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Abstract Stationarity of electron probability distribution within the resolution of
atomic orbitals is considered involving some concepts from Orbital Communication
Theory and the theory of Markov Processes. A new method of evaluating electron
conditional probabilities based on natural orbitals is proposed and briefly discussed.
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1 Introduction

In the last half-century the electron population analyses (EPA) turned out to be very
useful and commonly used tools in probing the electronic structure and chemical reac-
tivity of molecules. In brief, EPA-procedures give rise to partition the electron density
of the whole molecule between atoms, chemical bonds, molecular fragments, etc.
Such partition can be performed within either physical or Hilbert space of molecular
orbitals (MO) and there is a multitude of diverse EPA-procedures among which the
most commonly used are those proposed by: Mulliken [1,2], Löwdin [3,4], Weinhold
[5], Bader [6], Hirshfeld [7] and Merz-Kollman [8].

Although this is a field of research that seems to be regarded by some scientists as
exhausted, in this short paper we would like to address some of the general issues
respecting stationarity and uniqueness of electron probability distributions within
the framework of MO theory and resolution of atomic orbitals (AO). Our consid-
erations will be confined only to closed-shell ground states at two levels of theory,
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Hartree-Fock (HF) and configuration interaction (CI) [9]. The main purpose of this
article is to briefly introduce a new method of determining stationary electron prob-
ability distributions, based on natural orbitals (NO) and involving some concepts
from the Orbital Communication Theory (OCT) of the chemical bond [10–12] and
the theory of Markov Processes [13].

2 Stationarity from idempotency

For simplicity and transparency of definitions we assume without loss of generality
the wavefunctions to be real. First, let us consider the one-determinant wavefunction
of the ground-state molecular system, |�H F 〉, with N electrons doubly occupying the
no lowest of MOs, |Φo〉, from the Hilbert space of the all n orthonormal (spinless)
molecular orbitals,

|Φ〉 = {|Φo
1 〉, . . . , |Φo

no〉, |Φv
no+1〉, . . . , |Φv

n 〉} , (1)

generated as the linear combinations of basis functions |χ〉, representing orthogonal
atomic orbitals,

|Φ〉 = |χ〉C, (2)

where square matrix C groups the relevant LCAO MO expansion coefficients,

C = (
Co | Cv

) = {Cμ,i = 〈χμ|Φi 〉}. (3)

Obviously, n = no + nv , and superscripts o and v refer to occupied and virtual MO-
subspaces, respectively.

A set of such MOs uniquely defines the system one-electron density,

ρ(r) = 2
no∑

i=1

|Φ(r)|2 = χ(r)γχ†(r), (4)

where γ is the so called charge-and-bond-order (CBO) matrix,

γ = 2CoCo†, γμ,ν = 2
no∑

i=1

Cμ,i Cν,i , (5)

satisfying the following idempotency relation appropriate for the closed-shell systems
(duodempotency relation):

γ 2 = 2γ , or
∑

ν

γ 2
μ,ν = 2γμ,μ. (6)
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Diagonal elements of symmetric matrix CBO, {γμ,μ}, can be regarded as effective
electron occupations of AOs, Nμ, determining the corresponding electron probability
in AO resolution:

p =
⎧
⎨

⎩
pμ = N−1 Nμ = 2N−1

no∑

i=1

C2
μ,i

⎫
⎬

⎭
, (7)

with the appropriate normalization condition

∑

μ

pμ = N−1
∑

μ

γμ,μ = N−1 N = 1. (8)

The second equality in (6) allows one to define the so called conditional probability
matrix P

P =
{

Pν|μ = (2γμ,μ)−1γ 2
μ,ν

}
, (9)

and the following normalization condition

∑

ν

Pν|μ = (2γμ,μ)−1
∑

ν

γ 2
μ,ν = (2γμ,μ)−1(2γμ,μ) = 1. (10)

According to OCT, the element of CBO-matrix, γν,μ, represents the appropriately
renormalized amplitude of the corresponding conditional probability Pν|μ of ”observ-
ing” in atomic orbital |χν〉 the electron originally assigned to |χμ〉. Consequently,
Pν|μ > 0 gives rise to direct communication (through-space interaction [14,15])
between AOs, μ → ν, while a sequence of r serially-connected communications
determined by conditional probabilities Pr

ν|μ,

μ → π1 → . . . → πr−1 → ν, Pr
ν|μ = Pπ1|μ · · · Pν|πr−1 > 0, (11)

refers to indirect AO-communication (through-bridge interaction [14–16]). It has to be
noticed that such information-propagation cascade of AO-channels one can recognize
as an analogue to the time-homogeneous Markov chain with a finite state space [13];
then Pr

ν|μ represents the relevant r -step transition probability.
Due to idempotency relation (6) the electron distribution p (row vector) is said to

be stationary in the sense of Markov if:

p = pP or else PT pT = 1pT . (12)

As stated by the Perron-Frobenius theorem [17], for any arbitrary matrix with non-
negative elements of each column normalized to 1 there is always at least one stationary
probability distribution. In fact, as follows from the second equality of the last equation,
the stationary distribution can be ragarded as a normalized left eigenvector of the
conditional probability matrix associated with the eigenvalue of 1. Therefore, for
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given matrix P one can find the relevant vector p by solving the eigenproblem (12)
but, in general, the resulting probability distribution is not guaranteed to be unique,
i.e. there can be more that one eigenvector of P associated with the eigenvalue 1.
It follows from the Perron-Frobenius theorem that the uniqueness of the stationary
electron distribution is always assured if the x th power of the conditional probability
matrix converges to a rank-one matrix in which each row is the stationary distribution
in question,

lim
x→∞ Px = 1p, (13)

where 1 stands for the column vector with all entries equal 1. Essentially, for a given
conditional probability matrix its stationary distribution p is non-degenerated provided
that:

– matrix P represents an aperiodic Markov chain which virtually means that for all
atomic orbitals {|χμ〉} the direct self -communication μ → μ is always possible,
P(μ|μ) > 0. In practice, aperiodicity can be always attained by appropriate reduc-
tion of the AO-space size, i.e. by removing atomic orbitals for which γμ,μ < ε,
where ε represents the fixed threshold value;

– matrix P represents an irreducible Markov chain. i.e. if all atomic orbitals are
directly and/or indirectly communicated with each other. Also this requirement is
straightforward to achieve by eliminating (if present) those AOs for which γμμ >

2 − ε (ussually core orbitals). The subspace od mutually communicated atomic
orbitals defines a single communicating class.

Conditional probability (9) and relation (12) are crucial for the electron population
analysis. Indeed, each row of matrix P allows one to decompose effective electron
population Nμ into terms related to localized (diagonal) and emphdelocalized (off-
diagonal) populations, i.e. Nμ,μ and Nμ,ν , respectively:

Nμ = N

⎛

⎝pμ Pμ|μ +
∑

ν �=μ

pμ Pν|μ

⎞

⎠ = Nμ

⎛

⎝Pμ|μ +
∑

ν �=μ

Pν|μ

⎞

⎠

= Nμ,μ +
∑

ν �=μ

Nμ,ν. (14)

In atomic resolution the electron population on atom X can be decomposed as
follows:

NX = NX,X + VX =
∑

μ∈X

∑

ν∈X

Nμ,ν +
∑

μ∈X

∑

ν /∈X

Nμ,ν. (15)

Here, NX,X stands for the number of electrons well localized on atom X (non-
interacting “chemically” with electrons from other atoms, e.g. lone pairs, core elec-
trons) and VX is the atomic-covalency index counting up the population of electrons
delocalized over chemical bonds with all other atoms,
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VX =
∑

Y �=X

⎛

⎝
∑

μ∈X

∑

ν∈Y

Nμ,ν

⎞

⎠ =
∑

Y �=X

WX,Y . (16)

WX,Y stands for the standard (quadratic) bond-covalency index originally proposed
by Wiberg [18]. However, one should realize that electron populations and covalen-
cies from Eqs. (15)–(16) calculated within representation of orthogonal AOs assume
reliable and chemically meaningful values only when minimal set of conventionally
atom-assigned atomic orbitals is used (this problem has been recently reexamined
within the framework of OCT-approach in [19]). Such minimal basis set of orthogonal
atomic orbitals one can always obtain using various methods, e.g. [20,21].

3 Stationarity without idempotency

Unfortunately, Definitions (5)–(10) are correct only for one-determinant wavefunc-
tions of closed-shell systems. In typical CI-type calculations the electron density
matrix 
 of the multi-determinant wavefunction represented by |ΨC I 〉 is commonly
expressed by means of its eigenvectors—natural orbitals |Θ〉, and the corresponding
eigenvalues—occupation numbers λ,

Γ̂ |Θi 〉 = λi |Θi 〉, i = 1, . . . , n, (17)

where the electron density operator Γ̂ is defined as follows:

Γ̂ =
n∑

i=1

λi P̂i =
n∑

i=1

λi |Θi 〉〈Θi |. (18)

Then

Γ = 〈χ |Γ̂ |χ〉 = 〈χ |Θ〉λ〈Θ|χ〉 = CλC† (19)

with normalization TrΓ = N and the electron probability distribution p is determined
by diagonal elements {Γμ,μ}

p =
{

pμ = N−1Γμ,μ = N−1
n∑

i=1

λiC2
μ,i

}

. (20)

However, since the electron density operator Γ̂ is generally not idempotent,

Γ̂ 2 =
n∑

i=1

λ2
i P̂2

i =
n∑

i=1

λ2
i P̂i �=

n∑

i=1

λi P̂i = Γ̂ , (21)

normalization condition (10) cannot be fulfilled and hence off-diagonal elements
of the relevant density matrix, {Γμ,ν} cannot be further regarded as amplitudes
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of corresponding conditional probabilities. In other words, for the hypothetical con-
ditional probability matrix P′ obtained from appropriate renormalization of each row
of matrix of elements {Γ 2

μ,ν} its stationary distribution p′ (left eigenvector associated
with the eigenvalue 1) differs from p and

lim
x→∞ pP′ = p′ �= p. (22)

To solve this problem we propose in this paper the following alternative definition
of conditional probability Pν|μ, by means of natural orbitals and their occupation
numbers:

P =
{

Pν|μ = Γ −1
μ,μ

n∑

i=1

λi Bi
μ,ν

}

, (23)

where

Bi
μ,ν = Cμ,iCν,i

⎛

⎝Cμ,iCν,i + 2
i−1∑

j=1

Cμ, jCν, j

⎞

⎠ , (24)

Therefore, one can interpret Bi
μ,ν as the contribution of i th NO to the corresponding

electron population Nμ,ν provided that all orbitals {|Θ j 〉, j = 1, . . . , i − 1} are fully
occupied.

In the one-determinant case of closed-shell molecular system all no occupied natural
orbitals correspond to degenerated eigenvalue λi = 2 and therefore can be easily
separated from the (usually larger) subspace of nv unoccupied orbitals (λi = 0). Due
to this separation and degeneracy of {λi } it can be proved that both definitions of
conditional probability Pν|μ, (9) and (23), are fully equivalent, regardless of orbital
order:

Pν|μ = Γ −1
μ,μ

n∑

i=1

λi Bi
μ,ν = 2Γ −1

μ,μ

no∑

i=1

Bi
μ,ν

= 2Γ −1
μ,μ

⎛

⎝
no∑

i=1

C2
μ,iC2

ν,i + 2
no∑

i=1

i−1∑

j=1

Cμ,iCν,iCμ, jCν, j

⎞

⎠

= 2Γ −1
μ,μ

⎛

⎝
no∑

i=1

Cμ,iCν,i

⎞

⎠

⎛

⎝
no∑

j=1

Cμ, jCν, j

⎞

⎠

= 2Γ −1
μ,μ

(
2−1Γμ,ν

) (
2−1Γμ,ν

)
= (2Γμ,μ)−1Γ 2

μ,ν (25)

For one-determinant wavefuntions the atomic charges and Wiberg-type bond covalen-
cies (14)–(16) based on the density matrix (5) are commonly known to be invariant
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with respect to unitary transformation of molecular orbitals. Thus, from the equiva-
lence of definitions (9) and (23) one can deduce the same transformational properties
of conditional probabilities (23).

It is also straightforward to prove that, for the newly proposed definition (23),
stationarity of probability distribution p is preserved for any arbitrary permutation of
eigenvectors and eigenvalues of density matrix. First, let us sum up elements Bi

μ,ν

over all atomic orbitals,

∑

ν

Bi
μ,ν =

∑

ν

C2
μ,iC2

ν,i + 2
∑

ν

i−1∑

j=1

Cμ,iCν,iCμ, jCν, j

= C2
μ,i

(
∑

ν

C2
ν,i

)

+ 2
i−1∑

j=1

Cμ,iCμ, j

(
∑

ν

Cν,iCν, j

)

= C2
μ,i + 2

i−1∑

j=1

Cμ,iCμ, jδi, j = C2
μ,i . (26)

The last equality in the preceding equation results from orthonormality of natural
orbitals, 〈Θi |Θ j 〉 = δi, j . Now, using the result from (26) we can easily prove the
appropriate normalization requirement,

∑

ν

Pν|μ = Γ −1
μ,μ

n∑

i=1

λi

(
∑

ν

Bi
μ,ν

)

=

Γ −1
μ,μ

n∑

i=1

λiC2
μ,i = Γ −1

μ,μΓμ,μ = 1. (27)

Since electron probabilities (and the corresponding populations) are invariant with
respect to interchange of any pair of natural orbitals there are formally rP = n!different
matrices P satisfying (12) for non-degenerated λ (i.e. gs = 1 for s = 1, . . . , n).
However, if degeneracy occurs (or certain eigenvalues below a fixed threshold can be
neglected) and there are only n′ different eigenvalues (i.e. gs ≥ 1 for s = 1, . . . , n′)
then the number of possible conditional probability matrices reduces to

rP =
⎛

⎝
n′∏

s

gs !
⎞

⎠

−1

n!, (28)

where gs stands for the degeneracy of sth possible eigenvalue.
In the case of one-determinant calculations subspaces of occupied and virtual

orbitals are strictly separated and there are exactly no! permutations of λ that lead
to the same conditional probability matrix. Furthermore, due to orthonormality of nat-
ural orbitals and basis functions, the maximal separation of these subspaces ensures
that all Pν|μ ≥ 0. All permutations of “mixed” occupied and unoccupied NOs can
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lead to negative values of Pν|μ; this is mainly because of predominatingly anti-bonding
character of virtual subspace with relation to the occupied one. This facts allow one to
draw a conclusion that for the multi-determinant calculations the natural generalization
of the maximal separation requirement is the following condition:

n−1∑

i=1

(λi − λi+1)
2 = minimum. (29)

Thus, for ground-state systems the conditional probability matrix P obtained from
permutations of NOs for which λ1 ≤ . . . ≤ λi ≤ λi+1 ≤ . . . ≤ λn , reveals the
minimal dependence on order of NOs within the particular (conventionally separated)
subspace, high occupied (λi ≈ 2) or low occupied orbitals (λi ≈ 0).

4 Summary

It was the main goal of this short paper to demonstrate that idempotency property of the
density operator is not an indispensable condition for the stationarity of electron prob-
ability distribution in molecular systems. We have introduced a simple method of eval-
uation of conditional probabilities for the multi-determinant wavefunction. Moreover,
the newly proposed definition based on natural orbitals successfully displaces hitherto
prevailing one for the one-determinant wavefunctions. Since presented methodology
introduces some arbitrariness due to orbital order, it has been argued to use the cri-
terion of maximal separation of nearly-degenerated orbital subspaces in ground-state
calculations.

The proposed method can be also extended to cover open-shell molecular systems
as well as the excited states. However, this requires a more insightful investigation and
will be the subject of the seperate article.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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