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It is now possible to produce laser pulses with reproducible pulse shape

and controlled carrier envelope phase. It is discussed how that can be ex-

plored in double ionisation studies. To this end we solve numerically the

Schrödinger equation for a limited dimensionality model which nevertheless

treats electron repulsion qualitatively correctly and allows to study correla-

tion effects due to the Coulomb repulsion.
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1. Introduction

The existence of significant electron–electron correlations during the ionisa-
tion of atoms by intense laser pulses was revealed a quarter of the century ago
already [1]. A clear manifestation of those correlations is the celebrated “knee”
structure in the double logarithmic plot of the ion yield versus pulsed laser peak in-
tensity [2]. Recent developments of experimental techniques revealed more details
of this process by giving access to joint momenta distributions [3–5]. In view of the
many degrees of freedom involved and the wide domains that have to be used, full
numerical simulations of the process remain a computer demanding task, although
some progress may be observed over the years [6, 7]. Approaches with a reduced
computational load include S-matrix calculations [8] or dynamical models of lower
dimensionality [9–11]. The most popular among those, the so-called aligned elec-
tron model (AEM) [9] confines the motion of electrons to one-dimensional tracks
along the polarisation axis.
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The accepted picture of the double ionisation process is the rescattering
scenario [12]. The electron hit by strong electric field may either leave the atom or
come back to the nucleus (if the electric force changes sign due to the oscillatory
field time dependence). The first process leads to a direct ionisation. In the second
one, the electron brings the energy back, it can be shared with the other electron
and the resulting complex may decay either again via a single electron ionisation or
with two electrons being simultaneously ejected or the whole rescattering process
may be repeated (if external electric field due to the laser pulse is still on).

A couple of years ago two of us proposed a simplified model [13] for a double
electron escape from such a complex, a model which links the most probable
pathways for the escape with the saddles of the instantaneous electric field formed
by the laser and the Coulomb repulsion between the electrons. It turns out that
with changing external electric field, the saddles move along lines oriented at an
angle of ±π/6 with respect to the polarisation axis. When seeking a reduced
dimensionality model for treatment of the ionisation process it seems natural to
choose these tracks as the whole configuration space of the problem [14].

In the reduced two-dimensional space the ionisation dynamics may be effi-
ciently simulated [15]. As we have shown, the model correctly reproduces tun-
nelling and rescattering processes, single and sequential double ionisations. It also
correctly mimics the correlated electron escape which is the biggest asset of our
model as compared with AEM [9]. The latter overestimates the Coulomb repulsion
and suppresses the symmetric escape of electrons.

2. The model and its basic predictions

A Hamiltonian for non-relativistic He atom in the new “saddle-track” coor-
dinates is given in atomic units by [14]:

H =
2∑

i=1
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i
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√

3
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)
+
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where ri are electron coordinates along the saddles’ lines. The electric field

F (t) = Ff(t) sin(ωt + φ), (2)
with F , f(t), ω, and φ being the peak amplitude, the envelope, the frequency, and
the initial phase, respectively.

The Schrödinger equation corresponding to the Hamiltonian (1) is solved
on a grid using the well known operator splitting method combined with the fast
Fourier transforms (FFT). The potential singularities in (1) are smoothed by the
substitution 1/x → 1/

√
x2 + e with e = 0.6. This leads to a ground state energy

of the unperturbed atom Eg = −2.83 (found by means of the imaginary time
evolution using the same algorithm as for a real time evolution).

The configuration space is divided into regions corresponding to an atom,
a singly charged ion, and a doubly charged ion, respectively, following the ideas
developed by Dundas et al. [6]. The atom is considered to be singly ionised if one
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electron is far away from and the other is in vicinity of the nucleus. Both electrons
close to (or far from) the nucleus correspond to an atom (or a doubly charged
ion). Quantitative results depend on the choice of the boundary, of course. But
if the boundary conditions are kept fixed, and other parameters like field strength
and phase are changed, the model can give valuable information about the relative
changes of the signals. Time dependence of different quantities (e.g. ionisation
yields) are calculated by evaluating fluxes between different regions [6].

The advantage of that approach is that one can distinguish two physically
distinct processes. The sequential double ionisation (SDI) will be defined as a
process in which first the boundary for one electron is crossed, then the coordi-
nate of the second electron increases to large values (quantum mechanically that
translates into the time sequence for fluxes between different regions). The non-
sequential double ionisation (NSDI) will be the process in which we observe a
positive flux between the atom and the double ionisation regions directly.

Using in turn a trick proposed by Lein et al. [10] we calculate momenta
distributions. The difficulty with the latter is the fact that electrons can travel
quite large distances during the laser irradiation. This would require enormous
grids to cover a large area of the configuration space. A crucial observation of [10]
is to realize that far out the Coulomb force may be neglected and the propagation
of the electron may be readily obtained in the velocity gauge as an appropriate
phase factor. The details of the procedure may be found elsewhere [15, 16], here
we shall rather present some exemplary results.

We discuss smooth “sine-squared” laser pulses with envelope f(t) =
sin2(πt/T ), where T is the pulse duration. Unless specified explicitly, we assume
the carrier phase φ = 0.

Fig. 1. Single ionisation (circles), sequential double ionisation (triangles); non-

sequential double (squares) ionisation as a function of the field amplitude F0 for five

cycles sine-squared pulses.
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Figure 1 presents total single and double ionisation yields for a pulse of five
cycles duration and a fixed phase φ = 0. The single ionisation yield shows a
typical behaviour reaching almost a 100% then decreasing for very high inten-
sity due to a significant double ionisation. Double ionisation becomes visible at
F0 ≈ 0.1 (for the frequency chosen). Let us observe that the sequential ionisation
is always at least slightly more probable than the nonsequential one. For strong
field strengths, the nonsequential contribution saturates, but the sequential one
increases: this crossover is the famous knee-structure.

Fig. 2. Electron momenta distributions corresponding to the pulse with the sine-

-squared envelope, the amplitude F = 0.3 a.u., the carrier-envelope phase φ = 0

and 5 cycles duration. Parts correspond to different resolutions, i.e. (a) 0.07 a.u.,

(b) 0.16 a.u., (c) 0.3 a.u., and (d) 0.4 a.u.

Let us look now at the momenta distribution for double ionisation. To stay
close with experimental reality we smooth the numerical data with Gaussians of
different widths. This corresponds to different experimental resolutions, from the
best available nowadays σp = 0.07 a.u. [5] — see part (a) in Fig. 2 to that of the
first experiments [4] — part (d). Clearly, a significant portion of electrons escapes



Nonsequential Double Ionization of Atoms . . . 703

with symmetric momenta p1 ≈ p2 — the process, let us repeat, underestimated in
the aligned electron model [9].

The results are robust with respect to a reasonable change of the field am-
plitude, F0, however, they show a significant dependence on the initial phase φ —
compare Fig. 3. Let us observe that φ = 0 and φ = π distributions differ by a

Fig. 3. Electron momenta distributions for F0 = 0.2 and different carrier-envelope

phase φ = 0, 0.3π, 0.5π, 0.8π, π (from top left to bottom left). The bottom right part

shows the distribution averaged over a uniform φ distribution. All parts are plotted

with 0.2 a.u. resolution.
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Fig. 4. Ion momenta distributions for F0 = 0.2 and different carrier-envelope phase

φ = 0, 0.3π, 0.5π, 0.8π, π (from top left (a) to bottom left (e)). The bottom right part

(f) shows the distribution averaged over a uniform φ distribution. Let us observe that

φ = 0 and φ = π distribution differ by a reflection of both momenta axes.

Fig. 5. Electron momenta distributions corresponding to laser pulse with sine-squared

envelope, the amplitude F = 0.3 a.u., the carrier-envelope phase φ = 0. Parts correspond

to different pulse durations, i.e. (a) 1 cycle, (b) 2 cycles, (c) 3 cycles, and (d) 4 cycles.



Nonsequential Double Ionization of Atoms . . . 705

reflection of both momenta axes — this is a general symmetry based behaviour
due to the sinusoidal time dependence and the form of the Hamiltonian. The rapid
change of the momenta distribution with phase φ has been suggested as a tool for
carrier phase determination [17, 18]. Judging by our results the signal will not be
as pronounced as one might have hoped for.

The electron momenta distributions translate directly into ion recoil momen-
tum distribution since pion = −√3/2(p1 + p2) (with the numerical factor resulting
from the π/3 angle between the axes of our model (1)). Ion momenta distribu-
tions for different carrier-envelope phases are shown in Fig. 4. The distribution
averaged over a uniform distribution of carrier envelope phases is of course sym-
metric and reveals a celebrated double-hump structure (see part (f) in Fig. 4). In
addition, our results for F0 = 0.2 reveal the presence of a smaller central mini-
mum corresponding to electrons with antiparallel momenta (coming, e.g. from the
sequential process). These correspond to p1 ≈ −p2, i.e. small ion recoil, and are
clearly visible in Fig. 3 as light blue island.

The momenta distributions, especially those obtained at the highest reso-
lution, show presence of structures (nodal lines, maxima) resembling interference
phenomena. This is due to the fact that several possible paths may lead to double
ionisation. If indeed the structures are due to interference, they should be more
pronounced and simpler for shorter pulses. Indeed it is the case, as may be ob-
served in Fig. 5. A more detailed analysis of these interference phenomena as well
as carrier phase dependence of the observables for very short pulses is in progress.

3. Conclusions

The model presented reveals all the key features of the double nonsequential
ionisation, i.e. the knee structure in the ionisation yield, the double hump struc-
ture in the ion’s momentum distribution, and the electrons’ momenta distribution
showing the signatures of the correlated escape. Both the ion and the electron mo-
menta distributions show a significant dependence on the carrier envelope phase.
Momenta distributions for sufficiently short pulses reveal most interesting inter-
ference structures. The major advantage of the present model over the well known
and studied aligned electron picture is that the latter does not allow for a sym-
metric simultaneous electron escape due to the overestimation of the Coulomb
repulsion. This drawback is absent in our approach.
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