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Abstract. Recently, it has become apparent that when the interactions between
polar molecules in optical lattices become strong, the conventional description
using the extended Hubbard model has to be modified by additional terms, in
particular a density-dependent tunneling term. We investigate here the influence
of this term on the ground-state phase diagrams of the two-dimensional extended
Bose–Hubbard model. Using quantum Monte Carlo simulations, we investigate
the changes of the superfluid, supersolid and phase-separated parameter regions
in the phase diagram of the system. By studying the interplay of the density-
dependent hopping with the usual on-site interaction U and nearest-neighbor
repulsion V , we show that the ground-state phase diagrams differ significantly
from those expected from the standard extended Bose–Hubbard model.

6 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 15 (2013) 113041
1367-2630/13/113041+14$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/53111789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jakub.zakrzewski@uj.edu.pl
http://www.njp.org/
http://creativecommons.org/licenses/by/3.0


2

Contents

1. Introduction 2
2. The model 3

2.1. Considered observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Ground-state phase diagrams 6

3.1. Phase diagrams at vanishing density-dependent tunneling . . . . . . . . . . . . 6
3.2. Phase diagrams at finite density-dependent tunneling . . . . . . . . . . . . . . 8

4. Conclusions 12
Acknowledgments 13
References 13

1. Introduction

In the last decade, the physics of ultra-cold atoms in optical lattice potentials has undergone
extensive developments due to the extreme controllability and versatility of the realizable many-
body systems (for recent reviews see [1, 2]). The tight-binding description predicted in 1998 [3],
termed Bose–Hubbard model (BHM) for bosonic atoms with contact s-wave interactions, was
soon after verified via the experimental observation of the superfluid (SF)–(MI) transition [4].
For particles interacting via a long-range (e.g. dipole–dipole) potential, the original model has
to be modified, typically including a density–density interaction between different sites. The
simplest approximation, taking into account only the interaction between nearest neighbors, is
termed the extended BHM (EBHM). As compared to the BHM, the extended model allows
for the existence of novel quantum phases such as checkerboard solids, supersolid (SS)
phases [5–10], exotic Haldane insulators [11] and more.

Recently, however, it has been realized that even in the simpler case of contact s-wave
interactions, in certain parameter regimes, carefully performed tight-binding approximations
lead to an additional correlated tunneling term in the resulting microscopic description. This
term, known in the case of fermions as bond-charge contribution [12], is even more important
for bosons [13–16]. It is found that such tunneling terms, along with the effect of higher bands,
can provide an explanation [14, 17] for the unexpected shift in the MI–SF transition point for
Bose–Fermi [18, 19] and Bose–Bose mixtures [20] as well as shifts in absorption spectra for
bosons in optical lattices [15].

One may expect that similar bond-charge (or density-dependent tunneling) effects may also
play an important role in the presence of dipolar interactions. This assumption has been verified
by some of us [21] in a recent study, where it has been shown that the additional terms in the
Hamiltonian may destroy some insulating phases and may create novel pair-SF states. That
study [21] has been restricted to a one-dimensional (1D) model due to the numerical methods
used. Here, we use quantum Monte Carlo (QMC) methods to study softcore dipolar gases
trapped in two-dimensional (2D) square optical lattices, where we assume a tight confinement
in the remaining z direction (which is also the polarization direction of the dipoles). A similar
2D model, without the density-dependent tunneling terms, was analyzed before [8], providing
us with a benchmark against which we may test the importance of density-dependent tunneling.
In [8], an SS phase was observed in the EBHM at half filling. Such an SS is characterized
by the coexistence of SF and crystal-like density–density diagonal long-range order [5–10].
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Experimental evidence of this counter-intuitive quantum phase is still missing, since the claim
of an experimental realization of supersolidity in 4He [22, 23] could not be reproduced in later
experiments [24, 25]. As we shall see, in the present model, the sign of the additional tunneling
(or, more precisely, the relative sign between the standard tunneling and the density-dependent
one) can stabilize or destabilize the SS phase.

2. The model

The appropriate tight-binding model, for studying interacting dipolar bosons occupying the
lowest band in a lattice, reads [21]

H = − t
∑
〈i, j〉

(a†
i aj + h.c.) +

U

2

∑
i

ni(ni − 1) + V
∑
〈i, j〉

ni n j

− T
∑
〈i, j〉

(a†
i (ni + nj)aj + h.c.) + P

∑
〈i, j〉

(a†
i a†

i ajaj + h.c.) − µ
∑

i

ni , (1)

where a†
i (ai) is the creation (annihilation) operator of a boson at site i and ni is the number

operators; t is the regular hopping term; U the onsite repulsion; and µ the chemical potential.
We assume a system of dipolar bosons in a 2D square lattice with dipolar moments polarized
perpendicularly to the lattice, thus leading to dipole–dipole repulsion. Then, the present model
contains three terms that come from the dipolar interactions, the nearest-neighbor repulsion V ,
the density-dependent hopping T and the correlated pair tunneling P . We restrict here the range
of V to the nearest neighbors to allow for a direct comparison with the results of Sengupta
et al [8] and Sowiński et al [21]. Within the standard EBHM, both the T and P terms are
neglected. However, the analysis presented in [21] has shown that although V is typically an
order of magnitude larger than both T and P , the latter terms cannot be neglected in the presence
of strong dipolar interactions.

The four parameters U , V , T and P have the same physical origin, namely interactions,
and are therefore correlated. However, in the 2D model, changing the trapping frequency in the
direction perpendicular to the plane affects quite strongly only the on-site U term (for dipolar
as well as for the contact part of the interactions). Thus, we shall consider U as an independent
parameter. To facilitate a comparison with earlier works (e.g. [8]) that did not take T tunneling
into account, we span a similar parameter range for U , V and filling fractions. The values
of T , V and P are strongly correlated as they originate from nearest-neighbor scattering due
to long-range interactions. For a broad range of optical lattice depths, the parameters T and
V are typically related as V ≈ |10T |. The absolute value of P is almost another magnitude
smaller than T (compare figure 1 of [21]). Thus, for simplicity, we will set V = |10T | in the
following and neglect the P term altogether. This will allow us to study in depth the effects
due to density-dependent tunnelings. The previous study [21] has shown that there is a broad
tunability regarding the relationship of the two tunneling parameters T and t , allowing a regime
where the two hopping terms have opposite signs and even the exotic situation that T dominates
over t . For example, for weak trapping frequency along the polarization direction, t and T have
opposite signs and for strong trapping frequency t and T have the same signs. Thus, for possible
experimental realizations of polar bosons [26, 27], one can reach the two limits of bond-charge
tunneling by tuning the trapping potential along the polarization direction [21].
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Figure 1. The phase diagram in the ρ − V parameter space without density-
dependent tunneling term, T = 0, for (a) U = 20 and (b) U = 5. The energy
unit is t = 1. Panel (a) reproduces the results of [8]. The model contains various
phases. The red solid line indicates the CDW (CDW I) at half filling; other phases
present are the SF, SS and at unit filling either MI or another CDW (CDW II); PS
denotes phase separated regions. When the on-site interaction becomes weaker,
as shown in panel (b), the SS phase becomes larger and PS regions disappear at
fillings larger than 1/2.

Whether both the hopping terms are of the same or opposite signs has a major influence on
the phases that will appear in the system. Generally speaking, when both the hopping terms have
the same sign, one can expect an increase in the influence of the overall hopping. Otherwise,
if the signs are opposite, there will be a competition between the two terms. Therefore, the
influence of the additional density-dependent hopping can be expected to strongly affect the
phase diagram.

To form an intuition about our system, let us give a brief summary of the results from
the previous study [21] of a similar 1D system with both a density-dependent and a pair-
hopping term. In that study, exact diagonalization (system sizes between L = 8 and 16) and
the multiscale entanglement renormalization ansatz (system sizes up to L = 128) were used
to study the phase diagram at zero temperature. The results, when both T and P are set to
zero, show the existence of three phases. At weak interaction, there is an SF phase, while at
stronger dipolar strength, two charge density wave (CDW) phases appear. The CDW phases are
characterized by a periodic, crystal-like structure where occupied and empty sites alternate in a
checkerboard pattern. In the following, we denote cases where the populated sites are occupied
by a single atom (two atoms) as CDW I (II). In the 1D case of [21], the two observed CDW
phases are a CDW I phase at half filling with a modulation of | . . . 010101 . . .〉 and a CDW II
phase at unit filling with a modulation of | . . . 020202 . . .〉. Now, when the extra terms T and
P are incorporated into the Hamiltonian, besides an overall deformation of the phase diagram,
there appears also a novel pair-SF (PSF) phase. This more exotic phase is characterized by a
finite two-particle NN correlation function 8i =

∑
{ j}〈a

†
j a†

j aiai〉 and a smaller non-vanishing

one-particle correlation function φi =
∑

{ j}〈a
†
j ai〉. On the other hand, no SS phase has been

observed in [21]. In the present study of a 2D lattice, on the contrary, we do observe an SS
behavior, but we do not find any indications for the existence of a PSF phase.
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2.1. Considered observables

In the analysis of Hamiltonian (1), we employ the stochastic series expansion (SSE) code,
a QMC algorithm from the Algorithms and Libraries for Physics Simulations (ALPS)
project [28]. We mainly rely on three observables. First, we study the density, ρ = 〈ni〉, as
a function of the chemical potential. Plateaus in the corresponding graphs indicate insulating
phases, such as MI or CDW phases. The employed variant of QMC works in the grand-canonical
ensemble, i.e. at fixed chemical potential. Discontinuous jumps in the density as a function of
chemical potential signify regions of phase separation (PS) in the canonical phase diagrams.
Namely, when the filling is fixed to a value which is not stable at any chemical potential, the
system acquires the required filling only in the mean, by forming domain walls between two
phases that are thermodynamically stable.

To distinguish not only different insulating phases (MI, CDW I and CDW II) but also the
SF and the SS phases, we consider two other observables. These are the structure factor and the
SF stiffness, both of which we analyze as functions of density. The structure factor is defined as

S(Q) =

〈∣∣∣∣∣
N∑

i=1

ni eıQri

∣∣∣∣∣
2〉

/N 2. (2)

Here, N denotes the number of lattice sites and we focus on the wave vector Q = (π, π),
which corresponds to a checkerboard modulation pattern. This observable has a peak when the
particles are arranged in either of the CDW phases. This will help to distinguish the MI phase
from the CDW phase, which cannot be done from the density graphs alone. For example, when
a system is at unit filling, the structure factor is finite in the CDW II state, whereas it vanishes
in the usual MI state.

The other observable is the SF stiffness, which can be calculated from the winding numbers
of the QMC code. It is defined as

ρs =
〈W 2

〉

4β
, (3)

where W is the winding-number fluctuation of the world lines and β is the inverse temperature
(in this study β = 20). This value shows what per cent of the system is in an SF state. Taking SF
stiffness and structure factor together, we can also identify the SS phase. The SS phase occurs
when both SF stiffness and structure factor are non-zero. Note that since the PS regions do not
correspond to stable grand-canonical phases as computed in the SSE QMC code, we cannot
assign any values of observables for them. This is not necessary, however, since PS regions are
already unambiguously identified by jumps in plots of density against chemical potential.

From these three observables (density, structure factor and SF stiffness), we are now
able to distinguish the most prominent phases that we are looking for. These observables
cannot, however, identify PSF phases, the signature of which is, as mentioned previously, a
non-vanishing two-particle NN correlation function 8i . In its current version, the QMC code
provided in the ALPS library is not able to calculate these correlation functions. In order to
extract this observable, the code would have to be written with a two-headed worm, which could
then be analyzed in a similar way as the SF stiffness, but with the difference that the winding
numbers would represent the flowing of pairs instead of single particles [29]. Fortunately, one
can identify a dominant PSF order parameter using a different technique, namely by studying
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the density histograms of the QMC code. If these histograms show only even values of particles
instead of a uniform distribution, this means that the bosons always pair up, indicating PSF
behavior [29].

3. Ground-state phase diagrams

In this section, we present our QMC results for the ground-state phase diagram of
Hamiltonian (1). We focus on a 2D square lattice with linear system sizes ranging from L = 8
to 16 (where N = L × L). We observe a fast convergence of the results with L , similar to [8].
Therefore, the considered system sizes suffice, especially since we are interested not in the
precise determination of phase boundaries, but in the global qualitative changes in the phase
diagrams, which—as we will see—can be quite drastic. We present phase diagrams at two
different values of the on-site repulsion (U = 20 and 5) for varying density and T (and therefore
for varying V , since V = 10|T |). The two U values are chosen in such a way that we can
compare nearly hardcore behavior, achieved at U = 20, with softcore behavior, for U = 5. Up
to four bosons are allowed per site for both the cases, which seems sufficient for densities below
unit filling (we tested in some instances against maximal occupation of six bosons per site).
Further, at U = 20 we can compare our data with known results of the usual EBHM, which
was studied thoroughly in [8]. We compare phase diagrams obtained with and without density-
dependent tunnelings. For simplicity and ease of comparison to [8], we restrict our study to unit
filling or less. Furthermore, for a more detailed evaluation of these phase diagrams, we study a
few cuts at representative parameter values.

3.1. Phase diagrams at vanishing density-dependent tunneling

We begin our analysis with phase diagrams of the regular EBHM, illustrated in figure 1.
This provides an overview of the behavior of the considered systems under a more common
Hamiltonian, which does not have a density-dependent term T . We consider the case of strong
repulsion U = 20, discussed previously in [8], as well as softer interacting bosons with U = 5.

3.1.1. Phase diagram at strong on-site repulsion (U = 20). For ease of comparison and for
later reference, figure 1(a) reproduces the phase diagram of U = 20 that has been thoroughly
investigated in [8]. It is well known that for ρ < 1

2 , there exist only two distinct regions, the SF
phase and a PS region. For sufficiently low values of V , the system stays SF across the entire
density range until unit filling, where it becomes an MI state. At half filling, a CDW I phase
appears at a critical value of V , which in the present case lies around V = 2.5. A system in a
checkerboard phase (CDW I) can be doped by holes or particles. When it is doped with holes,
these create domain walls and cause the system to phase separate, preventing the appearance of
an SS phase. In the case of hardcore bosons, this behavior would be mirrored for ρ > 1

2 , due to
particle–hole symmetry. In the case of softcore bosons, such particle–hole symmetry can break
down. At sufficiently low V , a region of PS appears and the system does present a hardcore-
like behavior, but as the NN repulsion is increased, this PS region disappears. Since now the
particles can occupy either an empty or occupied site, it is no longer necessary for the domain
walls to form and the system can move into an SS state. Moreover, at a certain value of V , upon
increasing ρ the SS phase is followed by a region of PS, instead of going into an SF phase and
then becoming an MI. At unit filling, this PS region then changes to the CDW II phase, which
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Figure 2. Identification of different phases as exemplified for U = 20 and
V = 3.0 based on the density in (a) as well as the structure factor (blue circles)
and the SF stiffness (red squares) shown versus density in (b). Plateaus in ρ as
a function of µ indicate incompressible crystal phases. Jumps denote PS (the
densities that are jumped over do not correspond to thermodynamically stable
phases). Moreover, a finite SF stiffness characterizes an SF phase and a finite
structure factor a CDW order. When both are finite, the system is SS.

is characterized by a checkerboard pattern consisting of an alternation of doubly filled sites and
empty ones.

Figure 2 shows, for a fixed V = 3, the observables described in section 2.1 that we used
to determine the various phases. The boson density as a function of the chemical potential
displays clear plateaus, corresponding to gapped insulating phases (figure 2(a)). As mentioned
above, jumps in figure 2(a) correspond to PS regions in figure 1. The structure factor and the
SF stiffness are shown in figure 2(b). For low chemical potential (density), the system is in
an SF state with non-zero SF stiffness and vanishing structure factor. At ρ ≈ 0.43, the system
phase separates and there are no values for these observables. At half filling, when the system
moves to CDW I phase, the structure factor becomes finite. There is a small region, roughly
around 0.5 < ρ < 0.51, where the system is in an SS phase—here both the SF stiffness and the
structure factor are non-zero. This phase is followed by a second region of PS that extends up
to ρ ≈ 0.61. At higher densities, an SF phase is observed up to unit filling, where an MI state
follows, as revealed by vanishing SF density and structure factor.

3.1.2. Phase diagram at moderate on-site repulsion (U = 5). We now consider U = 5, a case
of weaker repulsion that has not been studied earlier. For the moment, we still retain T = 0. The
phase diagram figure 1(b) seems a bit simpler than for U = 20. Importantly, the particle-doped
side now has to deal with much ‘softer’ bosons allowing for multiple occupancy on any given
site (in the numerical calculations we allow for up to four bosons per site, which is sufficient
for lattice fillings below unity). The hole-doped side is much less affected since the on-site
repulsion has a lesser influence on lower densities. For weak NN repulsion V , the system stays
SF across the entire range of densities from empty to unit filling and then goes into the MI state.
At V ≈ 2.3 up to 3.1, the system goes directly from an SF phase into an SS phase, which ends at
a CDW II phase at unit filling. At larger V , a PS region appears. The biggest difference between
U = 20 and 5 cases appears for higher values of V , where the PS region at the particle-doped
side disappears and the SS phase occupies the entire region between the CDW I at half filling
and the CDW II at unit filling.
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Figure 3. Top row: density versus chemical potential for U = 5 and different
values of V : V = 3.0, 4.5 and 6.0 (left to right). The bottom row shows the
corresponding structure factor (blue circles) and the SF stiffness (red squares).

The different transitions are revealed by slices through the phase diagram at fixed V
(exemplified for a few values in figure 3). At V = 3.0, the density is strictly increasing across
the entire range of µ (figure 3(a)). Notice, however, a change of the slope around µ/U = 4,
corresponding to ρ = 0.6. As seen in figure 3(d), the structure factor starts to rise in a similar
parameter range, namely around ρ = 0.65. At the same time, the SF stiffness only has a peak
at ρ = 0.65, but remains finite for all values of µ considered. Therefore, the increase of the
structure factor is a clear sign of a second-order transition from an SF to an SS. Also, since the
structure factor does not drop back to zero at ρ = 1, the unit-filling phase will be a CDW II and
not an MI.

The next slice is taken at V = 4.5, where the state changes from SF to PS to SS without
ever settling into the CDW I phase at half filling. In the density graph, figure 3(b), we can see
a small jump that bypasses ρ =

1
2 . This explains why the CDW I phase does not appear at this

value of V . The SF at small ρ is identified by a non-zero SF fraction and vanishing structure
factor (figure 3(e)). This phase is followed by the PS region from ρ ≈ 0.435 to 0.51. At higher
densities, an SS state appears as characterized by non-zero structure factor and SF stiffness.
Finally, the system settles into the CDW II state at unit filling.

The last slice at V = 6.0 is similar to the previous one at V = 4.5 with one major difference,
the appearance of the CDW I phase at half filling. As before, we can see a jump (this time
slightly larger) in the density, (figure 3(c)), but now it is followed by a plateau that signifies the
CDW I phase. In figure 3(f), we see again the three distinct phases, SF up to ρ ≈ 0.35, then a
region of PS up to ρ = 0.5 and from half filling to unit filling there is the SS phase, once again
ending in the CDW II state.

3.2. Phase diagrams at finite density-dependent tunneling

As we have seen in the previous section, the phase diagram of the EBHM at vanishing T displays
a large variety of phases: MI, CDW, SF and SS. Additionally, there are various regions of PS,
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Figure 4. The phase diagrams for U = 20 at finite T (with V = 10|T | and t = 1
the unit of energy). (a) If t and T are of the same sign, the relative importance
of interactions decreases, leading to the disappearance of PS phases at greater-
than-half filling. Compared to the T = 0 cases presented in figure 1, this phase
diagram resembles more the case U = 5 than U = 20. (b) If T and t compete due
to opposite signs, the relative importance of interactions is enhanced, increasing
the PS regions. In fact, the two separate regions of PS in figure 1(b) increase to
the point of overlapping.

some of which (the ones at filling larger than 1/2) disappear with decreasing on-site repulsion
of the bosons. In this section, we study how this phase diagram of the usual EBHM is changed
by the density-dependent hopping.

3.2.1. Phase diagram at strong on-site repulsion. The first case we study is U = 20 when the
two tunneling amplitudes t and T have the same sign. Comparison of figure 4 with figure 2
shows that in the presence of density-dependent tunneling, the PS region at low V values has
disappeared and there is no PS region between the SS and CDW II phases. One can explain
this behavior by the increase in the total hopping due to the additional tunneling term T . Thus,
the on-site repulsion U behaves as if it were effectively rescaled to a smaller value. Similar
arguments explain the shift of the point where the ρ =

1
2 plateau first appears and, therefore,

the CDW I phase moves from V ≈ 2.5 (with T = 0, figure 2) to V ≈ 3.5 (figure 4). As a
consequence, the phase diagram at U = 20, with t and T of the same sign, looks very similar to
the one at U = 5 with vanishing T .

The behavior in the U = 20 phase diagram becomes more interesting when the two
tunneling terms compete due to opposite signs, T < 0. The phase diagram is presented in
figure 4(b). The CDW I phase now starts at a lower value of |T | than in the previously discussed
case. Similarly, the region of PS at the lower values of |T | (and thus V ) now becomes much
larger. This shows that the system has a hardcore behavior for a larger range of parameters.
Additionally, the SS region diminishes and finally disappears as V gets larger. These findings
can be explained through the competition between t and T , which decreases the effective,
overall tunneling strength. This decrease can alternatively be seen as an effective relative
increase of the interaction parameters U and V . As a result, the hardcore behavior of the system
becomes more pronounced and the PS regions become more important.
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Figure 5. Density graphs of U = 20 for T = −0.3, −0.5 and −0.6 (left to right).
Structure factor (blue circles) and SF stiffness (red squares) graphs for U = 20
at T = 0.3, 0.5 and 0.6 (left to right).

The observed phases may again be analyzed in detail via the cuts at fixed T (and therefore
V ) presented in figure 5. The first slice we present is for T = −0.3 (V = 3.0). As seen in
figure 5(a), the plateau at half filling—a CDW I, as indicated by the finite structure factor,
figure 5(d)—is surrounded by discontinuities in the density, thus implying regions of PS. These
are surrounded by SF phases, with an MI appearing at unit filling.

The next slice cuts through the phase diagram at T = −0.52 (V = 5.2) and this time shows
also a region of the SS phase for densities just above half filling (figure 5(e)). This SS may also
be observed in the density plot, (figure 5(b)); above half filling, there is a small interval of steady
increase before a discontinuity occurs around ρ = 0.65. After this PS region, there is a small
region where the system becomes SF before once again phase separating. At unit filling, the
system finally transitions into a CDW II phase. Below half filling, another jump in the density
indicates yet another PS.

The final cut is taken at T = −0.6 (V = 6.0). Again, at low densities the system starts in
an SF phase and then jumps through a region of PS to reach the CDW I phase at half filling.
For higher densities, the system first enters an SS phase and around ρ = 0.72 a transition to PS
occurs. This time, the system ends in the CDW II phase when unit filling is reached.

3.2.2. Moderate on-site repulsion (U = 5). In the previous section, we saw that the additional
density-dependent tunneling term T can increase or decrease the effective importance of the
interactions U and V , depending on whether it competes with or supports the single-particle
tunneling t . In this section, we study this effect for weaker on-site interaction U = 5. The
corresponding phase diagrams are presented in figure 6.

The positive T diagram reveals that the CDW I phase, present for T = 0, disappears
completely (figure 6(a)). This means that at no point does there exist a plateau in the density
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Figure 6. Phase diagrams for U = 5 and finite T . (a) If T and t have the same
sign, the relative strength of tunneling is strongly increased with respect to the
interactions. As a consequence, the CDW I phase has disappeared completely
from this phase diagram. (b) When T and t are of opposite signs, the role of
interactions is enhanced, leading to increased PS regions and again the CDW I
phase is present.

graphs at ρ =
1
2 . Instead, a discontinuity bypasses half filling altogether. The rest of the behavior

is rather similar to the system without the density-dependent term. There are still only three
phases below unit filling, i.e. the SF phase at low densities and low T (and therefore at low V ),
the PS region near half filling for larger T and finally the SS phase for still higher T and larger
densities. As can be expected, when the SF phase persists through the entire range of densities,
the system ends in an MI state at unit filling. Instead, when the system at fixed T passes through
the SS state, the final phase at unit filling is, as before, the CDW II phase.

Consider now the phase diagram of a system with U = 5 when the tunneling terms have
opposite signs (figure 6(b)). Here, contrary to the case of positive T , the CDW I exists at half
filling. This indicates that the relative importance of the effective total tunneling is suppressed
for T < 0. Moreover, now a second region of PS appears above half filling. As a result, for
T .−0.8 there is no stable phase with a density between the CDW I and the CDW II.

These observations about the phase diagram are supported by an analysis of cuts at a few
chosen values of T (and thus V ); see figure 7. At T = −0.3 (V = 3.0), one observes a smooth
density increase all the way until unit filling, where a plateau appears (figure 7(a)). The structure
factor starts increasing near half filling, indicating the transition from the SF to the SS phase
(figure 7(d)); at unit filling, the system lands in the CDW II phase.

A cut at the slightly higher absolute value T = −0.4 (V = 4.0) reveals a plateau at
half filling (CDW I) and a second one at unit filling (CDW II). Comparing the density plot
(figure 7(b)) with those of SF stiffness and structure factor (figure 7(e)), we see that upon
increasing the chemical potential, the SF phase appears at low densities, followed by the PS
which transitions into the CDW I at half filling. For higher densities, there is a region of SS,
where both the structure factor and the SF stiffness are non-zero. Finally, there is the jump
caused by the PS region directly to the CDW II phase at unit filling.

Let us finally consider stronger density-dependent tunneling T and inter-site repulsion V ,
namely T = −0.8 (V = 8.0). Below half filling, the density gradually increases up to the value

New Journal of Physics 15 (2013) 113041 (http://www.njp.org/)

http://www.njp.org/


12

Figure 7. Top row: density graphs for U = 5 and T = −0.3, −0.4 and −0.8 (left
to right). The bottom row shows the structure factor (blue circles) and the SF
stiffness (red squares) for the same parameters.

of ρ ≈ 0.27 and then jumps to the CDW I phase (figure 7(c)). After this phase, the density
behaves step-like, jumping directly into the CDW II phase at ρ = 1. This behavior is seen
clearly in the data presented in figure 7(f), where the SF phase for low densities is followed
by two distinct regions of PS. These regions are only interrupted by the CDW I phase at half
filling and the CDW II phase at full filling.

As these results show, for the lower on-site interaction U = 5, the density-dependent term
T does not change much the overall behavior of the phase diagram if it has the same sign as the
single-particle tunneling t . Instead, if the two tunneling terms have opposite signs, a large part of
the SS phase disappears into a phase-separated region, due to the increased relative importance
of the interaction terms.

4. Conclusions

In summary, we have studied the EBHM on a square lattice with additional terms coming from
density-dependent tunneling. Taking these terms into account is relevant for experiments on
ultracold dipolar molecules in optical lattices. The competition between the density-dependent
tunneling, a standard single-particle hopping, finite on-site repulsion and nearest-neighbor
repulsion gives rise to a rich phase diagram of the system.

Specifically, as has been found previously [8], at large on-site repulsion and without
density-dependent tunneling, there are MI, CDW, SF and SS phases, as well as phase-separated
parameter regions. Depending on the parameter strengths, this phase diagram undergoes
considerable deformations. If we either reduce on-site repulsion or introduce density-dependent
tunnelings that have the same sign as the single-particle hopping, some of the phase-separated
regions disappear. Remarkably, if we introduce both of these effects simultaneously, the CDW
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at half filling also disappears. In this case of same-sign tunnelings, both hopping processes act
constructively, producing an effective larger tunneling, or respectively, weaker interactions.

We have also studied the phase diagram when the density-dependent tunneling and single-
particle hopping compete due to their signs being opposite. Due to this competition, the
relative importance of interaction terms is enhanced. In this case, the most striking effect is
the disappearance of the SS into a phase-separated region. This occurs on the particle-doped
side of the half filling CDW and at strong V .

Besides a theoretical interest in understanding how density-dependent tunneling terms
change phase diagrams of EBHMs, our findings will help determine where one may expect
exotic phases in experiments with ultracold dipolar molecules in optical lattices.
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