
Schedae Informaticae Vol. 21 (2012): 27–40

doi: 10.4467/20838476SI.12.002.0812

Existence and Multiplicity of Solutions
for Noncoercive Neumann Problems

with p-Laplacian∗
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Abstract. We consider a nonlinear Neumann elliptic equation driven by

the p-Laplacian and a Carathéodory perturbation. The energy functional of

the problem need not be coercive. Using variational methods we prove an

existence theorem and a multiplicity theorem, producing two nontrivial smooth

solutions. Our formulation incorporates strongly resonant equations.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. We study the following
nonlinear Neumann problem:

−∆pu(z) = f
(
z, u(z)

)
a.e. in Ω,

∂u

∂n
= 0 on ∂Ω.

(1)
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Here ∆p denotes the p-Laplace differential operator, defined by

∆pu(z) = div
(
‖∇u(z)‖p−2∇u(z)

)
∀u ∈W 1,p(Ω)

(with 1 < p < +∞). Also, f(z, ζ) is a Carathéodory function, i.e., for all ζ ∈ R,
the function z 7−→ f(z, ζ) is measurable and for almost all z ∈ Ω, the function
ζ 7−→ f(z, ζ) is continuous.

The aim of this work is to prove existence and multiplicity results for problem
(1), when the energy functional of the problem is noncoercive. In fact, our hypothe-
ses on the reaction f incorporate in our framework equations which are strongly
resonant at infinity. Such problems are of special interest, since they exhibit a
partial lack of compactness. Recently, there have been some existence and multi-
plicity results for Neumann problems driven by the p-Laplacian. We mention the
works of Anello [1], Filippakis–Gasiński–Papageorgiou [3], Motreanu–Papageorgiou
[6], O’Regan–Papageorgiou [7], Wu–Tan [8]. In Anello [1] and Wu–Tan [8], the
key hypothesis is that p > N (low dimension problems). This condition implies
that W 1,p(Ω) is embedded compactly in C(Ω) (Sobolev embedding theorem) and
this is their key mathematical tool. In Filippakis–Gasiński–Papageorgiou [3] and
Motreanu–Papageorgiou [6], the potential function is nonsmooth (hemivariational
inequality) and the energy function is coercive. Finally in O’Regan–Papageorgiou
[7], the energy function is bounded below but need not be coercive. In fact, the
potential function

F (t, ζ) =

ζ∫
0

f(z, s) ds

is unbounded below as ζ → ±∞. The authors prove a multiplicity theorem using
the notion of homological linking.

2. Mathematical background

Let X be a Banach space and let X∗ be its topological dual. In what follows, by
〈·, ·〉 we denote the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X) and c ∈ R.
We say that ϕ satisfies the Palais–Smale condition at level c ∈ R, if the following is
true:

Every sequence {xn}n>1 ⊆ X, such that

ϕ(xn) −→ c and ϕ′(xn) −→ 0 inX∗,

admits a strongly convergent subsequence.

The following result is an easy consequence of the above definition (see Gasiński–
Papageorgiou [4, p. 650]).
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THEOREM 1. If ϕ ∈ C1(X) is bounded below, c = inf
X
ϕ and ϕ satisfies the

Palais–Smale condition at level c, then there exists x0 ∈ X, such that c = ϕ(x0), i.e.
x0 is a critical point of ϕ.

For ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc =
{
x ∈ X : ϕ(x) 6 c

}
,

Kϕ =
{
x ∈ X : ϕ′(x) = 0

}
,

Kc
ϕ =

{
x ∈ Kϕ : ϕ(x) = c

}
.

The next result is a basic tool in the minimax theorems of the critical point theory
and it is known as the “second deformation theorem” (see Gasiński–Papageorgiou
[4, p. 628]).

THEOREM 2. If ϕ ∈ C1(X), a ∈ R, a < b 6 +∞, ϕ satisfies the Palais–
Smale condition for every c ∈ [a, b), ϕ has no critical values in (a, b) and ϕ−1({a})
contains at most a finite number of critical points of ϕ, then there exists a homotopy
h : [0, 1]× (ϕb \Kb

ϕ) −→ ϕb, such that

(a) h
(
1, ϕb \Kb

ϕ

)
⊆ ϕa;

(b) h(t, x) = x for all t ∈ [0, 1], all x ∈ ϕa;
(c) ϕ

(
h(t, x)

)
6 ϕ

(
h(s, x)

)
for all t, s ∈ [0, 1], s 6 t, all x ∈ ϕb \Kb

ϕ.

Let A : W 1,p(Ω) −→W 1,p(Ω)∗ be the nonlinear map, defined by

〈
A(u), v

〉
=

∫
Ω

‖∇u‖p−2(∇u,∇v)RN dz ∀u, v ∈W 1,p(Ω). (2)

From Gasiński–Papageorgiou [4, p. 746], we have

PROPOSITION 3. The nonlinear map A : W 1,p(Ω) −→W 1,p(Ω)∗ defined by (2)
is bounded, continuous, strictly monotone, hence maximal monotone too and of type
(S)+, i.e. if

un −→ u weakly in W 1,p(Ω)

and

lim sup
n→+∞

〈
A(un), un − u

〉
6 0,

then un −→ u in W 1,p(Ω).

In what follows by ‖ · ‖ we denote the norm of W 1,p(Ω), i.e.

‖u‖ =
(
‖u‖pp + ‖∇u‖pp

) 1
p ∀u ∈W 1,p(Ω).

Also, if g : Ω × R −→ R is a measurable function (for example a Carathéodory
function), then

Ng(u)(·) = g
(
·, u(·)

)
∀u ∈W 1,p(Ω).

Finally, by | · |N we denote the Lebesgue measure on RN .
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3. Existence theorem

The existence theorem will be obtained for a more general version of problem than
(1). Namely, let h ∈ L∞(Ω) be such that∫

Ω

h(z) dz = 0.

We consider the following nonlinear Neumann problem:
−∆pu(z) = f

(
z, u(z)

)
+ h(z) in Ω,

∂u

∂n
= 0 on ∂Ω.

(3)

We work with the Sobolev space W 1,p(Ω) and consider the following direct sum
decomposition of this space

W 1,p(Ω) = R⊕ V,

where

V =
{
u ∈W 1,p(Ω) :

∫
Ω

u dz = 0
}
.

Hence, every u ∈W 1,p(Ω) admits a unique decomposition

u = u+ û, with u ∈ R and û ∈ V.

Recall that the elements of V satisfy

‖û‖p 6 c0(N, p)‖∇û‖p ∀û ∈ V, (4)

for some c0(N, p) > 0 (this is the so called Poincaré–Wirtinger inequality; see
Gasiński–Papageorgiou [4, p. 841]). In particular, (4) implies that

û 7−→ ‖∇û‖p
is an equivalent norm on V .

For h ∈ L∞(Ω) with ∫
Ω

h(z) dz = 0,

we consider the following auxiliary Neumann problem:
−∆pu(z) = h(z) in Ω,

∂u

∂n
= 0 on ∂Ω.

(5)

Let ψ : V −→ R be the C1-functional, defined by

ψ(û) =
1

p
‖∇û‖pp −

∫
Ω

h(z)û(z) dz ∀û ∈ V.
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PROPOSITION 4. Problem (5) has a unique solution û0 ∈ V ∩ C1(Ω), which is
the unique minimizer of ψ.

Proof. By virtue of the Poincaré–Wirtinger inequality (see (4)), we see that ψ is
coercive. Also, using the Sobolev embedding theorem, we see easily that ψ is se-
quentially weakly lower semicontinuous. Hence, by the Weierstrass theorem, we can
find û0 ∈ V , such that

ψ(û0) = inf
{
ψ(û) : û ∈ V

}
,

so

ψ′(û0) = 0 in V ∗

and thus 〈
A(û0), v

〉
=

∫
Ω

hv dz ∀v ∈ V. (6)

Let

v(z) = y(z)− 1

|Ω|N

∫
Ω

y dz with y ∈W 1,p(Ω).

Then v ∈ V and from (6), we have

〈
A(û0), y

〉
=

∫
Ω

hy dz

(since
∫
Ω

h dz = 0), so

A(û0) = h in W 1,p(Ω)∗

(since y ∈W 1,p(Ω) is arbitrary) and thus
−∆pû0(z) = h(z) a.e. in Ω,

∂û0

∂n
= 0 on ∂Ω.

Nonlinear regularity theory (see Lieberman [5]) implies that

û0 ∈ V ∩ C1(Ω).

The uniqueness of û0 follows from the strict monotonicity of A (see Proposition
3).

Now let us introduce our hypotheses on the reaction f :

H : f : Ω×R −→ R is a Carathéodory function, such that f(z, 0) = 0 for almost all
z ∈ Ω and
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(i) we have ∣∣f(z, ζ)
∣∣ 6 a(z) + c|ζ|r−1 for almost all z ∈ Ω, all ζ ∈ R,

with a ∈ L∞(Ω)+, c > 0, p < r < p∗, where

p∗ =


Np

N − p
if p < N,

+∞ if p > N ;

(ii) if

F (z, ζ) =

ζ∫
0

f(z, s) ds,

then
F (z, ζ) 6 ξ(z) for almost all z ∈ Ω, all ζ ∈ R,

with ξ ∈ L1(Ω);

(iii) there exists c0 ∈ R \ {0}, such that∫
Ω

F (z, c0) dz > 0.

EXAMPLE 5. The following function satisfies hypotheses H (for the sake of sim-
plicity we drop the z-dependence):

f(ζ) =


|ζ|p−2ζ if |ζ| 6 1,

− ζ

|ζ|p+2
+

4ζ

(1 + ζ2)|ζ|
if |ζ| > 1.

In this case the potential function F is given by

F (ζ) =


1

p
|ζ|p if |ζ| 6 1,

1

p|ζ|p
+ 4 arctan |ζ| − π if |ζ| > 1.

Let ϕ : W 1,p(Ω) −→ R be the energy functional for problem (3), given by

ϕ(u) =
1

p
‖∇u‖pp −

∫
Ω

F
(
z, u(z)

)
dz −

∫
Ω

h(z)u(z) dz ∀u ∈W 1,p(Ω).

Evidently ϕ ∈ C1
(
W 1,p(Ω)

)
. Recall that for every u ∈W 1,p(Ω), we have in a unique

way
u = u+ û with u ∈ R, û ∈ V.
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So, we can write

ϕ(u) = ψ(û)−
∫
Ω

F
(
z, u(z)

)
dz ∀u ∈W 1,p(Ω)

(recall that
∫
Ω

h dz = 0).

Hypotheses H incorporate in our framework, problems which are strongly reso-
nant at infinity. It is well known that such problem exhibit a partial lack of compact-
ness (see Bartolo–Benci–Fortunato [2]). This is reflected in the next proposition. In
what follows û0 ∈ V ∩ C1(Ω) is the unique solution of problem (5), established in
Proposition 4. Also

β =

∫
Ω

lim sup
|ζ|→+∞

F (z, ζ) dz.

By virtue of hypothesis H(ii), β ∈ [−∞,+∞).

PROPOSITION 6. If hypotheses H hold and

c < ψ(û0)− β = ξ∗ ∈ (−∞,+∞],

then ϕ satisfies the Palais–Smale condition at level c.

Proof. Let {un}n>1 ⊆W 1,p(Ω) be a sequence, such that

ϕ(un) −→ c < ξ∗ (7)

and
ϕ′(un) −→ 0 in W 1,p(Ω)∗. (8)

Recall that
un = un + ûn ∀n > 1,

with un ∈ R, ûn ∈ V . On account of (7), we have

ϕ(un) 6 M1 ∀n > 1,

for some M1 > 0, so

M1 >
1

p
‖∇ûn‖pp −

∫
Ω

F (z, un) dz −
∫
Ω

hûn dz

>
1

p
‖∇ûn‖pp − c1‖∇ûn‖p − c2 ∀n > 1, (9)

for some c1, c2 > 0. Here we have used hypothesis H(ii) and the Poincaré–Wirtinger
inequality (see (4)). Since p > 1, from (9), we infer that

the sequence {ûn}n>1 ⊆W 1,p(Ω) is bounded. (10)

So, by passing to a suitable subsequence if necessary, we may assume that

ûn −→ û weakly in W 1,p(Ω), (11)

ûn −→ û in Lp(Ω), (12)

ûn(z) −→ û(z) for almost all z ∈ Ω (13)
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and ∣∣ûn(z)
∣∣ 6 η̂(z) for almost all z ∈ Ω, all n > 1,

with η̂ ∈ Lp(Ω).

Claim. The sequence {un}n>1 ⊆W 1,p(Ω) is bounded.

Arguing by contradiction and passing to subsequence if necessary, we may sup-
pose that

‖un‖ −→ +∞.
Since

‖un‖ 6 ‖un‖+ ‖ûn‖ ∀n > 1,

from (10), it follows that |un| −→ +∞ (recall that {un}n>1 ⊆ R). We have∣∣un(z)
∣∣ > |un| −

∣∣ûn(z)
∣∣ > |un| − η̂(z) for almost all z ∈ Ω, all n > 1

(see (11)), so ∣∣un(z)
∣∣ −→ +∞ for almost all z ∈ Ω.

Since û0 ∈ V is the minimizer of ψ (see Proposition 4), we have

ϕ(un) = ψ(ûn)−
∫
Ω

F
(
z, un(z)

)
> ψ(û0)−

∫
Ω

F
(
z, un(z)

)
dz.

From (7) and the Fatou lemma (see hypothesis H(ii)), we have

ξ∗ > c > ψ(û0)−
∫
Ω

lim sup
n→+∞

F (z, un) dz = ψ(û0)− β = ξ∗,

a contradiction. This proves the Claim.

By virtue of the Claim, passing to a subsequence if necessary, we may assume
that

un −→ u weakly in W 1,p(Ω), (14)

un −→ u in Lr(Ω). (15)

From (8), we have ∣∣〈ϕ′(un), y
〉∣∣ 6 εn‖y‖ ∀y ∈W 1,p(Ω),

with εn ↘ 0, so∣∣∣∣〈A(un), y
〉
−
∫
Ω

f(z, un)y dz −
∫
Ω

hy dz

∣∣∣∣ 6 εn‖y‖ ∀n > 1.

We choose y = un − u ∈W 1,p(Ω). Then∣∣∣∣〈A(un), un − u
〉
−
∫
Ω

f(z, un)(un − u) dz −
∫
Ω

h(un − u) dz)

∣∣∣∣
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≤ εn‖un − u‖ ∀n > 1. (16)

From (14), we have∫
Ω

f(z, un)(un − u) dz −→ 0 and

∫
Ω

h(un − u) dz −→ 0.

Therefore, if in (16) we pass to the limit as n→ +∞, then

lim
n→+∞

〈
A(un), un − u

〉
= 0,

so
un −→ u in W 1,p(Ω)

(see Proposition 3) and so ϕ satisfies the Palais–Smale condition at any level c <
ξ∗.

Using this proposition, we can have an existence theorem for problem (1).

THEOREM 7. If hypotheses H hold and

β <

∫
Ω

F (z, û0) dz,

then problem (3) admits a nontrivial solution u∗ ∈ C1(Ω).

Proof. From Proposition 4 and hypothesis H(ii), we have

ϕ(u) = ψ(û)−
∫
Ω

F (z, u) dz > ψ(û0)− ‖ξ‖1 ∀u ∈W 1,p(Ω),

so ϕ is bounded below.
Let

mϕ = inf
{
ϕ(u) : u ∈W 1,p(Ω)

}
> −∞.

Then

−∞ < mϕ 6 ϕ(û0) = ψ(û0)−
∫
Ω

F (z, û0) dz < ψ(û0)− β,

so ϕ satisfies the Palais–Smale condition at level mϕ (see Proposition 6).
Theorem 1 implies that we can find u∗ ∈W 1,p(Ω), such that

ϕ(u∗) = mϕ 6 ϕ(c0) < 0 = ϕ(0)

(see hypothesis H(iii)), so
u∗ 6= 0.

Also, we have
ϕ′(u∗) = 0,

so
A(u∗) = Nf (u∗) + h

and thus u∗ ∈ C1(Ω) (see (7)) is a nontrivial solution of (3).

REMARK 8. A careful inspection of the above proof, reveals that hypothesis H(iii)
is needed only if h = 0, to guarantee the nontriviality of u∗.
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4. Multiplicity theorem

In this section we prove a multiplicity theorem for problem (1) (i.e., now h = 0).
For this purpose, we strengthen the hypotheses on f as follows:

H ′: f : Ω×R −→ R is a Carathéodory function, such that f(z, 0) = 0 for almost all
z ∈ Ω, hypotheses H ′(i)− (iii) are the same as H(i)− (iii) and

(iv) we have

β =

∫
Ω

lim sup
|ζ|→+∞

F (z, ζ) < 0

and there exists ϑ ∈ L∞(Ω)+, ϑ 6= 0, such that

ϑ(z) 6 lim inf
ζ→0

F (z, ζ)

|ζ|p
uniformly for almost all z ∈ Ω;

(v) we have

F (z, ζ) 6
λ̂1

p
|ζ|p for almost all z ∈ Ω, all ζ ∈ R,

with λ̂1 > 0 being the first nonzero eigenvalue of the negative Neumann p-
Laplacian.

EXAMPLE 9. The following function satisfies hypotheses H ′ (as before, for the
sake of simplicity, we drop the z-dependence):

f(ζ) =


λ̂1|ζ|p−2ζ if |ζ| 6 1,

(λ̂1 + 1)
ζ

|ζ|p+2
− |ζ|r−2ζ if |ζ| > 1,

where p < r < p∗. In this case the potential function F is given by

F (ζ) =


λ̂1

p
|ζ|p if |ζ| 6 1,

λ̂1 + 1

p

1

|ζ|p
− 1

r
|ζ|r − r − p

rp
if |ζ| > 1.

Now the energy functional ϕ̂ : W 1,p(Ω) −→ R is given by

ϕ̂(u) =
1

p
‖∇u‖pp −

∫
Ω

F
(
z, u(z)

)
dz ∀u ∈W 1,p(Ω).

Evidently ϕ̂ ∈ C1
(
W 1,p(Ω)

)
.
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THEOREM 10. If hypotheses H ′ hold, then problem (1) has at least two nontrivial
smooth solutions u∗, v∗ ∈ C1(Ω).

Proof. Since h = 0, we have
û0 = 0.

Therefore ∫
Ω

F
(
z, û0(z)

)
dz = 0.

Since by hypothesis H ′(iv), β < 0, we can apply Theorem 7 and have one nontrivial
smooth solution u∗ ∈ C1(Ω).

By virtue of hypothesis H ′(iv), for a given ε > 0 we can find δ = δ(ε) > 0, such
that

F (z, ζ) >
(
ϑ(z)− ε

)
|ζ|p for almost all z ∈ Ω, all |ζ| 6 δ.

If ĉ ∈ [−δ, δ], then

ϕ(ĉ) = −
∫
Ω

F (z, ĉ) dz 6 |ĉ|p
(
ε|Ω|N −

∫
Ω

ϑ dz
)
.

Choosing ε ∈
(
0, 1
|Ω|N

∫
Ω

ϑ dz
)
, we see that ϕ(ĉ) < 0 and so

max
{
ϕ(v) : v ∈ BR ∩ R

}
= µR < 0 ∀R ∈

(
0, δ|Ω|

1
p

N

)
, (17)

where
BR =

{
u ∈W 1,p(Ω) : ‖u‖ 6 R

}
.

We consider the set

C(p) =

{
u ∈W 1,p(Ω) :

∫
Ω

∣∣u(z)
∣∣p−2

u(z) dz = 0

}
.

Then for every u ∈ C(p), we have

ϕ(u) >
1

p
‖∇u‖pp −

λ̂1

p
‖u‖pp

(see H ′(v)), so
inf
C(p)

ϕ = 0 (18)

(see Gasiński–Papageorgiou [4]).

Let us fix r ∈
(
0, δ|Ω|

1
p

N

)
. Let

Γ =
{
γ ∈ C

(
Br ∩ R, W 1,p(Ω)

)
: γ|

∂Br∩R
= id|

∂Br∩R

}
and define

ĉr = inf
γ∈Γ

max
v∈Br∩R

ϕ
(
γ(v)

)
. (19)
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Note that (
∂Br ∩ R

)
∩ C(p) = ∅.

Also, let γ ∈ Γ and define

σ(ξ) =

∫
Ω

∣∣γ(ξ)
∣∣p−2

γ(ξ) dz ∀ξ ∈ Br ∩ R.

Then

∂Br ∩ R =
{
± r0 = ±r|Ω|

1
p

N

}
and so

σ(−r0) < 0 < σ(r0).

By virtue of the Bolzano theorem, we can find ξ̂ ∈ Br ∩ R, such that

σ(ξ̂) =

∫
Ω

∣∣γ(ξ̂)
∣∣p−2

γ(ξ̂) dz = 0,

so
γ(ξ̂) ∈ C(p),

thus
γ
(
Br ∩ R

)
∩ C(p) 6= ∅

and finally
cr > 0 (20)

(see (18) and (19)). Suppose that {0, u∗} are the only critical points of ϕ. We set

a = inf ϕ = ϕ(u∗) < 0 and b = ϕ(0) = 0.

By virtue of Proposition 6 and hypothesis H ′(iv), we see that ϕ satisfies the Palais–
Smale condition for every level c ∈ [a, b]. Also,

ϕ−1({a}) = {u∗}.

Therefore, we can apply the second deformation lemma (see Theorem 2) and have
a homotopy

ĥ : [0, 1]× (ϕb \Kb
ϕ) −→ ϕb,

such that
ĥ
(
1, ϕb \Kb

ϕ

)
⊆ ϕa = {u∗} (21)

and
ϕ
(
ĥ(t, u)

)
6 ϕ

(
ĥ(s, u)

)
∀s, t ∈ [0, 1], s 6 t, all u ∈ ϕb \Kb

ϕ. (22)

We consider the map
γ0 : Br ∩ R −→ W 1,p(Ω),

defined by

γ0(u) =


u∗ if ‖u‖ 6 r

2 ,

ĥ

(
2(r − ‖u‖)

r
,
ru

‖u‖

)
if ‖u‖ > r

2 .
(23)
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If u ∈ R and ‖u‖ = r
2 , then

ĥ

(
2(r − ‖u‖)

r
,
ru

‖u‖

)
= h(1, 2u) = u∗

(see (17) and (21)). Hence, from (23), we see that γ0 is continuous. Also, if u ∈
∂Br ∩ R, then

γ0(u) = ĥ(0, u) = u

(see (23)). Therefore γ0 ∈ Γ. From (17), (22) and (23), we have

ϕ
(
γ0(u)

)
< 0 ∀u ∈ Br ∩ R,

so
ĉr < 0 (24)

(see (19)).
Comparing (20) and (24), we reach a contradiction. This means that we can find

v∗ ∈ Kϕ, such that v∗ 6∈ {0, u∗}. Then

A(v∗) = Nf (v∗),

so 
−∆pv

∗(z) = f
(
z, v∗(z)

)
a.e. in Ω,

∂v∗

∂n
= 0 on ∂Ω.

(see (7)). Nonlinear regularity theory (see Lieberman [5]) implies that v∗ ∈ C1(Ω).
This is the desired second nontrivial smooth solution of (1).
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