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Using Fourier transform on a time series generated by unitary evolution, we extract many-body eigenstates
of the Bose�Hubbard model corresponding to low energy excitations, which are generated when the insulator�
super�uid phase transition is realised in a typical experiment. The analysis is conducted in a symmetric external
potential both without and with a disorder. A simple classi�cation of excitations in the absence disorder is
provided. The evolution is performed assuming the presence of the parity symmetry in the system rendering
many-body quantum states either symmetric or antisymmetric. Using symmetry-breaking technique, those states
are decomposed into elementary one-particle processes.
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1. Introduction

A gas of ultracold atoms in a su�ciently deep opti-
cal lattice is well described by a tight-binding model �
the so-called Bose�Hubbard (BH) model as suggested by
Jaksch and Zoller in their seminal article [1]. The au-
thors predicted the occurrence of a Mott insulator (MI)
to super�uid (SF) phase transition, later realized exper-
imentally [2]. Let us note parenthetically that the no-
tion of �Bose�Hubbard model� may be considered an ex-
ample of validity of the zeroth theorem of the history
of science [3], as it should rather be called the Gersch�
Knollman model [4].
Optical lattices provide a superb experimental possi-

bility not only by enabling to implement the BH Hamilto-
nian but also providing means to control the parameters
of the model. Although variations of the lattice depth
modify both the on-site interaction and the tunneling
rate between sites, there is an independent method of
manipulating the strength of the interaction, by tuning
the scattering length of atoms using magnetic Feshbach
resonances [5]. Optical and microwave Feshbach reso-
nances have also been developed [6, 7].
Random on-site disorder within the Bose�Hubbard

Hamiltonian causes the existence of a new insulating, yet
gapless phase � the Bose glass [8]. This result has been
generalized to the pseudodisorder realized by a bichro-
matic optical potential [9]. Similarities and di�erences
between e�ects due to these two types of disorder are
discussed in [10, 11].
To study experimentally the Bose glass phase [9], an ul-

tracold atomic gas is �rst prepared in a trap. The optical
lattice is then switched on, driving the system through
the insulator�super�uid phase transition in a �nite time.
When a phase transition is classical, such a quench may
be described by the Kibble�Zurek mechanism [12, 13],
leading to the presence of several excitations in the �nal
phase. For quantum phase transitions, the situation was

found to be similar in an array of the Josephson junc-
tions [14]. Investigation of quantum Ising models [15]
and homogeneous BH model [16] shows that the number
of defects scales algebraically with the quench time.
In our previous research [17], we showed that experi-

mental setup (approximated within the BH model) used
in [9] for the realization of the ground state (a series of
the Mott insulators without disorder, a Bose glass with
strong disorder) leads to a signi�cant (90% without dis-
order, > 99.999% with the strong disorder) depletion of
the ground state, making the interpretation of this wave
packet as a Bose glass less obvious.
In this article, we continue our theoretical analysis by

extracting eigenstates of the Bose�Hubbard Hamiltonian
excited by quenching and comparing them to the ground
state and the dynamically created wave packet. We focus
on the special situation when the external potential pos-
sesses parity symmetry and the realization of the pseudo-
-disorder (bichromatic �eld) respects that symmetry.

2. The method of analysis

As in [17] we take as an example the experiment of
the Florence group (for details see the original work [9]).
An harmonic trap was used to con�ne the cold atomic
gas; then a two-dimensional optical lattice potential
(the �transverse� lattice) is ramped up to create a two-
-dimensional array of independent (if the lattice is su�-
ciently strong, tunneling between tubes is inhibited) one-
-dimensional tubes. The same ramp is used to switch on
the optical potential along the tubes. The latter poten-
tial may either be a pure �optical lattice� or a bichromatic
lattice realizing a pseudo-random disorder.
The recoil energy ER = h2/(2Mλ2) is used as the en-

ergy scale, λ = 830 nm being the wavelength of laser
beams forming the optical lattices (both transverse and
along the tube), andM � the mass of an atom. Initially,
the only external potential present is the harmonic trap.
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Then the 2D optical lattice creating tubes, optical lattice
potential along tubes and an additional much weaker op-
tical lattice creating disorder are ramped together (ex-
ponential ramping lasts 100 ms in total). The additional
optical lattice is created with a di�erent laser, with wave-
length λd = 1076 nm.

The transverse optical lattice potential maximal height
is s⊥ = 35 (in recoil energy units), the maximal height
of the lattice along the tubes � s = 14. Notice that
we follow [17] in rescaling the experimental s parame-
ters by a 7/8 factor, for a discussion see [17]. As it is
much higher than the lattice potential along the tubes,
the transverse lattice makes the system an independent
union of 1D systems at the early stages of the ramp. We
model a single tube using the 1D Bose�Hubbard Hamilto-
nian (tight-binding approximation of a full, second quan-
tized Hamiltonian):

Ĥ = −J
N−1∑
j=0

(
b̂†j b̂j+1 + b̂†j+1b̂j

)

+
U

2

N∑
j

n̂j(n̂j − 1) +

N∑
j

ϵj n̂j , (1)

where b̂j is an annihilation operator of a particle at the

j-th site and n̂j = b̂†j b̂j � the corresponding particle
number operator. Both J and U depend on parameters s
and s⊥ [1]. The lattice depth s increases in time, making
U (slowly) increasing and J (exponentially) decreasing.
The underlying assumption within the BH Hamiltonian
is that the Hilbert space is restricted only to the low-
est Bloch band of the lattice. We perform the evolution
only for lattices deep enough to justify neglecting higher
bands. The ϵj represents the energy o�set of the on-site
energy at site j:

ϵj =
1

2
Mω2a2(j − j0)

2 + sdER sin2
(
πjλ

λd

)
. (2)

The �rst term comes from the external harmonic trap
potential (ω is the trapping frequency, j0, not necessar-
ily an integer, is the center of the trap), the second one
corresponds to the additional optical potential introduc-
ing the disorder created by laser with wavelength λd. The
parameter sd ≪ s is its amplitude (in recoil energy units)
� when sd > 1 it is considered strong [9, 10]. As in [17],
we use the BH model only for s > 4, where it is appli-
cable. We assume that initially the gas is in the ground
state in a super�uid state for s = 4, and that the hopping
through the transverse lattice is negligible.

Matrix product states [18, 19] are used to represent
the states and the time evolving block decimation [20]
(essentially equivalent to time-dependent density matrix
renormalization group method [21]) algorithm is used for
the time evolution during which s is increased exponen-
tially as s(t) = A(exp(t/τ) − 1). The exponential ramp
is characterized by τ = 30 ms. At the end of the ramp �
which is not adiabatic � we have created a wave packet,
a linear combination of the ground state and various ex-

cited states. To characterize the properties of this dy-
namically created wave packet, it is important to know
the properties of the signi�cantly populated eigenstates.
To reach this goal, when the �nal s value is reached, we
further continue to evolve the wave packet using the time-
-independent Hamiltonian with constant s. Let us denote
by |ei⟩ the eigenbasis of the �nal Hamiltonian. The evo-
lution of the wave packet under constant s is given by

|ψ(t)⟩ =
∑
i

exp

(
− i

~
Eit

)
ci|ei⟩, (3)

and the Fourier transform (FT) of the autocorrelation
function

C(t) = ⟨ψ(0)|ψ(t)⟩ =
∑
i

|ci|2 exp
(
− i

Eit

~

)
(4)

yields Ei's � the eigenenergies of the �nal Hamiltonian
and the overlaps |ci|2 as discussed in [17]. The extraction
of the ground state using imaginary time propagation was
also performed. Here, we extend this analysis by extract-
ing from the dynamics also the excited eigenstates with
large overlap � those contribute most signi�cantly to the
dynamical wave packet and thus provide an understand-
ing of the character of that wave function.
We focus on the situation where parity symmetry is

present making the eigenstates either symmetric or anti-
symmetric. This makes it possible to apply a symmetry-
-breaking analysis of the �nal state.
To �nd a given |ei⟩ we perform a Fourier transform of

the various |ψ(t)⟩ (each represented by a matrix product
state, MPS) on a discretized sample, t = nδt, with n
an integer. This requires a method for adding many-
-body states within the MPS state representation; details
concerning the method including details on its validity
will be published elsewhere.

2.1. Bose�Hubbard model in the absence of disorder

Consider �rst the example of sd = 0, i.e. a pure Bose�
Hubbard model. Figure 1 shows the FT of the autocor-
relation function of the wave packet which was obtained
using an exponential ramp. As discussed before [17], the
wave packet has about 10% (squared) overlap with the
ground state (the peak at zero relative energy in Fig. 1,
corresponding to energy E ≈ 119.188) with 4 other states
contributing with higher or similar overlap. Using the
procedure sketched above we extract the eigenstates cor-
responding to the dominant contributions.
Let us take a look at these states in some detail. In

Fig. 2, we show the average occupation numbers ⟨nj⟩
of sites j for the ground state (G) as well as states P1
and P2 corresponding to peaks bearing the same name in
Fig. 1. Observe that occupations of all three states coin-
cide within broad steps of the Mott plateau (with integer
occupation of sites). For the ground state, the central
⟨n⟩ = 3 zone is broadest, for the two excited states, one
particle from the ⟨n⟩ = 3 zone is transferred either to
the left or to the right. Since we consider a symmetric
potential problem (the center of the harmonic trap co-
incides with the site j = 41), the eigenstates are either
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Fig. 1. Fourier transform of the autocorrelation func-
tion, Eq. (4), obtained dynamically for s = 14 after
switching on the lattice without the secondary lattice,
i.e. for sd = 0 (no disorder). The experimental [9] ex-
ponential ramp of 100 ms is used, all other parameters
are taken as closely as possible to the experimental sit-
uation, with N = 151 particles on M = 81 sites. The
peaks appear at energy levels of the system (measured
with respect to its ground state), with an intensity equal
to the squared overlap with the wave packet. About ten
states are signi�cantly excited, proving that the prepa-
ration is not adiabatic in a strict quantum mechanical
sense. The stick spectrum shown in a mirror is the pre-
diction for the energies using a simple separable ansatz
allowing the identi�cation listed in the �gure � see text
for discussion. The S(P1+P2) corresponds to a sym-
metric combination of both P1 and P2 excitations, the
AS(P1+P2) to an asymmetric combination.

Fig. 2. Occupation of sites (left vertical axis) ⟨nj⟩ for
the ground state (black circles connected by a line) and
two excited states |ψ2⟩ (red squares) � corresponding
to the peak P2 in Fig. 1 and |ψ1⟩ (green triangles, peak
P1) which are signi�cantly populated during the turn-
-on of the lattice. Due to the symmetry of the prob-
lem, half of the system is shown only. Right vertical
axis shows standard deviation of the occupation num-

ber ∆j =
√

⟨n2
j ⟩ − ⟨nj⟩2. Low values correspond to an

insulating Mott state, excitations occurring in the SF
zones lead to an increase of the standard deviation.

symmetric or antisymmetric with respect to the trap cen-
ter. This symmetry is not broken when parameters of the
Hamiltonian are varied during switching on of the lattice,
therefore only symmetric eigenstates are populated. This
explains half integer occupations on the border between
⟨n⟩ = 2 and ⟨n⟩ = 1 zones for P2 or ⟨n⟩ = 1 and ⟨n⟩ = 0

zones for P1.
It seems, therefore, that basic excitations in the sys-

tem correspond to transfer of particles between edges
of the Mott zones. This is because the SF regions be-
tween the zones are very small (s = 14 corresponds to
J/U = 0.0133, very deep in the Mott regime). If this
is the case, can the most signi�cant excitations be ex-
plained by such transfers?
To test this hypothesis, let us consider �rst the system

at J = 0.

2.1.1. Ground and excited states for J = 0
For J = 0, the ground state is well known. All eigen-

states, in particular the ground state, are product of the
Fock states at di�erent sites � at each site i we put ex-
actly ni particles

|ψ⟩ =
M⊗
i=0

|ni⟩. (5)

To create the ground state with N particles, one has
to perform N times the following procedure: �nd the site
whose local energy (energy taking into account the har-
monic trap (2) together with interaction with particles
already present on the site) is the least and put the par-
ticle into that site. Without disorder, the ground state
has a well-known wedding cake form � see Fig. 3.

Fig. 3. Ground state of the BH model for J = 0, com-
posed of a series of insulating Mott plateaus with the
familiar wedding cake shape. In blue, sites at the edge
of the Mott zones.

To get the low-lying excited state, one should take a
few particles (perhaps one) and move it to a di�erent
place. To achieve low energy di�erence, the particle must
be put back in such a way that the resulting particle
distribution is close to optimal. Some possibilities are
shown in Fig. 4.
Consider now our exemplary case of N = 151 particles

on 81 sites. The ground state at J = 0 is shown in Fig. 3.
At site numbers marked in the �gure, there are sudden
changes of local occupation numbers de�ning the edges
of di�erent occupation zones (the Mott plateau).
As the ground state is Z2-symmetric (i.e. even with

respect to re�ection at the center of the trap), several
Z2-symmetric one-particle excitations may be generated
by taking one particle from one of sites 7, 15 or 27 and
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Fig. 4. Ground state of the Hamiltonian for J = 0 (a).
For a better visualization, the number of sites is re-
duced from M = 81 in simulations of the experiment
to M = 31. Particle removed from a certain MI zone
may be placed in the other zone (b) or put back at the
same zone, but on the other side from the center of the
trap e�ectively shifting the zone to one side (c). After
symmetrization of the state, a distribution denoted by
green crosses will be obtained. Bottom plot (d) shows
an example of other possibility that exists for J = 0. For
J > 0, this type of excitation is unlikely to be observed
in a real experiment, due to its dynamical instability
and a too high excitation energy.

moving it to one of sites 6, 14 or 26. Symmetric possibili-
ties are when the particle is taken on the right side (sites
75, 67, 55 symmetric partners of respectively 7, 15, 27)
and/or is moved to sites 76, 68, 56 on the right side.
This generates 9 di�erent energy combinations that are
listed in Table, each combination being 4 times degener-
ate (left/right for the particle removed, left/right for the
particle added).

2.1.2. Nonzero small J , no disorder

Let us come back to the �physical� case of small J/U =
0.0133 corresponding to the lattice with height s = 14
and the FT of the correlation function of dynamically
obtained wave packet shown in Fig. 1. The ground state
energy E = 119.185 is quite close to J = 0 estimate
(see Table) � the di�erence is on the fourth signi�cant
digit. Still this di�erence is much larger than the ex-
cess energy of excitations listed in Table � it is mainly
due to the important role of tunneling in the narrow SF
strips. The exemplary extracted states, see Fig. 2, sug-
gest that the excitations are due to transfers between
edges of the Mott zones. Therefore, the �excess energy�
of such excitations above the ground state can be ap-
proximated by the J = 0 energy excess (remember we
consider deep optical lattice � this argument might not
hold close to the SF�MI transition). By inspection of the
excess energies, we can then identify several important
contributions to the wave packet in terms of elementary
excitations and their multiplicities! The classi�cation is
included in Fig. 1.

It is apparent that the main origin of the nonadiabatic-
ity comes from P1 and P2 excitations and their multiplic-
ities. The corresponding elementary particle exchange

TABLE

Comparison of 9 elementary excitations for J = 0. Each one
particle excitation corresponds to moving a particle from site
i to site j (due to symmetry with respect to site 41, only
excitations where a particle is moved from the left side to
the right side are shown). Third column gives the energy
of that excitation. Fourth column gives the excess energy
with respect to the ground state. Fifth column identi�es the
state with state obtained for small J in Fig. 1. Last column
give the degeneracy of excitation for J = 0, with, inside the
parentheses, the degeneracy expected in the low J limit.

i j Energy Excess
energy

Notation Degeneracy

� � 119.332 0 G 1

27 56 119.368 0.036 S3 4(2)

15 56 119.370 0.038 T2 4

7 56 119.373 0.041 T1 4

27 68 119.396 0.064 P2 4

15 68 119.398 0.066 S2 4(2)

7 68 119.401 0.069 D1 4

27 76 119.414 0.082 P1 4

15 76 119.416 0.084 D2 4

7 76 119.418 0.086 S1 4(2)

process is a loss of particle from the highest ⟨n⟩ = 3
Mott zone to ⟨n⟩ = 2 (P2) or to ⟨n⟩ = 1 (P1).
Excitations of type S are slightly di�erent: indeed,

there, the particle is removed from the Mott plateau n
and added in the Mott plateau n−1. When the two sites
are on opposite sides, it simply corresponds to a right or
left shift of plateau n by one site. For example, the S3
component has a squared overlap of less than 1%, still
the analysis of the associated state by our method con-
�rms that assignment. This process for other Mott zones
(S2 and S1) is not observed. There is, however, another
possibility for S excitations: if the i and j neighboring
sites are on the same side, it is associated with a hole
in the n-plateau (can be viewed also as an extra particle
in the n− 1 plateau), and � because i and j are neigh-
bors (with slightly di�erent energy o�set at each side) �
it costs some kinetic energy. Thus one can expect the
4-fold degeneracy of the S excitations at J = 0 to be
rapidly lifted to a 2-fold degeneracy only for relatively
small J . Also, the same-side excitation is dynamically
unstable and unlikely to be signi�cantly excited in our
wave packet.
We do not observe signi�cant contributions of pro-

cesses involving exchange of particles between ⟨n⟩ = 1
to ⟨n⟩ = 2 zones only (D type). A qualitative explana-
tion for that fact might be that formation of ⟨n⟩ = 1
and ⟨n⟩ = 2 zones takes time earlier in the ramping-up
process (for larger J/U). Then tunneling more e�ciently
redistributes particles between sites, also the changes of J
and U occur more slowly due to an exponential shape of
the ramp. Moreover, observe that excitations when the



A-182 M. �¡cki, D. Delande, J. Zakrzewski

particle is promoted to the highest ⟨n⟩ = 3 level at the
expense of shrinking the lower Mott zone (T1 and T2)
are not observed. This seems physically understood quite
naturally. With the increase of the lattice depth the high-
est Mott zone also increases at consecutive avoided cross-
ings if passed adiabatically. If it does not have time to in-
crease su�ciently, P1 or P2 excitations are created. But
no avoided crossings of T1 or T2 process may occur.
With that in mind, we can actually identify the domi-

nant processes contributing to the P1 and P2 excitations.
Consider P1 only (for P2 the same arguments apply ex-
cept di�erent lower Mott zones are involved). Recall that
P1 corresponds to loss of one particle at the edge of the
⟨n⟩ = 3 zone, say on the left side (site i = 27) with the
additional particle appearing at the edge between the
⟨n⟩ = 0 and ⟨n⟩ = 1 zones. This may occur at the same
side of the wedding cake (site j = 6 in our example) or on
the opposite side of the center (at site j = 76). A more
detailed analysis is given in the next section.

Fig. 5. Exemplary excitations involving transfer of two
atoms from the ⟨n⟩ = 3 zone, either both to ⟨n⟩ = 2
(one on the left, one on the right) � 2P2 excitation,
red squares connected by line; or one to ⟨n⟩ = 2 and
the other one to ⟨n⟩ = 1 − P1 + P2 (green triangles).
Black circles give the ground state for reference. Due to
the symmetry of the potential only half of the trap is
shown. The right vertical axis shows standard deviation
of the occupation number.

Similarly, we may easily understand the P1+P2 or 2P2
processes (compare Fig. 5) contributing signi�cantly to
the FT of the autocorrelation function shown in Fig. 1.
Then, the Mott ⟨n⟩ = 3 zone loses one particle at each
side, both particles moving to lower zones. The 2P2 case
is symmetric, on both sides a particle appears at the
border between ⟨n⟩ = 1 and ⟨n⟩ = 2 zones.
For P1+P2 a symmetric combination is created, P1 on

the left and P2 on the right or vice versa. The classi�ca-
tion denoted in the correlation function plot have been
con�rmed by extracting the excited states responsible for
those peaks.
Apart from simple excitations, easily identi�able in the

J = 0 limit, there are other excitations involving parti-
cles in narrow super�uid strips separating di�erent Mott
zones. Two of these excitations, denoted as J1 and J2 in
Fig. 1 are shown in Fig. 6.

Fig. 6. Examples of excitations involving particles in
super�uid zones. Excitations denoted as J2 and J1 in
Fig. 1 are shown as red squares and green triangles, re-
spectively and compared with the ground state (black
circles). The excitation leads to broadening of the SF
zone separating the ⟨n⟩ = 3 and ⟨n⟩ = 2 Mott zones.
Due to the symmetry only half of the trap is shown. The
right vertical axis shows standard deviation of the oc-
cupation number. The J2 excitation corresponds to the
transfer of one particle from a SF zone to a ⟨n⟩ = 2Mott
plateau, J1 to the ⟨n⟩ = 1 zone as could be traced back
from the standard deviation plot. The standard devia-
tion of the occupation number (right scale) con�rms the
broadening of the SF region between the ⟨n⟩ = 3 and
⟨n⟩ = 2 Mott zones.

3. Parity symmetry breaking

It is possible to describe the state P1 (this reason-
ing is not limited to this state, the presented method is
rather general) further by describing correlations within

eigenstates of Ĥ. As shown in Sect. 2.1.1, in the limit
J → 0, the P1 excited state has a 4-fold degeneracy,
with 2 states symmetric by parity symmetry and 2 an-
tisymmetric ones. When both the Hamiltonian and the
dynamically excited wave packet is symmetric, the over-
laps with antisymmetric states vanishes, making them
invisible in the FT of the autocorrelation function. The
two remaining (symmetric) states are strictly degenerate
only for J = 0. For non-zero J , they are coupled via
tunneling of one particle from one side of the ⟨n⟩ = 3
plateau to the other side. The associated amplitude is
very small, and the two states are almost degenerate,
that is not resolved in out FT over a �nite time interval.
However, if we now break the symmetry parity and

propagate the same wave packet with a slightly asym-
metric Hamiltonian � for example obtained by shifting
the trap center by δ ≪ 1 with respect to the lattice �
the 4-fold degeneracy as well as the selection rules for-
bidding the excitation of the antisymmetric states will be
broken, and one expects to observe the P1 peak to split
in a multiplet of 4 peaks.
The FT of the autocorrelation function in Fig. 7 clearly

shows these 4 components. As expected the height of the
P1 peak for δ = 0 � 0.158 � is now shared by the four
components of the multiplet, the sum of heights being
0.154.
For J = 0, each of constituents of the P1 multiplet

di�ers from the ground state by a particle jump from
one of sites 27 and 55 to one of sites 6 and 76. These
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Fig. 7. Fourier transform of the autocorrelation of a
wave packet evolved for δ = 0.03. One clearly observes
splitting of eigenenergy peaks with a multiplicity cor-
responding to the degeneracy at δ = 0 given in Table.
Labels associate the 4-fold group of peaks for the sym-
metry broken case to a corresponding single peak at
δ = 0. Let us note that the 2P2 peak does not split, as
it corresponds to a non-degenerate excitation.

particle jumps break the parity symmetry and make the
energies dependent on δ in the �rst power. Outer peaks
correspond to jumping particles over a long distance �
55 to 6 or 27 to 76, inner, higher peaks correspond to
one-sided jumps: 27 to 6 and 55 to 76. It turns out that
values Ei

0 − Ei
δ calculated for J = 0 are very close to

those extracted from Fig. 7.
It might have been tempting to argue that the larger

the distance between two sites i and j the lesser the
probability of �nding an excitation that di�ers from the
ground state by hopping a particle from site j to site i.
The heights of peaks that are results of splitting a sym-
metric ground state show a di�erent picture. The prob-
ability is certainly lower, but the order of magnitude re-
mains largely the same � the di�erence is by a factor
of 1.5�4 depending on the symmetric eigenstate being
considered.
The P2 peak behaves exactly like the P1 peak with a

quadruplet appearing when parity is broken, see Fig. 7.
The 2P2 peak behaves very di�erently, with a single peak
surviving keeping all the weight. As noticed above, the
2P2 case corresponds to 2 atoms jumping from the ⟨n⟩ =
3 to each of the ⟨n⟩ = 2, a symmetric non-degenerate
state, like the ground state, in the J = 0 limit.

4. The disordered BH model

The presence of the on-site disorder, e.g. in the form (2)
for sd ̸= 0 modi�es both the dynamics and the static
properties of the BH model. An exhaustive analysis of
possible phases has been published in [10, 11]. In our
system the disorder is due to bichromaticity of the lattice,
created by using two incommensurate laser pulses. This
is not entirely equivalent to true random on-site potential
as in [8]. Nevertheless for such a strong disorder, for not
too big J the system is in a gapless, insulating Bose glass
phase.
Let us note that the spectrum of the autocorrelation

function, Fig. 8, is indeed much denser than in the ab-
sence of disorder: this is easy to understand, as random
variance of the local energy increases likelihood that sev-

Fig. 8. Fourier transform of the autocorrelation func-
tion, Eq. (4), obtained dynamically for s = 14 after
switching on the lattice with the secondary lattice of
strength sd = 2.1875 (151 particles on 81 sites). Several
peaks represent excitations populated during turning on
of the lattices. The ground state is populated with less
than 1 ppm probability.

Fig. 9. The top graph compares the dynamical wave
packet and the ground state, subsequent graphs com-
pare the ground state (black on each plot) to the signif-
icantly populated excited states constituting the wave
packet obtained for sd = 2.1875. The right hand axis
shows standard variation of the occupation number.

eral sites have similar on-site energies, providing oppor-
tunity for low energy excitations. For J = 0, the analysis
in terms of local energy cost for adding a new particle,
developed in the absence of disorder, is still valid. The
di�culty is that � because of the random �uctuations
of the on-site energy � there is no way of classifying
the sites as attached to a well de�ned plateau. This im-
plies that a slightly di�erent realization of the disorder
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will produce a di�erent landscape of low energy excita-
tions. Nevertheless, only a handful of states are signi�-
cantly excited. In Fig. 9, the most signi�cant excitations
have been plotted. A noteworthy di�erence with the no
disorder case is that, although excitations are local in
nature, they are not single particle excitations. Each ex-
cited state and the ground state have similar occupation
and particle number variance at all sites, except a few
sites where the occupation is di�erent, and particle num-
ber �uctuations are bigger.
The analysis performed in the previous section may

also be done for the symmetric eigenstates. The re-
sults are analogous � peaks in the autocorrelation func-
tion graph split into several peaks corresponding to
symmetry-broken eigenstates of the unsymmetric system.

5. Conclusions

We have described how the excited states may arise
when evolving an ultracold gas in an optical potential
� as a result of going through a super�uid�insulator
quantum phase transition. In the absence of disorder,
the excitations are local, one or a few particles are mis-
placed with respect to the ground state. The excitations
appear only between edges of the Mott regions creating
long range correlations.
The wave packet is a sum of states di�ering from the

ground state by a single or a few particle elementary
excitations and therefore similar in nature. Most no-
tably in all presented states (in the Mott insulator re-
gion), all states have almost the same average occupa-
tion, very similar particle number variance. Still the wave
packet is not a single eigenstate but a quantum superpo-
sition. This fact leads to the rise of nonlocal correlations
throughout the sample. It may be directly observable
as an increased variance of nonlocal observables such as
number of particles in one half of the system. If one
measured the number or particles to the left of the mid-
dle site, the statistical distribution stemming from in-
dependent realizations of the experiment would have a
large number variance, much larger than the local par-
ticle number variance at the given site. This directly
follows from the symmetry-breaking description and the
presented data, as di�erent eigenstates building the wave
packet have di�erent number of particles in one half of
the system (jump of a particle from one half of the system
to the other) than in the other half.
Slight symmetry breaking allows to analyze con-

stituents of the symmetric eigenstates. It turns out that
excitations di�ering by a long range particle jump are
less probable, but not completely negligible.
A few questions arise. Firstly, we have considered only

the deep lattice regime. If the lattice was shallower, what
would be the nature of excitations present in the system?
Secondly many more excitations would be present if the
system was in the signi�cantly nonzero temperature �

how would it a�ect properties of the system such as the
mentioned long range coherence and its decoherence?
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