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Abstract A simple method of analysing and localization of canonical molecular
orbitals for particular chemical bond using the MO-resolved bond-order decompo-
sition scheme is presented. An alternative definition of classical bond order orbitals
is provided and links to communication theory of the chemical bond are outlined
and briefly discussed. The introduced procedure of decomposition of quadratic bond
orders allows one to analyse two- as well as three- center chemical bonds within the
framework of the same theory.

Keywords Wiberg’s index · Bond order decomposition · Localized orbital ·
Molecular orbital · Scattering operator · Communication theory

1 Introduction

The concept of chemical bond order [1] is deeply embedded in chemical intuition.
Bond multiplicities are widely used in evaluating of electronic structure of molecules
despite the fact, that they are not observables in quantum-mechanical sense. The main
reason of their popularity is that they provide a very compact tool for rationalizing the
results of theoretical calculations.

According to the qualitative molecular orbital (MO) theory [2,3] the formal bond
order (multiplicity) in diatomics is given by

BXY = 1

2

(
N − N∗) , (1)
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where N and N∗ stand for the numbers of electrons occupying bonding and anti-
bonding molecular orbitals, respectively. This equation can be also rewritten in the
following form:

BXY =
M O∑

i

B(i)XY = 1

2

M O∑

i

ni�
(i)
XY , (2)

where ni is a number of electrons occupying molecular orbital ψi and �(i)XY denotes
a contribution of this particular orbital to the bond order BXY . In the case of simple
qualitative models of diatomic species the quantity�(i)XY holds one of the three admis-

sible values: �(i)XY = 0 (non-bonding MO), 1 (bonding MO) and −1 (anti-bonding
MO).

However, in typical ab initio calculations canonical MOs of poliatomics are delo-
calized over the whole molecule and thus one MO can simultanously reveal bonding
character with respect to particular chemical bond and anti-bonding character with
respect to another. There is a variety of computationaly efficient methods of localiza-
tion and decomposition of the chemical bonds into σ, π and δ components: tranforma-
tion MO→LMO by optimalization the expectation value of an appropriate operator
[4–6], transformation MO→NBO into the natural bond orbital (NBO) representation
[7], transformation MO→LOBO into the localized orbitals of bond order (LOBO)
[8], symmetry based bond-order decomposition techniques [9], etc. These methods
allow one to gain a very compact and intuitive picture of typical chemical bonds
but sometimets (especially in the case of three-center two-electron chemical bonds,
delocalized bond, very weak atomic interactions, etc.) they can lead to unreasonable
results.

In this paper we introduce a simple method of analysing and localization of canon-
ical molecular orbitals (CMO) for particular chemical bonds using MO-resolved bond
order decomposition scheme and the bond order orbitals (BOO) concept [10]. Also,
the relation to the communication theory of the chemical bond (CTCB) [11–20] is
outlined and briefly discussed.

2 MO-resolved decomposition

The most popular and commonly used in quantum-chemical calculations are quadratic
bond orders and atomic charges based on the reduced density matrix γ (also known as
charge and bond-order matrix, CBO matrix [21]) which constitutes the key quantity
of the standard one-determinantal description in the atomic orbital representation. For
closed-shell systems, using Löwdin’s symmetrically orthogonalized atomic orbitals
(AO,OAO) [22] , χ = {χk}, matrix γ reads:

γ = CnC† =
{

γk,l = 2〈χk | P̂o
ψ | χl〉 = 2

occ∑

i=1

Ck,i Cl,i

}

, (3)
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where C stands for the LCAO MO coefficients matrix [23,24], n = {ni = 0, 2} is a
diagonal matrix collecting electron occupation numbers of each molecular orbital ψ
and thus determines the reference electron configuration. In Eq. (3) P̂o

ψ represents the
projection operator onto the subspace of all occupied molecular orbitals, ψo = {ψo

i }:

P̂o
ψ =

∑

i=1

| ψo
i 〉〈ψo

i |=
occ∑

i=1

P̂i . (4)

In other words, the element γk,l of the CBO matrix is determined by the projection of
state | χl〉 onto the state | χk〉 through the subspace of (doubly) occupied MO, ψo. In
the case of purely geometric projection through the space of molecular orbitals (both,
occupied and virtual), ψ = (ψo,ψv), we get

〈χ | P̂o
ψ + P̂vψ | χ〉 = 〈χ |

(
∑

i=1

| ψi 〉〈ψi |
)

| χ〉 = 〈χ | χ〉 = I, (5)

where the last equality results from the orthonormality relation in the orthogonalized
AO representation.

2.1 Electron population Nk

The overall number of electrons in the molecule N can be defined as a trace of the
CBO matrix within the orthogonalized atomic orbital representation,

N = tr{γ } = 2
∑

k

∑

i

〈χk | ψo
i 〉〈ψo

i | χk〉 = 2
∑

k

∑

i

∣∣Ck,i
∣∣2 =

∑

k

Nk . (6)

Therefore, we interpret orbital population Nk as an expectation value of operator Po
ψ

in the state | χk〉. Alternatively, one can also determine the overall number of electrons
and orbital populations directly within the canonical molecular orbital representation.
From the orthonormality of MO we obtain:

〈ψ | ψ〉 =
(〈ψo | ψo〉 〈ψo | ψv〉

〈ψv | ψo〉 〈ψv | ψv〉
)

=
(

I 0
0 I’

)
. (7)

For the closed-shell molecular systems N is determined as follows:

N = 2tr{〈ψo | ψo〉} = 2I = n. (8)

The overall number of electrons can be straightforwardly decomposed into orbital
populations {Nk} by introducing the orbital resolution of identity:

N = 2tr

{

〈ψo |
(

∑

k

| χk〉〈χk |
)

| ψo〉
}

= 2
∑

k

∑

i

∣∣Ck,i
∣∣2 =

∑

k

Nk . (9)
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Obviously, both decomposition schemes of overal number of electrons into orbital
contributions, within AO and MO representations (Eqs. (6), (9), respectively) are fully
equivalent.

2.2 Covalency index wk,l

Most of the presently used quadratic bond orders [25–27] are related to the Wiberg
covalency index between atom X and Y [28]:

WXY = 1

2

X∑

k

Y∑

l

wk,l = 1

2

X∑

k

Y∑

l

|γk,l |2. (10)

According to Eq. (3) on can easily express each contribution wk,l to the Wiberg
covalency index as an expectation value of the operator Sl ≡ P̂o

ψ P̂l P̂o
ψ in the state

| χk〉:

wk,l = 4〈χk | P̂o
ψ | χl〉〈χl | P̂o

ψ | χk〉 = 4〈χk | Ŝl | χk〉. (11)

Molecular scattering operator Ŝχ arises within Orbital Communication Theory (OCT)
[12] and has essential meaning in determining entropic bond descriptors of molecular
communication systems. According to the OCT wk,l is an expectation value in the
final (observable) state | χk〉 of the molecular scattering operator Ŝl from the initial
(reference) state | χl〉, through the subspace of occupied molecular orbitals,ψo. In the
information-theoretic sense the elementwk,l determines amount of information about
electrons assignment into atomic orbitals χk and χl that was dissipated (scattered)
during bond forming proccess. In other words—wk,l measures amount of electrons
that are delocalized between orbitals χk and χl . Due to γ is a hermitian matrix we
automatically get wk,l = wl,k .

It follows directly from the idempotency properties of the density matrix γ ,

(γ )2 = 2γ , γk,k = 1

2

∑

l

∣
∣γk,l

∣
∣2
, (12)

that for atomic orbital centered on atom X the electron population Nk can be decom-
posed into non-bonding (lone-pairs, core electrons) N n

k and bonding (chemical bonds)
N b

k contributions:

Nk = 1

2

∑

l

wk,l = 1

2

⎛

⎝
X∑

l

wk,l +
Xc∑

l

wk,l

⎞

⎠ = N n
k + N b

k , (13)

where Xc complements the subspace of orthogonalized AOs centered on atom X . The
same can be accomplished by introducing atomic resolution of identity,
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1 = ŜX +
(

1 − ŜX

)
=

X∑

l

Ŝl +
Xc∑

l

Ŝl . (14)

Then, according to Eq. (6) and using the following properties of operators P̂o
ψ and Ŝl :

(
P̂o
ψ

)2 = P̂o
ψ, P̂o

ψ =
∑

l

Ŝl , (15)

we immediately obtain

Nk = 2
(
〈χk | ŜX | χk〉 + 〈χk | (1 − ŜX ) | χk〉

)
= N n

k + N b
k . (16)

Using again the atomic resolution of identity we can decompose N b
k further into

particular bond order contributions:

N b
k = 2〈χk | (1 − ŜX ) | χk〉 = 2

∑

Y �=X

〈χk | ŜY | χk〉. (17)

Finally, for the closed-shell molecular systems we can define non-bonded electrons
number, atomic valency (or rather atomic covalency) and bond covalency indices as
simple functions of the molecular scattering operator in atomic resolution:

N n
X = 2trX

{
〈χ | ŜX | χ〉

}
, VX = 2trX

{
〈χ | (1 − ŜX ) | χ〉

}
,

WXY = 2trX

{
〈χ | ŜY | χ〉

}
, NX = N n

X + VX = N n
X +

∑

X �=Y

WXY . (18)

Alternatively, we can define Wiberg’s covalency index WXY as an expectation value
of operator in the Hilbert space of canonical molecular orbitals. In analogy to preced-
ing considerations we introduce another molecular scattering operator ŜXY originated
from OCT and representing two sequentially connected molecular information chan-
nels:

ŜXY = ŜX ŜY = P̂ψo P̂X P̂ψo P̂Y P̂ψo = P̂ψo M̂XY P̂ψo . (19)

Within Orbital Communication Theory the two-center projector ŜXY operates in the
space of atomic orbitals and its expectation values reflect the influence of interacting
atoms X and Y on particular atomic orbital. Moreover, using the one-center projector
ŜX X we can decompose the one-electron density matrix into two “layers”, γ n and γ b,
describing non-bonding and bonding parts of the electron density, respectively:
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γ n = 2〈χ |
∑

X

ŜX X | χ〉, N n = tr{γ n},

γ b = 2〈χ | (1 −
∑

X

ŜX X ) | χ〉, N b = tr{γ b}. (20)

As opposed to ŜXY the projector M̂XY in Eq. (19) operates in the space of canonical
molecular orbitals. The matrix of operator M̂XY within CMO basis is symmetric and
can be straightforwardly partitioned into the following blocks:

MXY =
(〈ψo | M̂XY | ψo〉 〈ψo | M̂XY | ψv〉

〈ψv | M̂XY | ψo〉 〈ψv | M̂XY | ψv〉
)

=
(

OXY TT
XY

TXY VXY

)
. (21)

The expectation values of the operator M̂XY in the subspace of occupied molecular
orbitals determine the effective contributions of each MO to bond order between atoms
X and Y within the reference electron configuration of ground state (P̂o

ψ ). According
to Eq. (3) we can express elements of OXY through the relevant elements of matrices
LCAO MO and CBO:

OXY = 〈ψo | M̂XY | ψo〉 =
{

(OXY )i, j =
X∑

k

Y∑

l

Co
k,iγk,lC

o
l, j

}

. (22)

The i th diagonal element of matrix OXY stands for the effective contribution of i th
canonical MO to the Wiberg index WXY which in the case of closed-shell electron
systems takes the form analogical to Eq. (2):

WXY = tr{OXY } =
occ∑

i

Oi,i ≡
occ∑

i

W (i)
XY . (23)

It is typical for canonical molecular orbitals which are delocalized over the whole
molecule that the off-diagonal elements of matrix OXY assume non-zero values. In
particular, (OXY )i, j < 0 means that molecular orbitalsψi andψ j are out of phase with
respect to chemical bond X–Y, whereas (OXY )i, j > 0 reflects its phase-coherence.
The case (OXY )i, j = 0 in turn reflects the fact that the occupation of orbitalψi does not
affect the contribution of orbitalψ j to the bond order WXY . The matrix of the operator
M̂XY within the subspace of virtual molecular orbitals reveals similar properties:

VXY =
{

(VXY )i, j =
X∑

k

Y∑

k

Cv
k,iγk,lC

v
l, j

}

, tr{VXY } = −WXY . (24)

In analogy to Eqs. (22) and (23) the number of electrons assigned to atom X and
not contributing to the valence index VX can be defined as a trace of matrix of the
operator M̂X X in the subspace of occupied MO:
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OX X =
{

(OXY )i, j =
X∑

k

X∑

l

Co
k,iγk,lC

o
l, j

}

, tr{OX X } = N b
X . (25)

3 Noiseless MO-channel: the eigenproblem of M̂XY

Within the Communication Theory of the Chemical Bond the operator M̂XY represents
the resultant information cascade [12] in which the information about MO contribution
to particular chemical bond (or molecular fragment) is transmitted. For stationary
electron distribitions [12,29] one can discern two extreme cases of MO-channel’s
transmission (see Fig. 1) [30]:

• stochastic—typical for molecular communication systems with all MOs mutually
communicated, i.e. with non-zeroed both, diagonal and off-diagonal elements of
matrix of conditional-probability amplitudes (21),

• fully deterministic and noiseless—characteristic for information channels defined
by unit matrix of the relevant conditional probabilities (off-diagonal communica-
tions zeroed).

In the whole-molecule resolution the relevant matrix (21) is the identity matrix, i.e.
transmission of information about electron distribution between {ψi } is noiseless and
deterministic. However, since canonical molecular orbitals are delocalized over the
whole molecule, in the diatomic X–Y resolution some noise appears in the same
transmission. The natural representation of localized orbitals forming a noiseless (and
deterministic) communication system can be reached by finding representation for
which the matrix of the operator M̂XY takes a diagonal form.

Hence, diagonalization of matrix of the operator M̂XY within the space of all mole-
cular orbitals (occupied and virtual), which is somehow similar to diagonalization of
two-center atomic blocks of the density matrix γ [10], gives rise to alternative bond
order orbitals (BOO) representation. As proved by Jug [10], the classical bond order
orbitals appear in pairs with the opposite signs of its eigenvalues and vanishing eigen-
values one observes always when the number basis functions on each of the two atoms

Fig. 1 Two extreme cases of stationary communication systems defined within 5-dimentional Hilbert space
of states {|ψi 〉}
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X and Y is different. The sum of all eigenvalues is equal to zero and the overall bond
order can be obtained using the Mulliken overlap criterion [10] or—alternatively, the
vector projection weighting procedure [31].

Due to natural partition of Hilbert space of molecular orbitals onto occupied and
virtual MO subspaces for closed-shell electron configurations, introducing the operator
M̂XY allows one to consider independently two eigenproblems. By diagonalization
of matrix OXY we obtain the spectrum of eigenvalues that sum up to the bond order
WXY :

∑

s

λb
s = tr{λb} = tr

{
U−1

b OXY Ub

}
= tr {OXY } = WXY , (26)

and determine occupations of the bonding subset of bond order orbitals of the chemical
bond X–Y (the eigenvectors of matrix OXY ),

B O O ≡ φb = ψoUb = χCoUb = χCb,

φb
s = Cb

1,sχ1 + Cb
2,sψ2 + . . .+ Cb

n,sχn . (27)

In turn, the sum of eigenvalues of the operator M̂XY within the subspace ψv reads

∑

s′
λa

s′ = tr{λa} = tr
{

U−1
a VXY Ua

}
= tr {VXY } = −WXY , (28)

and given eigenvectors determine a subset of anti-bonding BOO∗:

B O O∗ ≡ φa = ψvUv = χCvUa = χCa,

φa
s′ = Ca

n+1,s′χn+1 + Ca
n+2,s′χn+2 + . . .+ Ca

n+m,s′χn+m . (29)

In general, due to non-zero elements in matrix TXY the eigenvalue spectrum λ of the
operator MXY differs from eigenvalus λb and λa . However, it fulfills the following
relation:

∑

s

λs = tr{λ} = tr {MXY } ≡ tr {OXY } + tr {VXY } = 0. (30)

Similarly, solving the eigenproblem of the operator M̂X X within the subspace of
occupied MO gives rise to the spectrum of eigenvalues λn that sum up to the overall
number of electrons assigned to atom X and not contributing to the valence index VX

∑

s

λn
s = tr{λn} = tr

{
U−1

n OX X Un

}
= tr {OX X } = N n

X . (31)

In general, eigenvalues close to 2 identify core electrons and lone-pairs while the rest
of non-zero eigenvalues are usually connected with the charge transfer effect and are
a distinctive feature of molecular systems with polarized chemical bonds.
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Further, let us consider the case of non-typical electron deficient chemical bond –
a three-center two-electron (3c2e) bond, X–Y–Z, where two electrons are delocalized
over three atoms X,Y and Z . Orbital Communication Theory allows one to define a rel-
evant molecular communication system in which transmission of information about
electrons shared by atoms Y and Z is conditioned by information about electrons
between atoms Y and Z . Entropic descriptors of such cascade model of sequentially
connected information subchannels have already been the subject of investigation
[12,32,33]. In this paper we consider a model of parallely connected information sub-
channels which constitutes an alternative for the former one. The parallel connection
of communication subsystems means that transmissions of information about elec-
trons shared in bonds Y–Z and X–Y are not mutually conditioned. In such a case
the three-center scattering operator is simply defined as a sum of relevant two-center
operators,

ŜXY Z = ŜXY + ŜY Z = P̂ψ
(

M̂XY + M̂Y Z

)
P̂ψ = P̂ψ M̂XY Z P̂ψ, (32)

and matrix of the operator M̂XY Z in the subspace of occupied MO reads

OXY Z = 〈ψo | M̂XY Z | ψo〉 = OXY + OY Z . (33)

We have to notice here that in the adopted definition of ŜXY Z we do not include direct
communication (through–space interaction) between atoms X and Z, represented by
ŜX Z .

Summation of M̂XY over all chemical bonds in the molecule leads to

M̂ =
∑

X

∑

Y �=X

M̂XY = 2

(

1 −
∑

X

M̂X X

)

. (34)

By separation of non-interacting electrons of inner shells in the case of molecule with
purely covalent chemical bonds and in the absence of lone-pairs the sum of one-center
operators in the preceding equation vanishes and matrix OXY Z assumes the following
diagonal form:

OXY Z =
(

0core 0
0 2val

)
. (35)

In such a case OXY Z ≡ λb and according to Eqs. (26) and (27) we have φb ≡
ψo. Therefore, each canonical molecular orbital of the valence shell of the n-atomic
molecule with the closed-shell electron configuration in a sense can be regarded as a
bond order orbital of a n-center-2-electron chemical bond.
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4 Numerical results

To examine how the proposed bond-order decomposition procedure manages with sev-
eral representative types of chemical bonds we used wavefunctions calculated at RHF
as well as DFT/B3LYP [34] theory levels within MINI [35] and cc-pVDZ [36] basis
sets, respectively, using the standard ab initio quantum chemistry package, Gamess
[37]. The bond order orbitals were generated by special program written by authors
and visualized (after deorthogonalization) using the molecular visualization program,
Molekel [38].

In the first place eigenvalues from diagonalization of one- and two-center blocks
of the density matrix of water molecule were compared with eigenvalues of operator
M̂XY within canonical molecular orbitals space (both, occupied and virtual). Table 1
contains the results obtained from RHF/MINI calculations. As we can see, both decom-
position schemes appropriately identify core electrons and lone-pairs (λ1−3 = 2 for
oxygen atom) and give rise to similar eigenvalues for chemical bond O–H. The main
differences concern the eigenvalues λ4 and λ5 related to contribution of oxygen atom
into chemical bonds: the former method allows one to count the overall electron pop-
ulation while the latter method does not include the overlap populations and thus
non-zero eigenvalues indicate only the number of electrons well localized on the
oxygen atom. Also, in accordance to expectations, eigenvalues of the operator M̂XY

associated with bonding and anti-bonding BOOs were calculated separately which
was not the case for eigenvalues of the two-center atomic blocks of the density matrix.
All bond order orbitals from the newly proposed definition as well as eigenvectors of
matrix OO O were visualized and are presented in Fig. 2. One can observe that our
method not only reliably reproduces qualitative picture of the electronic structure of
water molecule obtained using the Pipek-Mezey’s MO-localization procedure but also
provides the relevant anti-bonding orbitals.

Table 2, in turn, presents bond orders WXY and their σ -,π -components, W σ
XY and

Wπ
XY = Wπ1

XY + Wπ2

XY respectively, determined by the relevant eigenvectors of OXY

Table 1 Comparison of eigenvalues from diagonalization of two-atomic blocks of matrix γ and eigenvalues
of operator M̂XY within CMO space for water molecule

Matrix Atom/bond Eigenvalues

λ1 λ2 λ3 λ4 λ5

γ O 2.00 2.00 2.00 1.23 1.20

γ H 0.79 0.00 0.00 0.00 0.00

γ O–H 0.98 −0.98 0.00 0.00 0.00

OX O 2.00 2.00 2.00 0.38 0.36

OX H 0.31 0.00 0.00 0.00 0.00

OXY O–H 0.96 0.00 0.00 0.00 0.00

VXY O–H −0.96 0.00 0.00 0.00 0.00

Method: RHF/MINI
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Fig. 2 Comparison of canonical molecular orbitals (CMO) with localized molecular orbitals (LMO) from
Pipek–Mezey’s procedure and bond order orbitals (BOO) from presently indtroduced BOO-resolved decom-
position of chemical bond order. Method: RHF/MINI

and calculated using two different methods: RHF/MINI and B3LYP/cc-pVDZ. For
comparison, also three different definitions of quadratic bond orders were used:

• Wiberg-type bond orders calculated within Löwdin-orthogonalized atomic orbital
representation [22],

• Wiberg-type bond orders calculated within “physically”-orthogonalized atomic
orbital representation, recently proposed by the authors [39],

• Mayer’s bond orders [3,25] calculated within non-orthogonal atomic orbital rep-
resentation. In this particular case the appropriate elements of matrix OXY are
defined as follows:

(OXY )m,n =
X∑

k

Y∑

l

(
CoCo†S

)

k,l

(
co

nco†
m S

)

l,k
, (36)

where cn and cn are the relevant columns of the LCAO matrix.

The component W r
XY stands for the sum of all eigenvalues that represent nei-

ther σ nor π chemical bonds and usually have quite small values. Thus, W r
XY �= 0

may indicate a correction from the outer hybrids (e.g. in the case of conjugated π -
bonds), anti-bonding orbitals, orthogonalization artemaths, etc.. At the first glance
we can observe in Table 2 that decomposition of Mayer’s bond orders leads to very
large values of W r

XY as well as σ -eigenvalues that remarkably exceed 1 which prac-
tically disqualify this variant of BO-decomposition. Using the orthogonalized basis
sets ensures the appropriate eigenvalues of σ -components, however W r

XY can still
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Table 2 Comparison of Wiberg-type bond orders WXY and its components Wσ
XY ,Wπ

XY and Wr
XY

from BOO-resolved decomposition scheme for several molecules at two different computational levels:
RHF/MINI and B3LYP/cc-pVDZ

Chemical bond RHF / MINI B3LYP / cc-pVDZ

WXY Wσ
XY Wπ

XY Wr
XY WXY Wσ

XY Wπ
XY Wr

XY

Wiberg’s bond orders calculated within “geometrically” orthogonalized AO representation

N2 3.00 1.00 2.00 0.00 3.42 1.00 2.00 0.42

HF 0.92 0.92 0.00 0.00 1.21 0.91 0.00 0.30

CO 2.49 0.95 1.54 0.00 3.06 0.96 1.72 0.38

NaCl 0.46 0.46 0.00 0.00 1.37 0.60 0.00 0.77

C2H6 ( C–C ) 1.14 1.00 0.00 0.14 1.22 0.92 0.00 0.30

C2H4 ( C–C ) 2.13 1.00 1.00 0.13 2.17 0.93 0.95 0.29

C2H2 ( C–C ) 3.03 1.00 2.00 0.03 3.09 0.97 1.92 0.20

C6H6 ( C–C ) 1.64 0.98 0.56 0.10 1.63 0.90 0.52 0.21

Wiberg’s bond orders calculated within “physically” orthogonalized AO representation

N2 3.00 1.00 2.00 0.00 3.00 1.00 2.00 0.00

HF 0.79 0.79 0.00 0.00 0.89 0.88 0.00 0.01

CO 2.03 0.75 1.28 0.00 2.29 0.87 1.42 0.00

NaCl 0.25 0.25 0.00 0.00 0.31 0.18 0.00 0.13

C2H6 ( C–C ) 0.96 0.96 0.00 0.00 1.00 0.95 0.00 0.05

C2H4 ( C–C ) 1.98 0.98 1.00 0.00 2.03 0.95 1.00 0.08

C2H2 ( C–C ) 3.00 1.00 2.00 0.00 2.71 0.73 2.00 −0.02

C6H6 ( C–C ) 1.41 0.96 0.56 −0.11 1.33 0.85 0.55 −0.07

Mayer’s bond orders calculated within non-orthogonal AO representation

N2 3.00 1.42 2.00 −0.42 2.93 1.32 2.00 −0.39

HF 0.86 1.13 0.00 −0.27 1.04 1.17 0.00 −0.13

CO 2.38 1.29 1.50 −0.41 2.62 1.22 1.64 −0.24

NaCl 0.38 0.50 0.00 −0.12 0.86 0.52 0.00 0.34

C2H6 ( C–C ) 1.02 1.27 0.00 −0.25 1.12 1.29 0.00 −0.17

C2H4 ( C–C ) 2.03 1.28 1.00 −0.25 2.13 1.26 0.98 −0.11

C2H2 ( C–C ) 3.01 1.14 2.00 −0.13 2.71 1.24 1.98 −0.51

C6H6 ( C–C ) 1.45 1.32 0.60 −0.47 1.46 1.26 0.60 −0.40

Three alternative definitions of bond orders were used (more details in the text)

assume significant non-zero values. Particularly, the overestimated values of Wiberg-
type bond orders defined within Löwdin-orthogonalized extended (but also minimal)
basis set are determined in the greater part by large W r

XY values, even for diatomics.
A comparison with the relevant values calculated using “physical” orthogonalization
procedure allows one to draw a conclusion that the “geometrical”(involving all canon-
ical molecular orbitals regardless of its occupations [39]) orthogonalization originally
proposed by Löwdin significantly affects the quadratic bond-order indices with con-
tributions that do not represent any of pure bond components. Thus, using the recently
proposed by the authors orthogonalization procedure seems to be the most suitable
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Table 3 Comparison of BO-components: Wσ
XY ,Wπ

XY and Wr
XY from BOO-resolved decomposition

scheme for several cycloalkenes and its aromatic equivalents

Molecule Wσ
C=C Wπ

C=C Wr
C=C Molecule Wσ

C=C Wπ
C=C Wr

C=C

C3H4 0.98 0.96 0.03 C3H+
3 0.96 0.45 0.00

C4H4 0.95 1.00 0.00 C4H2−
4 0.94 0.50 −0.26

C5H6 0.96 0.93 −0.01 C5H−
5 0.96 0.60 −0.19

C6H8 0.97 0.94 −0.01 C6H6 0.96 0.56 −0.11

C7H8 0.97 0.93 −0.02 C7H+
7 0.96 0.48 −0.07

C8H8 0.97 0.95 −0.01 C8H2−
8 0.96 0.56 −0.20

C9H10 0.97 0.95 −0.01 C9H−
10 0.96 0.56 −0.15

C10H10 0.97 0.94 −0.01 C10H8 0.96 0.51 −0.12

Method: RHF/MINI (“physically” orthogonalized AO)

Fig. 3 Bond order orbitals and its occupations obtained from diagonalization of matrices OXY Z and
VXY Z for typical three-center two-electron molecular systems: HF−

2 anion and diborane B2H6 molecule,
and for systems without/withπ -delocalization: 1,3-butadiene C4H6 and benzene C6H6. Method RHF/MINI
(Löwdin-orthogonalized AOs)

for bond order analysis and all further calculations presented in this paper involve the
“physically”-orthogonalized AO-representation.

It follows from Table 2 that in minimal basis set the majority of W r
XY indices assume

negligible values with the exception of benzene molecule with significant negative
value that could be connected with the presence of system of π -conjugated chemical
bonds. To investigate the effect of electron delocalization on BO-decomposition we
carried out the calculations of bond components for several representative cycloalkenes
and its aromatic equivalents and results are collected in Table 3. Even a cursory analysis
of W r

XY values in Table 3 fully confirms that the presence of π -conjugated chemical
bonds in the molecule remarkably increases the number of small negative eigenvalues
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and consequently W r
XY < 0. One can also observe that W r

XY well correlate with the
number of delocalized electrons per carbon atom in the ring.

Finally, it was of our interest to study bond order orbitals of 3-center 2-electron
chemical bonds. BOO and BOO∗ were calculated at RHF/MINI theory level for
selected X–Y–Z configurations of atoms in the following molecules: HF−

2 (F–H–F),
B2H6 (B–H–B), C4H6 (C1 = C2–C3) and C6H6 (C1–C2–C3) and results are presented
in Figure 3. As we can see, eigenvectors of matrices OXY Z and VXY Z reliably identify
the 3-center bond order orbitals in bifluoride anion and diborane molecule. The asso-
ciated eigenvalues of BOO and BOO∗ (λ1σ3 and λ1σ ∗

3
, respectively) in both species

indicate a single, covalent bonds which is in agreement with chemical intuition.
Three-center bond order orbitals for 1,3–butadiene and benzene molecules in turn

reveal some features that seem to be essential for distinguishing between bonds with
and without electron delocalization. Namely, in the case of benzene molecule for each
set of adjacent three carbon atoms there are always three bond order orbitals: pair of
equally occupied 1σ3 and 1σ ∗

3 which give rise to the vanishing σ–density, and one
occupied 1π3 orbital which determines the resultant 3c2e chemical bond of π–type.
As opposed to results for C6H6 molecule decomposition of the three-center bonds in
C4H6 provides completely different set of bond order orbitals: a pair of non-bonding
(with respect to all three atoms) 1n3 and 2n3 orbitals accurately reproducing the rele-
vant two-center BOOs, 1σ2 and 2σ2. The third bond order orbital is also non-bonding
with respect to C1 = C2–C3 bond but it is very similar to the relevant non-conjugated
1π2 orbital.

5 Conclusions

In this paper we have proposed a scheme of decomposing chemical bond into anew
defined the bond order orbitals which constitute an alternative for those originally
defined by Jug. Solving the eigenproblem of the scattering operator, originated from
the orbital communication theory, allows one to tackle the problem of two- and three-
center bond analysis within the same framework. The new definitions give rise to alter-
native interpretation of molecular orbital of the valence shell in the case of n-atomic
molecule (closed-shell electron configuration) as a bond order orbital of n-center-2-
electron chemical bond. The calculations we have carried out clearly show that the
new method of bond order decomposition properly copes with identifying the relevant
bond components (σ, π , etc..). An analysis of numerical results brings to light the fact
that the most transparent and reliable picture of the chemical bond structure can be
obtained within the minimal basis set of “physically” orthogonalized atomic orbitals.

The chemical bond decomposition involving the eigenproblem of the appropri-
ate scattering operator within the orthogonalized MO space is still need of thorough
examination and this study is currently in progress.
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