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Abstract The criterion of maximum overlap with the canonical free-atom orbitals is
used to construct a minimal set of molecule-intrinsic orthogonal atomic orbitals that
resemble the most their promolecular origins. Partial atomic charges derived from
population analysis within representation of such molecule-adopted atomic orbitals
are examined on example of first-row hydrides and compared with charges from other
methods. The maximum overlap criterion is also utilized to approximate the exact
free-atom orbitals obtained from ab initio calculations in any arbitrary basis set and
the influence of the resulting fitted canonical atomic orbitals on properties of molecule-
adopted atomic orbitals is briefly discussed.

Keywords Minimal basis set - Atomic orbitals - Maximum overlap criterion -
Partial atomic charges - Molecule-intrinsic orbitals

1 Introduction

It has recently been argued [1] within the framework the Orbital Communication
Theory (OCT) [2-4] of the chemical bond that the minimum basis (MB) of atomic
orbitals (AO) occupied in the promolecular system of non-interacting atoms gives rise
to the most intuitively “chemical” account of the bond covalency/ionicity and gives
understanding of diverse factors conditioning the efficiency of the AO interactions.
It has turned out that, in the case of molecules with typical covalent bonds, amount
of information about electron localization calculated within the MB-set of atomic
orbitals is (to a certain degree) invariant with respect to basis-set enlargement [1].
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The maximum overlap criterion (MOC) [5,6] has been proposed to numerically con-
firm that the MOC-approximated (fitted) small basis and the reference minimum set
of AOs indeed generate practically identical OCT-indices.

The criterion of maximum overlap has also been used [7] to approximate the wave
function calculated within a general (extended) basis set by the molecular orbitals
(MO) calculated within the external minimal basis (EMB), i.e. Huzinagas MINI basis
functions [8]. It has been demonstrated that the electron population analysis (EPA)
based on the resulting EMB-orbitals gives rise to definitely more reliable and sensible
partial atomic charges (PICs) than the corresponding Mulliken’s and Léwdins popula-
tion analyses (MPA [9—12] and LPA [13], respectively), especially if calculated within
extended sets of basis functions. Moreover, EMB-charges have turned out to be compa-
rable to PACs calculated within representation of natural atomic orbitals (NAO) [14],
as well as preserve the proper convergence profile when one systematically enlarges
the basis set.

The main goal of this paper is to utilize the MOC-scheme (in the form presented
in [7]) to generate the molecule-intrinsic minimal-basis (IMB) orbitals that resembles
the most (in the least-squares sense) the canonical free-atom orbitals (FAO) of the
relevant system promolecule.

2 Method details

Within the framework of molecular-orbital theory the one-determinant wavefunction
of the closed-shell groundstate molecular system of bonded atoms is fully determined
by the subspace of occupied MOs, |?),

[v?) = 1x)CY. ey

calculated within a general set of non-orthogonal basis functions (not necessarily
centered on particular atoms), |x), i.e. with overlap matrix S, = (x|x) # 1. In the
above equation rectangular matrix C9 collects the relevant linear-combination (LC)
coefficients for occupied molecular orbitals. The complementary subspace of virtual
MOs, |7, is therefore defined as follows:

") =1x)Cy. @)

The dimension of the Hilbert space of all molecular orbitals, 7, is the simple sum of
dimensions of occupied and virtual MO-subspaces, n = n° + n"; furthermore, n° can
be expressed by the number of core-MOs (n¢) and valence-MOs (n9), n° = nl +ng.
The number of basis functions |x) we will denote by n,,.

Now, let us consider the corresponding promolecular system given by the rele-
vant non-bonded atoms at their molecular positions, calculated using the ROHF/GVB
method with explicitly assumed fractional occupation numbers to assure sphericall
symmetry of all atoms. For separate atom X, the subspace of the resultant occupied
canonical free-atom orbitals, |<p§)(>,

lo%) = 1x)B%. 3)
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determine the minimal set of atomic orbitals strictly assigned to the atom in question;
here, matrix Bg)( collects the linear-combination coefficients related to the subspace
of occupied FAOs. Therefore, grouping the relevant LC-matrices of all constituent
atoms in the molecule gives rise to the promolecular minimal basis of canonical atomic
orbitals, |¢), within representation of |x),

1¥%) = [x)BY, BY = B, |--BY,). )

The number of all promolecular FAOs, b, can be regarded as the simple sum of the
number of core-orbitals |<pg), bc, and valence-orbitals |(p3), by, b = b. + by. At
this point it has to be mentioned that, generally, b = n but by > nY and hence
b > n°, i.e. the number of FAOs is always greater than the number of occupied MOs
in the molecule and therefore the definition of molecular intrinsic AOs requires using
also some orbitals from virtual MO-subspace. However, the choice of appropriate
ny = b — n? orbitals from n, -dimensional subspace |y/") is somewhat ambiguous.

Recently, has been proposed an efficient algorithm for determining the ny-
dimensional valence-subspace |g0(v) ) within the framework of quasi-atomic minimal
basis orbitals (QUAMBO) [15,16] which constitute the molecule-intrinsic minimal
basis of valence atomic orbitals, |y ). However, the use of the maximum overlap crite-
rion allows one to easily generalize the original procedure to cover also the core atomic
orbitals. In short, the alternative algorithm that transforms occupied non-orthogonal
FAOs directly to orthogonal IMB-orbitals, |¢°) — |¢), can be summarized in the
following two steps:

1. Evaluating the missing n, x ny LC-matrix (_I; from the virtual MO-subspace C},
as follows:

C; = C; (U;]))lﬁng ’ (5)
where the unitary matrix U};, diagonalize the appropriate metric matrix W2,
— yut — il — Rpot
W; = V; V}; = U:;WZU; , and V}; =BJ'S,C,. (6)

More details about the virtual valence MO-subspace given by (_3; one can find in

the original work [15]. The subspaces of occupied and virtual valence-MOs can be

collectively written as |/) and the corresponding n x X b matrix Cx = (Cg’( |(_?;’().
2. Using the maximum overlap criterion,

tr((po |¢) = maximum, @)

to find the molecule-intrinsic orthogonal atomic orbitals |¢) that resemble the most
canonical atomic orbitals |¢°). Then, according to [7] we get:

—1/2
) =1x)B,. B, =T(T'T) ", ®)
where

T =BJ'S,C,. )
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The presented procedure gives rive to the set of molecule-adapted atomic orbitals
preserving the most the inner-shell AOs and with the effective valence-AOs that reveal
the influence of the net of chemical bonds in the molecule. In accordance to (8), one
can express the contracted set of molecular orbitals |) within the representation of
atomic orbitals |¢) as follows:

W) = l)el¥) = 19)B] (x1x)ICx = 19)B}S,Cy =19)C,, (10)
and
C, = (CYICY). (11)

Construction of such set of IMB-orbitals every-time involves additional calculations
of orbitals |¢") for separated atoms. However, the maximum overlap criterion can
also be successfully utilized to smooth the way of the whole procedure. In particular,
matrices B(;( for the consecutive elements X from the periodic table, calculated with
high accuracy within the extended basis set |x) can either reside on disk or can be
stored in the quantum-chemistry program. Then, according to the original MOC-
scheme [6], the required LC-coefficients within arbitrary set of basis functions |x’)
one can calculate (exact to basis set superposition error) as follows:

0 _ g 1200 (poigo ) V2
BY =S/ 0% (UXU%) (12)

where

—1/2
UY = S.*Ax xBY (13)

In the foregoing equations labels X and X’ conventionally refer to atom-X-centered
functions | xx) and |xx), respectively, and Ay’ x stands for the rectangular matrix of
overlap integrals between both these basis subsets,

Axr x = (Ao = (Xo1Xo)}- (14)

3 Numerical results

Numerical results presented in this section were obtained using the special program
written by authors to perform MOC-calculations as well as the ab initio quantum
chemistry package GAMESS [17], the Natural Bond Orbitals software NBO 5.0 [18]
and the molecular visualization program MOLDEN [19]. Molecular calculations were
carried out for species diversified by means of chemical bond character, i.e. the fol-
lowing first-row hydrides: LiH, BeH;, BH3, CH4, NH3, H>O and HF (for comparison
calculations for LiF were performed as well) at the RHF theory level and using exper-
imental geometries whereas calculations for free atoms were performed using the
ROHF/GVB method with explicitly assumed fractional occupation numbers to assure
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sphericall symmetry of atoms (more details can be found in “Further Information”
section of GAMESS documentation [17]).

3.1 IMB-orbitals from MOC

First, let us analyze sensitivity to the size of basis sets and convergence properties of
partial atomic charges involving IMB-orbitals,

2
. 5)

o
OMB _ 7o NIMB_ 7 Z 2 ‘(cg)m

oceXi=1

(here Zx stands for the atomic number of atom X and N)I(MB is the relevant elec-
tron population on atom X). The above are compared with PACs from the following
standard electron population analyses (-PA):

Mulliken-PA (QMPA) [9-12],

Lowdin-PA (Q ) [13],

Natural-PA (QYA) [14],

electrostatic potential (ESP)-derived atomic charges (Q];(SP) [20],

— the recently proposed population analysis involving the EMB of AOs from the cri-
terion of maximum overlap with the Huzinagas MINI basis functions, (QEMB) [7].

The list of basis sets used involves: STO-3G (a), 6-31G (b), 6-311G (¢), 6-311G™*
), 6-3114++G** (e), 6-311++G** (), 6-311++G** (g); here superscripts d and ¢
respectively stand for doubled and tripled sets of relevant polarization functions on
each atom.

Table 1 collects partial atomic charges of non-hydrogen atoms for all hydrides under
consideration and PACs of fluorine atom in LiF molecule, calculated using various PA-
schemes and the most extended basis set | x ). Even a cursory analysis of QI;(PA seems
to reaffirm the well known shortcoming of population analysis based on symmetrically

Table 1 Partial atomic charges of central atoms of first-row hydrides and LiF molecule calculated at their
experimental geometries and using various population-analysis schemes

Molecule QMPA Q%‘(PA Q%PA QgE(SP QgE(MB Q%/IB

LiH 0.4372 0.1938 0.8468 0.8444 0.6315 0.6226
BeH; 0.4766 0.1004 1.2289 0.7282 1.0475 1.2172
BH3 0.1025 —0.0415 0.4192 0.6295 0.0062 0.0452
CHy —0.0481 —0.0203 —0.7255 —0.6015 —0.7099 —0.5660
NH3 —0.4729 0.0403 —1.0342 —0.9266 —1.0978 —0.7883
H;O —0.5704 0.0004 —0.9276 —0.7379 —1.0603 —0.7663
HF —0.4080 —0.0510 —0.5609 —0.4565 —0.6680 —0.5000
LiF —0.7547 —0.4594 —0.9781 —0.8849 —0.9932 —0.9450

Method: RHF/6-311++G**(with triple set of polarization functions)
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Fig. 1 Basis-set dependence of X o —_— mme
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partial atomic charges from 0,25
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Fig. 2 Basis-set dependence of X [ —_— mmm s cem
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partial atomic charges from 0,00
various methods calculated at
the RHF theory level for -025
nitrogen atom in NH3 molecule 050 %
at experimental geometry z
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-1,00

-1,25 +

Basis set

orthogonalized atomic orbitals [21], i.e. within extended basis sets (especially with
diffuse and polarization functions) LPA gives rise to completely unreliable atomic
charges (ussually QI;(PA converges to nearly-zero values as the basis set is enlarged).
Although PACs calculated within the framework of MPA assume more sensible values
(with the exception of CH4 molecule), they still seem to be somewhat underestimated

with regard to the reference atomic charges Q§PA and Q])E(SP. Moreover, atomic charges

Q%PA are much more sensitive to the basis set choice than Qg‘(P A [22] and, as proved
by Ruedenberg [23], in the limit of a complete basis set they can actually exhibit any
value between Fo00. Details of characteristic basis-set dependencies of QI;(PA, Q%PA
as well as charges from other methods for two representative cases, CH4 and NHj3,
can be investigated in Figs. 1 and 2.

For the most part atomic charges Q§P A Q])E(SP , Q])E(MB and Q%?/IB sharply differ from
MPA- and LPA-derived ones; they converge to definitely more reasonable values and
thus they seem to display adequate picture of molecular electronic structure in atomic
resolution. This is evident especially if one compares results for LiF; only atomic
charges from NPA, ESP, EMB and IMB correctly predict predominatingly ionic (90—
100 %) character of the chemical bond Li-F. However, as follows from a thorough
analysis of results from Table 1, in most cases partial atomic charges Q%P A and Q])E(MB
reveal quite good correlation and both tend to predict slightly more polarized bond
densities than Q?(\/IB and Q];(SP.

This tendencies were also probed using quantities § Oy involving charges on hydro-
gen atoms from various PA-methods, Oy, and electronegativity differencies in Pauling

scale [24], Aéxmu:
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Fig. 3 Distances between
relative bond-ionicity descriptors
of X—H based on Pauling’s
electronegativity differences and
those derived from partial

atomic charges calculated using §
various schemes. Method: R
RHF/6-311++G** (with triple
set of polarization functions),
experimental geometries
LiH BeH, BHj CHgy NH3 H,0 HF
Molecule
—1 -1
30u = [[(Qrer)™ Qul — (Abrer)™ Abxu|. (16)

Here quantities Q,.r and A&,y refer to diatomic with possibly the most polarized
chemical bond which in this case is LiF. Therefore, for particular molecule, § Oy mea-
sures the distance between relative polarizations of the chemical bond H-X evaluated
using calculated partial atomic charges and Pauling’s electronegativity differencies.
Results are presented in Fig. 3.

Since natural atomic charges are known to be quite well-correlated with elec-
tronegativity differencies [14] let us confine to compare results only for NPA- and
IMB-charges. It follows directly from Fig. 3 that electronic structures predicted by
the newly proposed IMB-orbitals are generally closer to those resulting from Paul-
ing’s electronegativity differencies (§Qy, for IMB and NPA assume 0.2072 and
0.3140, respectively), especially for nonmetal hydrides (5Qy(IMB) = 0.0661 and
50Qn(NPA) = 0.1805). Just as natural atomic charge, IMB-charge display a far more
ionic bond Be-H than predicted by other methods while in the case of LiH the latter
is closer to predictions from A&pig. However, as follows also from Table 1, the most
conspicuous difference between atomic charges involving maximum overlap with the
minimum set of AOs (IMB and EMB) and PACs from NPA (as well as ESP) concerns
BH3 molecule. In particular, within description involving IMB-orbitals boron atom
seem to exhibit almost purely nonmetalic character (since Aégy ~ 0.16 and § Oy is
comparable with CH4, NH3, H,O and HF) whereas within ESP and NPA approach
boron atom reveals rather metalic/semimetalic character. A similar conclusion can be
drawn after analysis of quantity § Q}; (Fig. 4) being an analogue of (16) but measuring
difference between relative polarizations of bond H-X evaluated from various PACs,
relative Pauling’s electronegativity differencies (ELN) and relative “charges” from
ESP-approach:

50y = H(Qref)‘lQH (17)

_ ‘ (eriff)_l QESP

Table 2 collects electron populations for three different sets of minimal-basis AOs,
i.e. those from IMB, EMB and NPA formalisms. One should notice that within subset
of minimal basis natural atomic orbitals Rydberg-type functions are excluded and thus
orbital populations usually do not sum up exactly to the overall number of electrons,
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Fig.4 Distances between relative bond-ionicity descriptors of X—H based on ESP-derived atomic charges
and those involving PACs from various population-analysis schemes as well as Pauling’s electronegativity
differences (ELN). Method: RHF/6-311++G** (with triple set of polarization functions), experimental

geometries

Table 2 Electron populations
of IMB- and EMB-orbitals as
well as the minimal-basis subset
of NAOs for central atoms of
first-row hydrides calculated at
their experimental geometries

Method: RHF/6-311++G**(with
triple set of polarization
functions)

@ Springer

Molecule  N{Y® NJIB o NTE - NJEE e

LiH 2.0000  0.3774  0.0000  0.0000  0.0000
BeH) 2.0000 07828 0.0000  0.0000  0.0000
BH; 2.0000 09705 09922 0.9922  0.0000
CH,4 20000 L1119 11514 11514 L1514
NH3 20000 14134 12641 12641  1.8467
H,0 20000 16502 2.0000 13850  1.7312
HF 2.0000  1.8365  2.0000  2.0000  1.6635
Molecule  NEMB - NEMB - NRMB o NZME NP
LiH 19794 03891 0.0000  0.0000  0.0000
BeH) 19796 09729  0.0000  0.0000  0.0000
BH; 19731 12225 09054  0.9054  0.0000
CH,4 19790 15548  1.0587  1.0587  1.0587
NH3 19919 18672 12069  1.2069  1.8250
H0 19969  1.9601  2.0000  1.3714 17319
HF 19988 1.9893  2.0000  2.0000  1.6798
Molecule NP NJPA - NJPA L NJPA L NI

LiH 19995 0.1324  0.0000  0.0000  0.0000
BeH) 1.9998  0.6709  0.0000  0.0000  0.0000
BH; 19997 09549  0.8085  0.8085  0.0000
CH,4 19997 11545  1.1857 11857  1.1857
NH3 19997 14960 13358  1.3358  1.8398
H0 19999 17434 19925 14531 17168
HF 20000 1.9041 19963  1.9963  1.6536
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Zi\fB N}:IAO ~ N. At the first glance it is clear that representation of IMB-orbitals
assures the best separation of lone-pair and core orbitals; comparable results we obtain
using NAOs. But it is somehow puzzling that within representation of EMB-orbitals
lone-pairs exhibit better separation than core-orbitals. Furthermore, electron popula-
tions of orbital 2s, NZESMB, assume significantly greater values than N%ISV[B and Nzl\iPA
(this feature is characteristic for “physically”’-orthogonalized atomic orbitals [25]).
In the case of “p”-type orbitals NAO-populations sharply differ from those based
on minimal-basis AOs involving MOC-approach only for borane molecule. Below
we present averaged (over all molecules) differences between the relevant orbital
populations from two different MB-representations, MM, that concisely recaps
Table 2:

———IMB/EMB

- AN, — 0.0145¢(1s), 0.2590e(2s), 0.0412¢(2p),

— AN, MMP = 0.0002e(1s), 0.0941e(2s), 0.0485¢(2p),
——NPA/EMB

- AN, — 0.0142¢(1s), 0.2714e(2s), 0.0657¢(2p).

3.2 MOC-approximated FAOs

Let us investigate the quality of free-atom AOs within arbitrary basis set ( from a to g)
obtained using the MOC-method from canonical AOs calculated at ROHF/GVB theory
level within three reference set of functions, a, 0 and g. Table 3 presents averaged (over
all orbitals and all available basis sets a—g ) overlap integrals between reference atomic
orbitals calculated using ab initio method, | x" ef ), and those obtained using maximum
overlap criterion, | x"*), S,rff = (x ,’f |X[f‘f ). Averaged quantities with subscripts were
calculated only for basis sets less (|x"*) = a, b, ¢) or more accurate (|x™*) = e, f, g)
than the reference set of functions |x"¢) = d.

In accordance to expectations, results from Table 3 clearly indicate that using the
maximum overlap criterion with the reference FAOs calculated within set of functions
g allows one to reproduce canonical orbitals for free-atoms within any basis set a—f with
the highest accuracy; typical deviation of MOC-derived orbitals from ab initio FAOs
is 107, Using the reference basis-set with only one set of polarization funtions and

Table 3 Average (over all basis = =

g 2 50 50 Sa
sets a—g) overlap integrals Atom § S Sa—c Se -9 S
between MOC-approximated
H 1.00000  1.00000  1.00000 0.99999  0.98295

free-atom orbitals and the
corresponding canonical FAOs L
obtained from ab initio

0.99995  0.99995  0.99991  0.99998  0.98907

. . Be 0.99995  0.99994  0.99991  0.99997  0.99140
calculations using reference B 0.99994  0.99982  0.99993  0.99971  0.97287
basis sets 0 and g
C 1.00000  0.99991 0.99999  0.99984  0.98912
N 0.99999  0.99995  1.00000 0.99989  0.99438
o) 0.99999  0.99992  1.00000 0.99984  0.99306
F 0.99999  0.99993  1.00000 0.99986  0.99276
Atom- 0.99998  0.99993  0.99997  0.99988  0.98820
averaged
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Table 4 Comparison of partial atomic charges calculated within representation of exact IMB-orbitals and
using various basis sets with the relevant PACs calculated within representation of IMB-orbitals involving
MOC-fitted FAOs from reference basis sets 9 and g

Molecule PIC a b c 0 [3 § g
LiH OMB 04764 05797 06185  0.6190  0.6216  0.6227  0.6226
oL 0.4764 0.5847 0.6189 0.6193 0.6213 0.6225 0.6226
Q, 0.4764 0.5848 0.6188 0.6190 0.6190 0.6194 0.6206
BeH, oMB 1.0223 1.1754 1.1998 1.2126 1.2154 1.2168 1.2172
op. 1.0223 1.1823 1.2016 1.2144 1.2153 1.2169 1.2172
Q3. 1.0223 1.1821 1.2001 1.2126 1.2125 1.2141 1.2145
BH3 oM 0.1491 0.0013 0.0034 0.0301 0.0407 0.0435 0.0452
o 0.1490  —0.0101 0.0087 0.0349 0.0411 0.0435 0.0452
foh} 0.1490  —0.0098 0.0038 0.0301 0.0311 0.0341 0.0356
CH, OMB 01603 —0.5646 —0.5957 —0.5644 —0.5689 —0.5662  —0.5660
o —0.1604 —0.5908 —0.6000 —0.5695 —0.5679 —0.5666 —0.5660
oF) —0.1604 —0.5862 —0.5946 —0.5644 —0.5644 —0.5631 —0.5625
NH; OMB 03174 —0.7444 —0.7541 —0.7545 —0.7829 —0.7878 —0.7883
ox —0.3174 —0.7471  —0.7590 —0.7597 —0.7824 —0.7882 —0.7883
(o}3 —0.3174 —0.7431 —0.7535 —0.7545 —0.7748 —0.7808 —0.7809
H,0 OoMB 02604 —0.7102 —0.7178 —0.7326 —0.7596 —0.7659  —0.7663
o3 —0.2604 —0.7123 —0.7215 —0.7359 —0.7592 —0.7662 —0.7663
Q) —0.2604 —0.7099 —0.7177 —0.7326 —0.7524 —0.7595 —0.7596
HF OMB 01553 —04585 —0.4738 —0.4841 —0.4972 —0.4995 —0.5000
of —0.1553  —0.4600 —0.4753 —0.4851 —0.4971 —0.4996 —0.5000
oL —0.1553  —0.4596 —0.4738 —0.4841 —0.4932 —0.4960 —0.4963
Averaged ~ AMB 0.3447 0.0379 0.0168 0.0156 0.0025 0.0003 0.0000
Over all A% 0.3447 0.0305 0.0140 0.0127 0.0029 0.0001 0.0000
Molecules A% 0.3447 0.0325 0.0170 0.0156 0.0074 0.0046 0.0043

All molecules at their experimental geometries

without diffuse ones, 0, gives rise to very similar results provided that |x™) = a, b, c;
approximation of more accurate FAOs (| x™*) = e, f, g) leads to slightly worse results,
with deviation assuming 10~*. Obviously, for reference FAOs calculated with very
poor set o functions the MOC-procedure does not allow one to obtain atomic orbitals
of satisfying quality (atom-averaged deviation is up to 1072).

It was of our special interest to probe to what extent using MOC-approximated
FAOs in construction of molecule-adopted AOs influences the results of EPA. Table 4
collects partial atomic charges Q%VIB, calculated within the representation of IMB-
orbitals involving exact FAOs and various basis sets (a—g), as well as corresponding
PICs, Q)D( and Qg(, involving MOC-approximated FAOs calculated using extended
basis sets 0 and g, respectively. Quantities Ax stand for averaged (over all molecules
excluding BH3) differencies between IMB-charges calculated within particular basis
set and the corresponding atomic charge calculated using exact FAOs and within basis
set g; for negative exact PACs the respective differences were multiplied by factor —1.
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As follows from Table 4, using approximated free-atom orbitals in construction of
IMB-orbitals has no significant influence on calculated IMB-atomic charges, espe-
cially for calculations involving the minimal set of basis functions. Indeed, the first
column of numbers in Table 4 clearly indicates that within very poor basis set a
atomic charges are particularly insensitive to quality of FAOs used in MOC-procedure
(it becomes obvious if one recalls the results from Table 3).

On average, atomic charges Q?( and Q)g( deviate from the corresponding exact
charges Q%VIB by 0.0029¢ and 0.0020e, respectively and thus, in the view of
population-analysis accuracy, they give rise to the same conclusions about the elec-
tronic structure of molecules. However, a more discerning comparison of atomic
charges QQ/IB and Qf( reveals that the latter ones are usually closer to the corre-
sponding exact IMB-charges (calculated within set of functions g). On the other hand,
atomic charges Q)D( deviate significantly from the exact charges only in the case of
more accurate calculations (if we exclude BH3 molecule and take into consideration
only basis set of TZV-type the average difference between the most exact values of Q?(
and Q%f’thrm x assumes 0.0043e, e.i. about 0.6 %). Indeed, convergence profiles that
emerge from values of Ax allow one to draw the conclusion that the more accurate are
canonical FAOs used to construct a set of IMB-orbitals the closer to the exact values
(in a sense of basis-set completeness) are the resulting IMB-charges calculated within

any arbitrary basis set.

4 Summary

In this work we have introduced and briefly examined a simple method of generating a
minimal set of molecule-adopted atomic orbitals. Contrary to the previously proposed
method involving a reference set of (external) minimal-basis orbitals (e.g. Huzinaga’s
MINI basis set) [7], in this approach we have used the criterion of maximum overlap
to the set of free-atom orbitals obtained from ab initio calculations (using the same
set of basis functions) for the corresponding system promolecule. Hence, the result-
ing minimal-basis orbitals are intrinsic for individual molecules and consequently
exhibit appropriate convergence properties as the number of basis functions used in
calculations increases.

It has also been demonstrated that the MOC-scheme can be successfully utilized
to approximate canonical free-atom orbitals within any arbitrary basis set using one-
off calculated FAOs of high quality (by default stored on disk); therefore, generating
of IMB-orbitals does not require every-time calculations of promolecular systems.
Moreover, partial atomic charges calculated within representation of such molecule-
adapted atomic orbitals tend to converge noticeably faster to their exact values in the
limit of complete basis set.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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