) exp(−iωt). (35)

The two information contributions in Eq. (10) can be alternatively expressed in
terms of the real and imaginary parts of the gradient of the wave-function logarithm,
∇ lnψ = (∇ψ)/ψ ,

I [p] = 4
∫

p[Re(∇lnψ)]2dr and I
[
j
] = 4

∫
p[Im(∇lnψ)]2dr. (36)

Thus, these complementary components of the quantum Fisher information have a
common interpretation in quantum mechanics, as the p-weighted averages of the gra-
dient content of the real and imaginary parts of the logarithmic gradient of the system
wave-function. As such they indeed represent a natural quantum (complex) general-
ization of the classical (real) information concept of Eq. (1).

Let us examine some properties of the density of this generalized Fisher informa-
tion,

f = (∇ p)2

p
+ 4m2

h̄2

j2

p
= f clas. + f nclas., (37)

or the corresponding density per electron:

f̃ ≡ f

p
=

(∇ p

p

)2

+
(

2mj
h̄ p

)2

≡ (∇̃ p)2 + (j̃)2

= f̃ clas. + f̃ nclas. = 4|(∇ψ)/ψ |2 = 4 |∇ lnψ |2 ≥ 0. (38)

The latter is generated by the squares of the local values of the related quantities per
electron, the probability gradient (∇̃ p)2 and the current density (j̃)2, which shape the
classical and nonclassical information terms in quantum mechanics. This expression
emphasizes the basic equivalence of the roles played by the probability density and its
current in shaping the resultant density of the generalized, quantum Fisher information.
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We now examine a possible relation between the classical part of the Fisher infor-
mation density per electron,

f̃ clas. = f clas./p = [(∇ p)/p]2 = (∇lnp)2, (39)

and the associated density perparticle

s̃clas. = sclas./p = −lnp, (40)

of the classical Shannon entropy of Eq. (4), sclas. = −plnp = ps̃clas.. Thus, the
logarithm of the probability density shapes the classical part of the Shannon entropy
density s̃clas., the gradient of which gives ∇ s̃clas. = −(∇ p)/p. Hence, these two
complementary (classical) information densities per electron are related:

f̃ clas. = (∇lnp)2 = (∇ s̃clas.)2. (41)

This relation has been used to introduce the unknown nonclassical part s̃nclas. of
the density per-electron of the generalized Shannon entropy in quantum mechanics
[4]:

s̃[ψ] = s̃clas.[p] + s̃nclas.[p,�]. (42)

Its nonclassical term s̃nclas.[p,�] = s̃nclas.[p, j] has been arrived at by postulating
that Eq. (41) also holds for the complementary nonclassical contributions:

f̃ nclas. =
(

2mj
h̄ p

)2

≡ (∇ s̃nclas.)2 or

∇ s̃nclas. = 2mj
h̄ p

= −i

p
[ψ∗∇ψ − ψ∇ψ∗] = 2∇�. (43)

Therefore, the gradient of the nonclassical part of the generalized Shannon entropy
is proportional to the probability current per electron, i.e., the velocity of the proba-
bility fluid, and hence to an additive constant [see Eq. (8)]

s̃nclas. = 2� = −i ln(ψ/ψ∗). (44)

We thus conclude that, to physically irrelevant constant, the phase function proper
can be regarded as the nonclassical part of the Shannon information density per par-
ticle. It then gives a transparent division of the generalized quantum entropy:

s̃[ψ] = s̃clas.[R] + s̃nclas.[�] = −2lnR + 2� or

s[ψ] = sclas.[p] + snclas.[p,�] = −plnp + 2p� = −plnp + 2ϕ. (45)

The density per particle s̃[ψ] of the generalized Shannon entropy is thus divided into
the familiar classical component s̃clas.[R], determined solely by the wave function
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modulus factor R(r), and the nonclassical supplement s̃nclas.[�], reflecting the actual
phase function of the system complex wave function.

Next, let us examine the associated source of such a quantum generalization of the
classical Shannon entropy,

S[ψ] ≡
∫

s[ψ; r] dr =
∫

sclas. [p; r] dr +
∫

snclas.[p,�; r] dr

= Sclas. [p] + Snclas.[p,�]
= −

∫
p(r)lnp(r)dr + 2

∫
p(r) �(r)dr ≡ S[p,�]. (46)

Again, due to the sourceless character of the probability distribution the classical term
generates the vanishing source contribution to this entropy functional and its density:

d Sclas./dt =
∫ (

∂Sclas.[p]
∂p(r)

)
dp(r)

dt
dr = 0 and

dsclas.[p, r]
dt

= σ clas.
s (r) = 0.

(47)

Hence, for the phase current Jφ of Eq. (26) one obtains

d S[ψ]/dt =
∫

ds[ψ; r]
dt

dr ≡
∫
σs[ψ; r]dr

=
∫
∂Snclas.[p,�]

∂p(r)
dp(r)

dt
dr +

∫
∂Snclas.[p,�]

∂�(r)
d�(r)

dt
dr

=
∫
∂Snclas.[p,�]

∂�(r)
d�(r)

dt
dr = 2

∫
p(r)σ�(r)dr =

∫
σ nclas.

s [ψ; r]dr,

(48)

where the phase source σ�(r) is defined in Eq. (27). Alternatively, the current J′
� and

the conjugated source σ ′
� can be applied to define this rate of change of the quantum

entropy function and its source.

4 Schrödinger variation rule as information principle

We begin with a short reminder of the EPI using the Fisher information measure,
related directly to the particle kinetic energy, which generates the stationary SE [3].
For the simplest case of a single electron moving in the external potential v(r) due
to the nuclei in their fixed positions, described by the Coulomb Hamiltonian operator
H(r) = −[h̄2/(2m)]� + v(r) ≡ T(r) + v(r). Its lowest (nondegenerate) eigenvalue
problem,
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H(r)ψ0(r) = E0ψ0(r),

E0 = 〈ψ0|H|ψ0〉 = 〈ψ0|T|ψ0〉 + 〈ψ0|v|ψ0〉 = T [ψ0 ]+V ]ψ0] ≡ T0 + V0,

(49)

where, T0 and V0 denote the corresponding expectation values of the two energy
components in the molecular ground-state, then determines the system equilibrium
electron/probability density: ρ0(r) = p0(r) = |ψ0(r)|2 = R0(r)2.

We recall that this SE represents the Euler equation for the optimum ground-state
wave function ψ0, the distribution amplitude, which results from the familiar var-
iational principle for the minimum electronic energy E[ψ] = 〈ψ |H |ψ〉 = T [ψ]
+V [ψ], combining the average kinetic, T [ψ], and potential, V [ψ], components,
respectively, subject to the “geometric” constraint of the wave function (probability)
normalization,

minψ {〈ψ |H|ψ〉 − E0〈ψ |ψ〉} ≡ minψ[ψ; E0] or δψ[ψ; E0] = 0, (50)

with the exact electronic energy E0 providing the relevant Lagrange multiplier enforc-
ing this subsidiary condition. Indeed, the associated Euler equation directly recovers
Eq. (49):

δ[ψ; E0]/δψ∗(r)|opt. = [H(r)− E0]ψ0(r) = 0. (51)

It further follows from a straightforward integration by parts that the average kinetic
energy is proportional to the generalized Fisher information for locality events, i.e.,
the quantum intrinsic accuracy [Eq. (3)]:

8T [ψ] =
(

h̄2/m
) {

4
∫

|∇ψ(r)|2dr
}

≡
(

h̄2/m
)

I [ψ] or

I [ψ] =
(

8m/h̄2
)

T [ψ]. (52)

Therefore, the Schrödinger principle of Eq. (50) can in fact be interpreted as the EPI
rule for the minimum of the quantum-generalized Fisher information [3,7–9],

minψ
(

8m/h̄2
)
[ψ; E0] = minψ

{
I [ψ]+

(
8m/h̄2

)
(V [ψ] − E0〈ψ |ψ〉)

}

= minψ
{

I [ψ] +
(

8m/h̄2
)
(V [ψ] − V0〈ψ |ψ〉)

−
(

8m/h̄2
)
(E0 − V0)〈ψ |ψ〉

}
or

minψ
{

I [ψ]+
(

8m/h̄2
)
(V [ψ] − V0)−I0(〈ψ |ψ〉 − 1)

}
,

(53)

where I0 = (8m/h̄2) T0 = I [ψ0] stands for the Fisher information in the system
ground-state.
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Thus, the Schrödinger variational principle represents the EPI rule [3,5] in terms
of the quantum analog of the classical Fisher information [Eq. (3)]. It contains the
“physical” constraint of the fixed potential energy, and the “geometrical” condition of
the unit norm of the system optimum wave function. The latter is seen to be enforced
by the Lagrange multiplier proportional to the exact ground-state information content
I0 related to T0. It also directly follows from this energy variation principle that for the
constrained displacements from the equilibrium state ψ0, which conserve V [ψ] = V0
and preserve wave-function normalization, 〈ψ |ψ〉 = 1, the kinetic energy (Fisher
information) can only increase, thus confirming the constrained minimum value of the
latter in ψ0.

Consider now the partial variational problem associated with this information mea-
sure, I [ψ] = I [p, j(�)], involving the search for the optimum phase � or the proba-
bility current j(�)= p∇� [Eq. (7)], for the fixed ground state probability distribution
p = p0. For the wave function displacements satisfying the physical and geometrical
constraints of Eq. (53) this partial variational problem reads:

minj I [p0, j] = minj

∫
p0(r) f̃ nclas.(j; r)dr ≡ minj

〈
f̃
〉

p0

= min�

∫
p0(r)[∇ s̃nclas.(�; r)]2dr ≡ min�

〈
(∇ s̃nclas.)2

〉
p0

= max�S[p0,�]. (54)

In the preceding equation we have used Eq. (43), which recognizes that the nonclassi-
cal density per electron of the Fisher information reflects the magnitude of the gradient
of the associated Shannon entropy density. Therefore, the minimum of the former, fix-
ing j = 0 in the system ground state, implies the corresponding minimum (vanishing)
length of the gradient of the latter, fixing the space-independent phase

�0 (t) = − (E0/h̄) t ≡ −ω0t, (55)

thus assuring the maximum smoothness of s̃nclas., i.e., the maximum value of S[ψ0] =
S[p0,�0]. This further demonstrates the complementary character of these two non-
classical information measures per electron, for the fixed ground-state probability
distribution.

Let us examine this partial, density-constrained maximum entropy principle of
Eq. (54) for determining the optimum phase function �(r) in some detail. We recall
that the nondegenerate ground state of the single particle system is characterized by
the vanishing �0(r) = 0, exhibiting only the purely time-dependent phase �0(t) in
the full ground-state wave function,

	0 (r, t) = R0(r)exp[i�0 (t)] = R0(r)exp[−i (E0/h̄) t] ≡ ψ0(r)exp[−iω0t],
(56)
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and sharply specified, conserved electronic energy

E0 = E[ψ0] = h̄2

2m

∫
[∇ R0(r)]2dr +

∫
p0(r)v(r)dr

= T [ψ0] + V [ψ0] = T0 + V0. (57)

One also observes that the stationary SE (49) additionally implies the equalization
of the local energy:

ε0(r) ≡ ψ0(r)−1[H(r)ψ0(r)] = E0. (58)

Therefore, either the global energy constraint E[ψ0] = E0 or the local requirement
ε0(r) = E0 can be used to identify the stationary ground state in quantum mechanics.

One might expect, that admitting the space-dependent phase�(r) in the variational
wave-function ψ(r) = R(r)exp[i�(r)] of this general maximum-entropy principle,
may not conserve the electronic energy in trial variations of the system wave function
ψ(r; p0). The expression for the expectation value of the Hamiltonian indeed gives:

E[ψ] =
∫

R(r)2v(r)dr + h̄2

2m

×
(∫

R(r)2[∇�(r)]2dr − (1 + i)
∫

{[∇ R(r)]2 + R(r)∇ R(r) · ∇�(r)}dr
)
.

(59)

Notice, that the kinetic energy term of this energy expression differs from that in
Eq. (57). The physical constraint E[ψ(r; p0)] = E0 is also required in this maximum
entropy rule to identify the Hamiltonian, i.e., the system itself, in such a thermody-
namic-like variational procedure.

The Euler equation resulting from the stationary property of the corresponding
auxiliary entropy function,

δ{S[p0,�] − λ(E[ψ (r; p0)] − E0)} = 0, (60)

with respect to the probability-constrained wave function

ψ (r; p0) = R0(r)exp[i�(r)], (61)

or its complex conjugate ψ∗(r; p0) = R0(r) exp[−i�(r)], which by construction
conserve the given ground-state probability distribution

p (r; p0) = ψ∗ (r; p0) ψ (r; p0) ≡ p0(r) = R0(r)2, (62)
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reads:

δS[p0,�]
δψ∗(r; p0)

− λH(r)ψ(r; p0) = ∂Snclas.[p,�]
∂�(r)

∂�(r)
∂ψ∗(r)

− λH(r)ψ(r; p0)

= [i − λH(r)]ψ(r; p0) = 0. (63)

By dividing both sides by λ 
= 0 one arrives at equation [(i/λ)− H(r)]ψ(r; p0) = 0.
It is seen to reconstruct the stationary SE for i/λ = E0, or λ = i/E0, which then
further implies �(r) = 0 in the system true ground state ψ(r; p0) = R0(r) = ψ0(r),
i.e., the lowest eigenstate of the Hamiltonian.

Since the average energy is no longer conserved in a general (nonstationary) quan-
tum state 	(r, t), one uses the least action principle to variationally derive the time-
dependent Schrödinger equation, see e.g., [12],

i h̄∂	 (r, t) /∂t = H (r, t)	 (r, t) or

[i h̄∂/∂t − H(r)]	 (r, t) ≡ A (r, t)	 (r, t) = 0. (64)

This physical quantity is represented by the quantum-mechanical action integral in
state 	,

A[	] =
∫

〈	 (t) |A (t) |	 (t)〉dt ≡
∫

A[	 (t)] dt, (65)

defined by the action operator A(r, t) of Eq. (64). Indeed the associated Euler equation
of the vanishing functional derivative

δA[	]/δ	∗ (r, t) = A (r, t)	 (r, t) = 0, (66)

which marks the stationary property of A[	], is then seen to directly recover Eq. (64).
We therefore conclude, that the phase/current part of the information measure in

quantum mechanics is indeed essential for distinguishing the amount of information
of states exhibiting the same modulus (probability) part and differing in their phases
(currents). The variational principles involving the generalized Fisher measure have
been examined elsewhere [3,9]. In the next section we examine a general EPI rule
involving the quantum Shannon entropy.

5 Maximum entropy principles and “thermodynamic” equilibrium states

Following Eq. (53) one might expect that a general maximum-entropy rule for deter-
mining the molecular equilibrium should involve both the thermodynamic (physical)
constraint E[ψ] = E0 and the geometrical requirement of the unit norm of the opti-
mum wave function:

maxψ {S[p,�] − λ(E[ψ] − E0)− μ(〈ψ |ψ〉 − 1)}. (67)
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In this complex variational problem the two conjugate states involved, ψ and ψ∗,
determine the two independent variational degrees of freedom which uniquely iden-
tify the real and imaginary components of the wave-function. In what follows we
examine the effect of general variations ψ∗ → ψ∗ + δψ∗ on the auxiliary entropy
functional of Eq. (67).

We first observe that the functional derivative of the quantum-mechanical entropy
S[p,�] of Eq. (46) with respect to ψ∗ reads:

δS[p,�]
δψ∗(r)

=
{
∂Sclas.[p,�]

∂p(r)
+ ∂Snclas.[p,�]

∂p(r)

}
∂p(r)
∂ψ∗(r)

+ ∂Snclas.[p,�]
∂�(r)

∂�(r)
∂ψ∗(r)

= {[2�(r)− lnp(r)] + (i − 1)}ψ(r). (68)

Hence, the functional derivative with respect to ψ∗ of Eq. (67) generates the follow-
ing Euler equation determining the optimum ψ(r) = ψ0(r) = R0(r)exp[i�0(r)],
i.e., p(r) = p0(r) = [R0(r)]2:

{[2�0(r)− lnp0(r)] − λH(r)+ (i − 1 − μ)]ψ0(r) = 0. (69)

Thus, after dividing by λ 
= 0 (marking an essential energy constraint) it formally
recovers the eigenvalue problem of the Hamiltonian [Eq. (49)] for

2�0(r) = lnp0(r) or �0(r) = ln[p0(r)]1/2 = lnR0(r), μ = −1 and

λ = i/E0. (70)

It could be directly verified using Eq. (59) that this optimum state

ψ0(r) = R0(r)exp[i�0(r)]= R0(r)exp[i lnR0(r)] = R0(r)(cos 1 + i sin 1)ln R0(r),

(71)

indeed reproduces the electronic energy expression of Eq. (57):

E[ψ0] =
∫

R0(r)2v(r)dr + h̄2

2m

∫
[∇ R0(r)]2dr. (72)

Therefore, since E[ψ0] = E[ψ0] or E[ψ0] = Ev[p0], this nondegenerate ground
state uniquely identifies R0(r) = R0(r) and p0(r) = p0(r), in accordance with the
familiar Hohenberg–Kohn theorems [13] of the modern Density Functional Theory
(DFT). However, since its phase is position-dependent this optimum (“thermody-
namic”) state also exhibits the nonvanishing probability current [see Eq. (7)]:

j0(r) = (h̄/m) p0(r)∇�0(r) = (h̄/m) R0(r)∇ R0(r). (73)

Thus, the lowest maximum-entropy (“thermodynamic”) equilibrium state ψ0 differs
from the true eigenstate ψ0 = R0 of the Hamiltonian [Eq. (56)], for which the proba-
bility current identically vanishes, although they both exhibit the same energy.
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In the time-dependent maximum entropy rule for determining the optimum non-
stationary state 	(r, t) = R(r, t) exp[i�(r, t)] and the particle distribution p(r, t) =
R(r, t)2, defined by the real modulus factor R(r, t) and phase function �(r, t), the
stationary-action constraint A[	] = A0 replaces the fixed-energy requirement of the
stationary problem:

max	{S[p,�] − λ(A[	] − A0)− μ(〈	|	〉 − 1)}. (74)

The relevant Euler equation, from the functional differentiation of the preceding equa-
tion with respect to 	∗, now reads:

{[2�0 (r, t)− lnp0 (r, t)] − λA (r, t)+ (i − 1 − μ)]}	 (r, t) = 0. (75)

For λ 
= 0 it reproduces the time-dependent SE of Eq. (64), A(r, t)	(r, t) = 0, for

2�0 (r, t) = lnp0 (r, t) or �0 (r, t) = ln[p0 (r, t)]1/2 = lnR0 (r, t) , and

μ = i − 1. (76)

Hence, the optimum time-dependent “thermodynamic” state reads:

	0 (r, t) = R0 (r, t) exp[i lnR0 (r, t)]. (77)

Its probability distribution p0(r, t) = R0(r, t)2 and current

j0 (r, t) = (h̄/m) p0 (r, t)∇�0 (r, t) = (h̄/m) R0 (r, t)∇ R0 (r, t) (78)

satisfy the probability continuity equation (17), which is a direct consequence of SE.
Moreover, the corresponding phase density and current (see Sect. 3) satisfy the local
balance of Eq. (24).

6 Conclusion

The quantum generalizations of the classical Fisher and Shannon information mea-
sures, functionals of the particle probability distribution, have been introduced and
discussed. They are applicable to the complex probability amplitudes (wave func-
tions) of the quantum mechanical description. Their associated continuity equations
have been examined and the associated nonclassical information sources, linked to the
wave function phase or probability current densities, have been identified. In particu-
lar the phase-current density have been introduced, which complements the familiar
probability-current concept.

The maximum quantum-entropy principle generates the equilibrium (“thermody-
namic”) states in which the phase component is directly linked to modulus part of the
system wave function:

ψ0(r) = R0(r) exp[i lnR0(r)] or 	0 (r, t) = R0 (r, t) exp
[
i lnR0 (r, t)

]
. (79)
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Thus the lowest equilibrium state ψ0 derived from the general maximum-entropy
rule differs from the true ground-state ψ0 (lowest eigenstate of the Hamiltonian),
both corresponding to the same energy E0 and probability distribution p0, by exhibit-
ing nonvanishing probability current j0. Its presence effectively increases the entropy
(electron indeterminacy) content above the classical level determined by the particle
probability alone. Therefore, the amount of information received by removing this
indeterminacy, as a result of the particle localization experiment, is larger in ψ0 than
in ψ0.

It should be observed, however, that the p0-constrained entropy principle gives
predictions fully consistent with the ordinary quantum mechanics. Indeed, by the
Hohenberg-Kohn theorem of DFT the fixed ground-state density ρ0 = Np0 then
uniquely determines the system energy Ev[ρ0] = Ev[p0] ≡ E0, so that the energy
constraint is redundant in the general entropy principle of Eq. (67). Therefore, opti-
mization of ψ then amounts to a search for the optimum phase �:

max�{S[p0,�] − μ〈ψ |ψ〉}. (80)

It gives rise to the associated Euler equation (i − μ)ψ = 0, which is automatically
satisfied for μ = i , leaving � completely undetermined.

To summarize, the general entropy principle, which allows variations in probability
distribution and hence also the system energy, predicts the stationary thermodynamic
state of Eq. (79), which differs from the true ground state of the molecular system in
question, while its density/energy-contrained principle of Eq. (80) does not resolve the
familiar arbitrariness of the phase in quantum mechanics. As also argued in Section 4,
the quantum-generalized gradient measure of the Fisher-type determines the ground
state uniquely, predicting the space-independence of the resulting phase. Indeed, since
p0 fixes the classical part of the information content, the minimum of the quantum
Fisher information is determined by the lowest value of its nonclassical part of Eq. (34),
i.e., the vanishing probability current density: j = 0. This further implies [see Eq. (7)]
the space-independent phase of the ground-state wave function [see Eq. (30)]. It would
thus seem that this state of the vanishing current everywhere represent the state of the
absolute maximum uncertainty in electronic state. Indeed, any presence of a finite cur-
rent density increases the information (structure, “order”) in the ground-state of the
system electrons, thus decreasing a measure of their complementary entropy (uncer-
tainty, “disorder”) descriptor.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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