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Abstract 

The aim of this work was to create extended QSAR 
model of the relationship between sodium channel 
blocking activity of the particular compound and its 
chemical structure together with the in vitro assay 
conditions. Artificial neural networks (ANNs) were 
chosen as modeling tools. Chemoinformatics software 
was used for calculation of the molecular descriptors 
describing the structure of the interest. Drug 
concentration causing 50% of the channel inhibition 
(IC50) was used as the modeling endpoint.  The data was 
based on the literature search and consisted of 38 drugs 
and 108 records. Initial number of inputs was 110 and 
during the sensitivity analysis was reduced to 20. ANNs 
models were optimized in the extended 10-fold cross-
validation scheme yielding RMSE = 0.68, NRMSE = 
20.7% and R2 = 0.35. Best models were ANNs ensembles 
combining three ANNs with their outputs averaged as a 
collective output of the system. 

 
 

1.  Introduction 

According to the ICH S7B guidelines in vitro currents 
inhibition assessment is a compulsory element of the drug 
candidates non-clinical evaluation [1]. It has to be noted 
although that the screening includes hERG channel only 
as this channel blockade and subsequent IKr current 
inhibition are recognized as the potential QT prolongation 
surrogates. As it was described elsewhere in majority of 
cases clinically observed QT prolongation and Torsade de 
Pointes events concerns drugs which inhibit the IKr 
current in vitro. There are although compounds which are 
potent in vitro hERG channel inhibitors and don’t express 
the proarrhythmic consequences in the clinical settings. 
Such phenomenon is mainly explained by the multiple 
channels inhibition and subsequent QT prolongation 
compensation [2]. To be able to assess the drug triggered 
arrhythmia risk and predict in vivo human situation wide 
in vitro inhibition results are needed. In the situation 
when either no in vitro studies were conducted or the 

results are reduced to the hERG channel only, reliable 
QSAR models are necessary for other ionic currents. 

The study was aimed to create predictive model taking 
into account chemical structure of the particular 
compound and its ability to block the sodium channel in 
the cell membrane. 

 
2.  Materials and methods 

The data was based on the literature search. Several 
databases were searched: Medline, Scopus and Google 
Scholar. The key phrases were: ‘INa’, or ‘sodium current’, 
or ’sodium channel’, or ‘Na+ channel’ and ‘half-maximal 
inhibitory concentration’ (IC50) either in the article title, 
keywords or abstract. There were no limits for search 
results except publication language (English). After 
careful papers examination and manual data extraction 
the final dataset contained 108 records describing 38 
drugs. Initial number of inputs was 110. Input vector 
contained in vitro experimental settings combined with 
molecular descriptors of particular drug compound. 
Including in vitro research setting as the input data allows 
the prediction abilities enhancement and makes the 
derived model more flexible. Extended QSAR 
methodology was previously successfully applied for 
other channels [3, 4]. 

The output was a single variable encoding IC50 value 
as its negative logarithm (pIC50). Molecular descriptors 
were computed by chemoinformatics software Marvin 
(ChemAxon, UK) [5]. Drugs chemical structures were 
structurally optimized with use of Marvin “molconvert” 
tool. Resulting *.sdf files were the subject to descriptor 
calculations by “cxcalc” tool with selected 41 plugins.  

Artificial neural networks (ANNs) were chosen as 
modeling tools. Two major types of ANNs were applied: 
multi-layer perceptrons (MLPs) and neuro-fuzzy systems 
(NFs) of Mamdani type. ANNs were trained with use of 
back-propagation algorithm with momentum, delta-bar-
delta and jog-of-weights modifications. Various 
activation functions were tested: hyperbolic tangent, 
logarithmic, logistic and linear. MLPs architectures were 
varied from 1 to 6 hidden layers and up to 200 nodes in 
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each layer. For NFs, their hidden layer size was optimized 
between 5 to 100 nodes. Sensitivity analysis was 
performed in order to reduce initial number of inputs to 
the crucial variables set. The procedure was carried out 
with modified Żurada method [6, 7]. The generalization 
error was estimated by means of enhanced 10-fold cross 
validation (10-cv), where whole drugs information was 
excluded from the test sets in order to simulate the most 
difficult task for a model to perform: to predict unknown 
structure behavior. Generalization error was expressed as 
root mean squared error (RMSE, Eq. 1), normalized root 
mean squared error (NRMSE, Eq. 2) and coefficient of 
determination (R2) of predicted vs. observed values.  
 

𝑅𝑀𝑆𝐸 = �∑ (𝑃𝑅𝐸𝐷𝑖−𝑂𝐵𝑆𝑖)2

𝑛
𝑛
𝑖=1  (1) 

 
where: 

OBS – observed value 
PRED – predicted value 
n – total number of records 

 
𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸

(𝑂𝐵𝑆𝑚𝑎𝑥−𝑂𝐵𝑆𝑚𝑖𝑛)
  (2) 

 
where: 

RMSE – root mean squared error 
OBSmax – maximal value of the observed results 
OBSmin – minimal value of the observed results 

 
In order to improve model predictive performance 
ensemble ANNs systems were applied, where ANNs 
were combined by simple average of their outputs. 

 
3.  Results 

Sensitivity analysis allowed to reduce inputs number 
from initial value of 110 to 20 – their labels and meanings 
were presented in the Table 1.  
Variables 1-5 encode in vitro experimental settings, 
whereas 6 – 20 are molecular descriptors of the chemical 
compound of interest. It is noticeable that the molecular 
descriptors might be classified to the following groups:  

• topology (6-10, 14, 16, 18) 
• geometry (17, 19) 
• surface area (11) 
• physicochemical properties (12, 13, 15, 20) 

 
The best predictive system found in this study was an 
ensemble containing three MLP ANNs:  

• single hidden layer with 20 nodes and logistic 
activation function 

• four hidden layers with 15, 7, 5 and 3 nodes 
respectively and hyperbolic tangent activation 
function 

• four hidden layers with 120, 80, 40 and 20 nodes 
respectively and logarithmic activation function 

A simple average of the outputs of the above described 
ANNs was the final response of the system. The overall 
10-cv generalization error of the ensemble was RMSE = 
0.68, NRMSE = 20.7% and R2 = 0.35 (Fig. 1). 
 
Table 1. Sensitivity analysis results and description of the 
selected crucial variables. 

 
No. [Label] and description 
1 [Hz] depolarization pulse frequency 
2 [model] cell line type (XO / CHO / HEK / GP) 
3 [t1_pulse] duration of depolarization pulse 
4 [holding_pot] holding potential 
5 [depol_puls] depolarization pulse voltage 
6 [Heteroaromatic_ring_count] no. of 

heteroaromatic rings 
7 [Stereoisomer_count] no. of double-bond 

stereoisomers 
8 [resonantcount] no. of resonant structures 
9 [Balaban_index] topological information 
10 [Smallest_ring_size] no. of atoms included in 

the smallest ring 
11 [ASA-] solvent accessible surface area of all 

atoms with negative partial charge 
12 [bpKa1] first basic pKa 
13 [apKa2] second acidic pKa 
14 [Asymmetric_atom_count] no. of asymmetric 

atoms 
15 [bpKa2] second basic pKa 
16 [Chiral_center_count] no. of tetrahedral 

stereogenic center atoms 
17 [Minimal_projection_radius] minimal radius 

of the compound projected on the planar 
surface 

18 [Ring_atom_count] no. of atoms in the ring 
19 [Maximal_projection_radius] maximal radius 

of the compound projected on the planar 
surface 

20 [Mass] molecular mass 
 
XO – Xenopus oocyte; CHO – Chinese hamster ovaries; HEK – human 
embryonic kidney cell line; GP – guinea pig cardiomyocytes 
 
4.  Discussion 

To our knowledge the proposed model is the first 
available model for the drug triggered in vitro cardiac 
sodium channels inhibition prediction. Apart of that the 
main advantage of the proposed solution lies in the 
applied methodology which includes in vitro data 
utilization. Such approach was previously used to develop 
similar models for other non-hERG currents namely IKs 
and ICa [3, 4]. 
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Fig. 1. Predicted vs. observed pIC50 for the best ANNs 
ensemble. 
 

 
This work is an example of the data-mining procedures 

combined with predictive modeling. The latter was the 
major goal to be achieved by the ANNs modeling. The 
model was created as a future part of the ToxComp 
system in order to provide assessment of the multi-
channel block on the cardiomyocyte and its consequence 
to the heart rhythm. For the data-mining ANNs provide 
information about the analyzed problem by their 
autonomous selection of the crucial variables. Here, it 
might be noticed, that there is a lot of variables associated 
with the compound’s geometry, specifically rings size 
and stereochemistry-related information. Thus, it might 
be hypothesized that particular compound’s geometry and 
stereoisomeric properties are crucial to its action on the 
sodium channel. Protonation related properties seem to be 
also important. The above relationships were discovered 
empirically by ANNs and being in accordance with the 
common knowledge on the subject (QSAR) might be the 
basis to the more classical quantitative models 
development. It has to be stressed here that these 
relationships are hidden as a part of the ‘black-box’ 
ANNs model and so far cannot be presented in other 
form. However, even the quoted above character of the 
crucial variables is a valuable information about potential 
cardiotoxic effects caused by drugs. 

The results are mostly determined by the data used at 
the model development stage. All of the information 
describing drugs triggered INa current inhibition was 
derived from the available literature and as the 
consequence it is inhomogeneous. Moreover, lack of 
standardization of the in vitro assays conditions results in 

the significant degeneration of any non-linear functions 
applied for such a small dataset. 

All data used for the model development are freely 
available for download and further processing [8]. 

 
5.  Conclusions 

Regarding harsh testing conditions and the empirical 
nature of the models, their predictability was found to be 
acceptable, thus the above models are to be included into 
the ToxComp in silico carditoxicity prediction software 
(www.tox-portal.net). Future work will be devoted to the 
task of switching from the ‘black-box’ ANNs models to 
the more classical mathematical formulas. 
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