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A bstrac t W e consider a nonlinear elliptic prob lem  driven by a nonlinear n o n 
hom ogeneous d ifferential opera to r and a nonsm ooth  potential. W e prove two 
m ultiplicity theorem s for problem s with coercive energy functional. In bo th  th e 
orem s we produce th ree  nontrivial sm ooth  solutions. In the second m ultiplicity 
theorem , we provide precise sign inform ation  for all th ree  solutions (the first 
positive, th e  second negative and the th ird  nodal). O u t approach  is variational, 
based on the nonsm ooth  critical po in t theory. W e also prove an auxiliary result 
relating  sm ooth  and Sobolev local m inim izer for a large class of locally Lipschitz 
functionals.
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1 In troduction

L et ^  c  R N be a bounded  dom ain  with a C 2-boundary  3 ^ . In this paper we study 
the following nonlinear elliptic p rob lem  w ith a nonsm ooth  po ten tia l (hem ivariational 
inequality):

i - d i v a(Vu(z ))  6 3F(z ,  u(z))  in ( )
j u ^  =  0 . ( . )

H ere  a : R N — > R N is a C*-map, which is strictly m ono tone and satisfies certain  
o ther regularity  conditions (see hypotheses H '0). Two im portan t special cases of the 
m ap a are the following:

a(y) =  | |y ||p- 2y  Vy 6 R N 

which corresponds to  the p -Laplace differential opera to r

A pu =  div ( ||V u ||p - 2Vu) Vu 6 W0’p(Q)

and

a(y) =  llyllp-2y +  mIIyllq -2y  Vy 6 R N,

w ith n  ^  0, 2 ^  q  ^  p  < + ro , which corresponds to  the (p,  9 )-differential operator 

A pu + f i A qu, w ith u 6 W0’p(^ ) .

A lso F : ̂  x  R  — > R  is a m easurable po ten tia l which is only locally Lipschitz and
in general nonsm ooth  in the second variable. By 3F(z ,  Z) we deno te the generalized
(C larke) subdifferential of Z -— > F(z ,  Z) (see Section 2).

W e are in terested  in the  existence of m ultiple nontriv ial solutions for problem  
(1.1), w hen the energy functional of the prob lem  is coercive. W e prove two such 
m ultiplicity theorem s (“th ree  solutions theo rem s”). In  the first, we produce three 
nontrivial sm ooth  solutions, two of which have constan t sign (one positive and the 
o ther negative). In  the second m ultiplicity theorem , by strengthening the hypotheses 
on the po ten tia l F(z ,  ■), we show  th a t the  th ird  solution is nodal (sign changing). 
To the best of our know ledge this is the first resu lt (even for sm ooth  problem s, 
i.e., w hen F(z ,  ■) 6 C : (R)), which produces a nodal solu tion  for p roblem s with a 
nonhom ogeneous differential operator.

O ur approach  is varia tional based on the nonsm ooth  critical po in t theory  (see 
G asinski-Papageorgiou [18] and M otreanu-R adulescu  [31]). W e m ention  th a t three 
solutions theorem s for coercive equations w ere proved by A m brosetti-L upo  [2], 
A m brosetti-M ancini [3], Iannizzotto  [24], S truw e [34] for certain  param etric  sem i
linear equations (Iannizzotto  [24] deals with hem ivariational inequalities, while the 
o ther consider “sm ooth” problem s) and by A verna-M arano-M otreanu  [4], L iu-Liu 
[27], L iu [28], P apageorgiou-Papageorgiou [33] for problem s driven by p-Laplacian  
(A verna-M arano-M otreanu  [4] deal w ith param etric  hem ivariational inequalities, 
while the o thers exam ine “sm ooth” potentials). O ur w ork here is closer to  those 
of L iu-L iu [27] and Liu [28], since no p aram eter appears in (1.1) and our th e 
orem s extend th e  results of [27] and [28] in m any different ways. In  the next 
th ree  papers of F ilippakis-G asiriski-Papageorgiou [14] and G asinski-Papageorgiou 
[16, 17] we also find m ultiplicity results for hem ivariational inequalities in the case
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Coercive Problems with Nonhomogeneous Differential Operator 419

of various boundary  value conditions: D irichlet, periodic and N eum ann. Finally, 
we m ention  th a t hem ivariational inequalities arise naturally  in problem s of n o n 
sm ooth  m echanics. F or several such applications, we refer to  the book  of Naniewicz- 
P anagiotopoulos [32].

In  the  nex t section, for the convenience of the  reader, we recall som e basic 
facts from  the nonsm ooth  critical po in t theory, which is based on the  no tion  of 
subdifferential of a locally Lipschitz functional. W e also prove an auxiliary result of 
independen t in te rest rela ting  sm ooth  and Sobolev local m inim izers for a large class 
of nonsm ooth  locally L ipschitz functions.

2 M athem atical B ackground— P relim inary  Results

L et X  be a B anach space and X*  its topological dual. By {•, •) we deno te the duality 
brackets for the pair (X * , X ) .  F or a given locally Lipschitz functional y : X  — > R, 
the generalized directional derivative y 0(z; h) of y  at x  e X  in the direction  h e  X , is 
defined by

of , ^ d/ y y ( x  +  th) — y (X)y  (x; h) =  lim su p -------------------------- .
x' ^  x t
t \  0

It is easy to  see th a t the m ap x i— > y 0(x; h) is sublinear continuous. T herefore, 
it is the support function of a nonem pty, convex and w*-compact set dy(x)  c  X*, 
defined by

dy(x)  =  {x* e X* : {x*, h) ^  y°(x; h) for all h e X }.

T he m ultifunction x i— > dy(x)  is called the generalized (or C larke) subdifferential of 
y . I f  y : X  — > R  is continuous convex, then  y  is locally Lipschitz and the  generalized 
subdifferential of y  coincides w ith the subdifferential in the sense of convex analysis, 
given by

dcy(x )  =  {x* e X* : {x*, h) ^  y ( x  + h) — y(h)  for all h e X }.

M oreover, if y  e C x(X) ,  th en  y  is locally Lipschitz and dy(x)  =  {y ' ( x )}.
If y , ^ : X  — > R  are locally L ipschitz functionals and X e  R , then

d(y + f t )(x)  c  dy(x)  + 3 ^ ( x )  Vx e X

and

d(Xy)(x) = Xdy(x)  Vx e X ,  X e  R.

The generalized subdifferential has a very rich calculus, which extends th a t of sm ooth  
and of continuous convex functionals. F or m ore details, we refer to  the book  of 
C larke [9].

L et y : X  — > R  be a locally Lipschitz functional. W e say th a t x e X  is a critical 
po in t of y , if 0 e dy(x).  If x e X  is a local extrem um  of y  (i.e., x is either a local 
m inim izer or a local m axim izer of y ), then  x e  X  is a critical po in t of y.

F or a given locally Lipschitz functional y : X  — > R , we set

m y (x) =  in f{ ||x* ||* : x* e d y ( x )}
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420 L. Gasinski, N.S. Papageorgiou

(here || • ||* denotes the norm  of the dual space X*). W e say th a t y  satisfies the 
Palais-Sm ale condition, if the  following holds:

E very  sequence [xn}n^ i  c  X , such th a t {y (xn)}n>l c  R  is a bounded  sequence 
and

m v (Xn) — > 0 

adm its a strongly convergent subsequence.

U sing this com pactness-type condition, we can have th e  following nonsm ooth 
extension of the well know n m ountain  pass theorem .

T heorem  2.1 I f  X  is a Banach space, y : X  — > R  is a locally Lipschi tz funct ional  
which satisfies the Palais-Smale condition, x 0, x l e  X  are such that  | x l — x0|| >  r > 0,

max { y (x 0), y (x \ ) }  < inf{ y(x )  : ||x — x0| |= r }  =  n0

and

c =  inf max y(y ( t ) ) .
Y eT 0<t<l V

where

T =  {y e C([0, l]; X )  : y(0) =  x0, Y (l) =  xi}. 

then c ^  n0 and c is a critical value o f  the funct ional  y.

T he nonsm ooth  critical po in t theory  was in itiated  with the w ork of C hang [6]. 
D etailed  presen tations of the theory  w ith extensions and generalizations can be 
found in the books of G asm ski-Papageorgiou [18] and M otreanu-R adulescu  [31].

L et y : X  — > R  be a locally L ipschitz functional and c e  R . W e define

y c =  {x e X  : y (x )  < c}.

K y =  {x  e  X  : 0 e dy(x)}.

Ky  =  {x  e  Ky  : y (x )  =  c}.

T he next result is due to  Corvellec [10] and it is the nonsm ooth  co u n terp art of the so 
called second deform ation  theorem  (see G asiriski-Papageorgiou [19, p. 628]).

T heorem  2.2 I f  X  is a Banach space, y : X  — > R  is a locally Lipschi tz funct ional
which satisfies the Palais-Smale condition, a e  R, b e  R  U [+c»}, K y O y —l (a, b ) =  0
and K yc is f ini te  and contains only local minimizers o f  y,  then there exists a cont inuous  
deformation h : [0, l ] x  y b — > y b, such that:

(a) h(t, •) |Ka =  id\Ka for  all t e  [0 , l];
(b) h ( l ,  y b) c  y a U"Ky
(c) y(h(t ,  x)} ^  y  (x) fo r  all (t, x) e  [0 , l] x  y b.

In particular y a U K ay is a weak deformation retract o f  y b.

ff) Springer
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In  the analysis of p rob lem  (1.1) , in addition  to  the Sobolev space W0’p (Q), we will 
also use the B anach space

C0(Q) = {u e C \ Q )  : u |3q =  0 }.

This is an o rdered  B anach space w ith positive cone

C+ = {u e  C1^ )  : u(z)  ^  0 for all z e  Q}.

This cone has a nonem pty  in terior, given by

d u
in t C+ =  j u  e C+ : u(z)  > 0 for all z e  Q, —  ( z ) <  0 for all z  e  3Q j ,

w here n(-) denotes the outw ard unit norm al on 3Q.
F or the  next auxiliary result, we can be m ore general and allow the m ap a(-) to  be

z -dependent. M ore precisely, we in troduce the following hypotheses:
H 0: G : Q x  R N — > R  is a ^ - fu n c t io n , such th a t G(z,  0) =  0, V yG(z ,  y) = a(z, y) 

and a(z,  0) =  0 for alm ost all z  e  Q and

(i) a e  C 1(Q  x  (RN \{0}); R N);
(ii) th e re  exist c0 >  0 and n ^  0, such th a t for every z e  Q and every y  e  R N \  {0},

we have

c0(n +  lly l)P—2ll£I2 <  (Vya(z,  y)£,  £)RN  V£ e  R N;

(iii) th e re  exists ci >  0, such th a t for every z e Q and every y  e  R N \  {0}, we have

\\x ya(z,  y)  || <  ci(n  +  llyll)p—2,

w ith n as in (ii);
(iv) for every q > 0 , th e re  exists c2 =  c2(q) > 0, such that

\a(z, y) — a(z', y)| <  c2( i  +  ||y ||)p—1|z  — z'|| Vz e Q, z'  e dQ,  ||y|| <  q.

Example  2.3 The following m aps satisfy hypotheses H 0:

(a) Let

Gi(z ,  y) = - & (z)||y ||p , 
p

with & e  C 1 (Q), &(z) > 0 for all z e Q and 1 <  p  < + ro . Then

ai(z,  y) =  & (z)||y ||p—2y.

This po ten tia l function corresponds to  a w eighted p -Laplacian d ifferential 
operator.

(b) Let

r- i \ &1(z \  lip , &2(z) qG 2 (z, y) =   llyllp +  HyHq,
p  q

with &1 , &2 e  C - (Q), &1(z) >  0, &2 (z) > 0 for all z e Q and 2 ^  q  ^  p  < + ro . 
Then

a2 (z, y) =  &1(z)Nyllp—2y +  &2 (z)llyllq—2y.
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422 L. Gasinski, N.S. Papageorgiou

This po ten tia l function corresponds to  a w eighted (p,  gO-differential operator. 
P roblem s w ith such po ten tia ls w ere studied  recently  by C ingolani-D egiovanni 
[7 ], F igueiredo [13], M edeiros-Perera [29].

(c) Let

Gs(z,  y) =  ( ||y ||p +  ln ( 1 +  ||yHp)),

w ith û  e  C 1 (fi), û(z )  > 0 for all z e  and p  ^  2. Then

p—2y  '
a3 ( z , y) =  ^(j1y | p—2y + i t it p O

F rom  hypotheses H 0 and using the in tegral form  of the m ean value theorem , we 
ob ta in  the following auxiliary result.

Lem m a 2.4 I f  hypotheses H 0 hold, then for  all z 6 ^ ,  a(z,  ■) is strictly monotone and
for  all (z, y) 6 ^  x  R N, we have

(a(z, y),  y ) KN  > p — i llyllp and \a(z,  y ) | <  c i(^  +  ||y ||)p-1.

A n easy consequence of this lem m a are the following grow th estim ates for the
po ten tia l G(z,  ■).

C orollary 2.5 I f  hypotheses H 0 hold, then for  all z  6 ^ ,  G(z,  ■) is strictly convex and

Co ii„up ^  nr. ,  ^  £ .(i i ii,,ii)p \it„ ,a o  t»N
p ( p  -  1)

p <  G(z,  y)  <  ci(1 +  ||y ||)p V(z, y) e Q x  R N.

T he next result rela tes local C0(&) and W p(Œ)-minimizers for a large class of 
locally Lipschitz functionals. Such a resu lt was first proved for

G(  y) = 2 II yll2

and sm ooth  (i.e., C 1) functionals by B rézis-N irenberg [5]. It was extended to  the  case

G(y)  = 1  ||y ||p,
P

with 1 <  p  < and sm ooth  functionals by G arcía A zorero-M anfred i-Peral 
A lonso [15] (see also G uo-Z hang  [21], w here p  ^  2). F or a nonsm ooth  version we 
refer to  G asinski-Papageorgiou [18, p. 655]. T he next proposition  extends all the 
aforem entioned  works. M oreover our p roof is simpler.

So, le t F 0 : Œ x  R  — > R  be a m easurab le function, such th a t for alm ost all z  e 
the function Z -— > F0( z ,Z)  is locally Lipschitz and

|u| ^  a(z) + c\Z |r - 1 for a.a. z  e  all Z e  R , all u e dF0( z , Z ),

with a e L œ (Q)+, c > 0 and 1 <  r < p*, w here

N p
*

p  = N  if p  < N,N  — p
if p  ^  N.
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Coercive Problems with Nonhomogeneous Differential Operator 423

L et ty0 i w 0’p (£ )  — > R  be the functional, defined by

f o (u )  =  í  G ( z ’ V u(z))  dz  -  Í  Fo(z’ u(z))  dz  Vu e  W¿’p(£) .
J £2 J £2

Evidently  ty0 is Lipschitz continuous on bounded  sets, hence it is locally Lipschitz.

P roposition  2.6 I f  hypotheses H o hold and u0 e  W0’p (£)  is a local C^(£)-minimizer  
o f  f  0, i.e., there exists $0 > 0, such that

foo(uoo) <  tyo(uo T  h) Vh e  C 0 (£ )’ Ih C o ®  <  $0’

then u0 e  C ^ ^ f ä )  for  some ß  e  (0 ’ 1) and it is also a local W0’p (£)-minimizer o f  ty0, 
i.e., there exists $ 1 > 0, such that

fo(uo)  <  to(uo  T  h) Vh e  W¿’p( £ ) ’ ||hy <  $ 1 .

Pr o o f  L e t h e  C¿ (£ )  and consider t > 0 small. T hen  by hypothesis

fo(uo)  <  fo(uo  T  th) ’

so

0 <  ^ 0 (uo; h). (2.1)

Since h e  C ¿(£ ) is arbitrary , 00(u0; •) is continuous and C ¿(£ ) is dense in W0’p (£ ), 
from  (2.1) , we infer tha t

0 ^  ty0o(u0; h) Vh e  W0’p ( £ ) ’

0 e dfo(uo)

and thus

V  (u0) =  u*, (2.2)

w here V : W^’p(Q) — > W -1, p' (Q) =  W0’p (Q)* (with p +  p  =  1) is the nonlinear 
m ap, defined by

(V(u),  y) =  i  (a(z,  V u), Vy ) RN dz  Vu, y  e  W0’p (Q)
J q

and u*0 e  L r (Q) (w ith 1 +  1 =  1), u*(z) e  dF 0(z, u0(z))  for alm ost all z  e  Q (see 
C larke [9, p. 83]). F rom  (2.2) , it follow's tha t

- d i v a(z,  Vu0(z)) =  u*0(z) e  d F ^ z ,  u()(z)) in Q,  ( )
u0|3Q =  0 . (23)

Invoking T heorem  7.1 of L adyzhenskaya-U raltseva [25, p. 286], we have th a t u0 e
L X (Q). T hen  on (2.3) we can use T heorem  1 of L ieberm an [26] and conclude that
u0 e C1’̂ (Q) for som e f  e  (0 , 1).

<?) Springer
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424 L. Gasinski, N.S. Papageorgiou

N ext we show  th a t u0 is also a local W^’p(Œ )-minimizer of f t0. W e argue by
contradiction. So, suppose th a t u0 is no t a local W^’p(Q)-m inim izer of ^ 0. For
ë > 0 , let

%ë =  {u g W0’p (Œ) : \\u\\r <  ë} 

and consider the following m inim ization problem :

inf ÿ 0(u0 + h) = m Ë0 > —œ .  (2.4)
he %

Since u0 is no t a local W0’p(Q) -m inim izer of f t0, we have

m0 <  f ü ( u 0)- (2.5)

L et {hn'}n> 1 c  B s be a minim izing sequence for problem  (2.4). U sing C orollary  2.5 
and the grow th hypothesis on dF0(z, •), we see th a t the sequence {hn}n >1 C W 1 p(Q)
is bounded. So, passing to  a subsequence if necessary, we m ay assum e tha t

hn — > hs weakly in W0’p(Q), (2.6)

hn — > hs in L r (Q). (2.7)

Clearly f 0 is sequentially  weakly low er sem icontinuous. So, from  (2.6), we have

^ 0(u0 + hs) <  lim in f f 0(u0 + hn),

hence

f 0(u0 + hs) =  m;S

and thus he =  0 (see (2.5)).
So, the infim um  in prob lem  (2.4) is realized at som e hs e B s \  {0} (see (2.6) ). 

Invoking the nonsm ooth  L agrange m ultiplier ru le of C larke [8], we can find Xs ^  0,
such tha t

0 G d ^ 0(u0 + hs) -  Xs\hs\r hs,

so

V(uo +  hs) = u* +  Xs\hs \  2hs, 

w here u* g L r' (fi), u*s (z) G dF 0(z, (u0 + hs)(z))  for alm ost all z G fi. T hen

i - d i v a(z,  V(uo + hs)(z))  = u*s (z) + Xs\hs(z)\r-2hs(z)  in fi,
1 h s \afi =  0 .

F rom  (2.3) and (2.8) , for alm ost all z G fi, we have

(2.8)

- d iv  (a(z,  V ( u 0 + hs)(z))  -  a(z,  V u 0(z)j)

= u*(z) -  u*0(z) + Xs\hs(z)\r-2hs(z)  (2.9)
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Coercive Problems with Nonhomogeneous Differential Operator 425

Case 1 Suppose th a t Xe 6 [ -  1, 0] for all e 6 (0, 1].
W e set

We(z) = (u0 + he)(z),

Oe(z, y) = a(z,  y) -  a(z,  V m (z ) ) .

T hen from  (2.9) , for alm ost all z 6 f l ,w e  have

- d iv  Oe (z, V  We(z)) = u*s (z) -  u*0 (z) + Xe \ (We -  u0) (z) \r 2(We -  m) ( z) .  (2.10)

O n (2.10) we apply T heorem  7.1 of Ladyzhenskaya-U raltseva [25, p. 286] and 
produce M 1 >  0, such that

IIwe||TO <  M i Ve 6 (0, 1]. (2.11)

Clearly oe(z, y)  satisfies hypotheses H 0. This fact and (2.11), perm it the use of
T heorem  1 of L ieberm an [26] and so we can find y  6 (0, 1) and M 2 >  0, such that

we 6 C0’y (&) and I W ^ ^ n )  ^  M 2 Ve 6 (0, 1]. (2.12)

Case 2 Suppose th a t Xen < - 1  for all n ^  1, w ith en \  0, en 6 (0, 1] for all n ^  1.
In  this case we set

We„ = u0 + hen

Oen(z, y) = T7— r(a(z, V u 0(z) +  y) -  a(z,  V u 0(z))).
\^en 1

T hen for alm ost all z 6 n  and all n ^  1, we have

- d iv  °en (z , V  hen (z )) =  -TT̂ T (ul  (z ) -  u0 (z )) -  \he„ (z ) . (2.13)
\^en \

F or every Z 6 W0’p (n ), we have

(V(u 0) ,Z ) = f  u0Z dz  (2.14)
Jn

(see (2.3)) and

[V(uSn) ,Z ) =  f  u*nZ dz  + Xen f  \Wen -  u0 \r - 2(Wen -  ^ ) Z  dz  (2.15) 
J n J n

(see (2.9)).
L et p  ^  1 and consider the function |Wen -  u0\p (Wen -  u0) . Then

V  ( \ Wen -  u0)\P{We„ -  u0)) =  (p  +  1) \ Wen -  u0\^V  (Wen -  u0) ,

\wSn -  uo\P(wSn -  Wq) G WQ’ p(Q) ' in >  1

(recall th a t wSn , wq g C j(^ ) ) .

Ö  Springer
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426 L. Gasinski, N.S. Papageorgiou

So, we can use this function as the test function £ in (2.14) and (2.15) . W e do this 
and then  sub trac t (2.14) from  (2.15). U sing L em m a 2.4, for all n ^  1 we obtain

0 ^  {(z +  1 ) (a(z,  VwSn) — a(z,  V u ) ,  V wSn — V u ) r n \wSn — u \  dz  
J q

= (u*n — a * ( w Sn — u0) \wSn — dz
J  Q
+  x j \wSn — u0\r+lxdz.  (2.16)

Q

B ecause of (2.11), recalling th a t u0 e  C1!(Q) and using H older inequality  w ith expo
nents , we haveX+1 ’ r—1 ’

/ «  _  u0) ( ws„ _  u0) \wsn _  uo\P dz  
Jq

^  M 3 i  \wSn — u0|X+1 dz
Q

—  - 1 
<  M 3 IQINp | wSn — u01 Vn >  1, (2.17)

for som e M 3 > 0. H ere  | • In  stands for the Lebesgue m easure on R N. W e re tu rn  to 
(2.16) and use (2.17) . T hen

r—1 1
— XSn \\W£n — u0 \ r+l̂  M 3\Q \N+ \\W£n \\ ,

so

1 r—1
— Xsn \\wen — u0 | r+X ^  M 3IQIn X x  1, n x  1

W e let x  ^  + ^  and obtain

II || r_1
_ ^ s n \\we„ _  M0I ^  M 3 Vn ^  1,

I ws — u0 |r  1 ^  — — Vn ^  1. (2.18)II «n 0 I I ^  1 '   ̂ >

W e re tu rn  to  (2.13) and denote the right hand side by ns„ (z, Z). If M 4 =  || u0| + 
M 1 > 0 (see (2.11)), then  for alm ost all z e  Q and all Z e [—M 4, M 4], we have

\nSn (z ,Z)\  <  77— | [M 5 +  M 3] Vn >  1,
\XSn \

for som e M 5 >  0. This fact and since aSn (z, y) satisfies hypotheses H 0, perm it the  use 
of T heorem  1 of L ieberm an [26] and so we can find y0 e  (0, 1) and M 6 > 0, such that

hSn e C 10'r° (Q) and \\hSn ||Ci,T O <  M 6 Vn >  1. (2.19)

so
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R ecall th a t for every y ' e  (0, 1) the space Cp’Y (Q) is em bedded  com pactly in
C1(Q). So, from  (2.12) and (2.19) and by passing to  a suitable subsequence if
necessary, we have

u0 +  hSn — > u0 in Cp(Q)

(recall th a t en \  0). Because u0 is a local C0(Q)-m inim izer of ^ 0, we can find n 0 ^  1, 
such tha t

f '0(u0) <  f ' 0(u0 +  hSn) Vn >  (2.20)

O n the o ther hand  since hSn are solutions of (2.4) and because of (2.5), we have

^ 0(u0 +  hSn) <  ^ 0(u0) Vn >  1. (2.21)

C om paring (2.20) and (2.21), we reach  a contradiction. This proves th a t u0 is a local 
W0’p(Q )-m inim izer of f i0. □

R ecall (see the above proof) th a t V : W °p(Q) — > W - 1,p' (Q) is the nonlinear m ap, 
defined by

(V(u),  y) =  i  (a (z , V u), Vy) dz  Vu, y  e  W0’p(Q). (2.22)
J q

F rom  Lem m a 3.2 of G asiriski-Papageorgiou [20, p. 562], we have the following 
result.

P roposition  2.7 I f  hypotheses H 0 hold and  V : W0’p(Q) — > W  1’p' (Q) is def ined by 
(2.22), then V  is continuous,  bounded (i.e., maps  bounded  sets to bounded  sets), strictly 
monotone  and o f  type (S)+, i.e., i f u n — > u weakly in W f  p (Q) and

lim sup (V(un), un — u  ^  0,

then un — > u in W0’p (Q).

L et k 1 be the first eigenvalue of ( — A p, W ° p (Q)) . W e know  th a t k 1 > 0 is isolated, 
sim ple and

IIVu||p >  M IN Ip Vu e W0’p(Q)

(see G asiriski-Papageorgiou [19]).
F rom  A izicovici-Papageorgiou-Staicu [1, L em m a 12], we have

Proposition  2.8 I f  & e  L p(Q)+, &(z) ^  p—\  for  almost  all z  e  Q, & =  p—1, then there 
exists %0 >  0, such that

IV u ||p -  f  & |u |p dz  >  ^ IM Ip Vu e W01,p(Q). 
p  -  1 J q
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Finally we m ention  th a t th roughou t this work, for every u 6 W0’p (n ), we set

l|u|| =  ||Vu|| p

(by v irtue of Poincare inequality) and

u+ =  max{0, u}, u~ =  max{0 , -u } .

W e know  th a t u+, u -  6 W0’p (n ) and u = u+ -  u - , \u\ = u+ + u - . W e m ention  tha t 
the no ta tion  || ■ || will also be used to  deno te the R N-norm . No confusion is possible, 
since it will always be clear from  the context which norm  is used. A lso, as indicated 
in the p roof of P roposition  2.6, \ ■ \n denotes the Lebesgue m easure on R N.

3 F irst M ultiplicity T heorem

In this section we prove a m ultiplicity theorem , which produces th ree  nontrivial 
sm ooth  solutions, two of which have constan t sign (one positive, the o ther negative). 
To do this we need to  drop the z -dependence on the m ap a . F or easy reference, we 
sta te in detail the hypotheses:

H0: G : R N — > R  is a C 1-function, such th a t G(0) =  0, V G(y)  = a(y) =  a0(||y  ||)y, 
a0(t) > 0 , a (0) =  0 and

(i) a 6 C 1(R N \{0}; R N)
(ii) th e re  exist c0 >  0 and n ^  0, such th a t for every y  6 R N \  {0}, we have

o ( n  +  llyll)p - 2 llZII2 <  (Va(y)Z,  Z)RN VZ 6 R n ;

(iii) th e re  exists c1 >  0, such th a t for every y  6 R N \  {0}, we have

|| Va(y)  \ <  c1(n +\ \y l l )p-2,

w ith n as in (ii);
(iv) th e re  exists t  6 (1, p) ,  such that

G(y)  
l i ^ — —̂  = 0 .
y ^ 0 II>'It

Rem ark  3.1 C learly, hypotheses H0 are a particu lar case of hypotheses H 0. The 
reason  we have dropped  the z -dependence is th a t we need an extension of the 
nonlinear strong m axim al principle of V azquez [35], valid for the p-Laplacian , to 
m ore general nonhom ogeneous d ifferential operators, like the one in this paper. 
T he only such result for z-dependen t opera to rs is th a t of Z hang  [36], who though 
requires th a t n =  0 in hypotheses H 0(ii) and (iii). Such a condition excludes from  
consideration  ( p ,  q ) -d ifferential operators. N ote th a t the exam ples p resen ted  after 
hypotheses H 0, satisfy hypotheses H0 (of course w ith d  = d 1 = d2 =  1).

T he hypotheses on the  nonlinear po ten tia l F(z ,  Z) are the  following:
H 1: F : n  x  R  — > R  is a m easurable function, such th a t for alm ost all z 6 n ,  we 

have F(z ,  0) =  0, 0 6 3F(z ,  0), F(z ,  ■) is locally L ipschitz and
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(i) th e re  exist a 6 L ^ ( n ) +  and c > 0 , such that

\u*\ ^  a(z) + c\Z \p - 1 for alm ost all z  6 n ,  all Z 6 R , all u* 6 3F(z ,Z) ;

(ii) th e re  exists d  6 L™(n)+,  d ( z )  <  p - i  for alm ost all z 6 n ,  d  = j - 1 , such that

lim sup —— ZZ ^  d(z )  uniform ly for alm ost all z 6 n ;
Z^±<x, \Z \p

(iii) if t  6 ( 1, p)  is as in hypothesis H 0(iv), th en  the re  exists f 0 > 0 , such that

lim inf t  F :̂1, ZZ >  ff0 uniform ly for alm ost all z 6 n ;
f^ 0 \z \t h y

(iv) for every q > 0 , th e re  exists ye > 0 , such that, if

o ( z , Z )  =  m in {u* : u* 6 3F ( z ,Z ) \ ,

then

o ( z , Z )  + Yq \Z \p - 2Z ^  0 for alm ost all z 6 n ,  all Z 6 [—q, q].

Rem ark  3.2 H ypothesis H 1 (ii) implies th a t for alm ost all z 6 n ,  the function F(z ,  ■)
is p -(sub)linear near ± ro . H ypothesis H 1 (iii) im plies the presence of a “concave” 
nonlinearity  near the origin. W e stress th a t no sign condition  is im posed on the 
elem ents of 3F(z ,  Z). Instead, we im pose the w eaker condition H 1 (iv).

Example  3.3 The following po ten tia l function F(Z)  satisfies hypotheses H 1 (for the 
sake of simplicity, we drop the z -dependence):

F(Z) =

C IZIT if \Z I <  1, T
ft
- I Z Ip if I?I >  1,
P

w ith 1 < t < p, c =  — . N ote th a t F  is no t a C 1-function.p

L et ę : W q p (Q) — > R  be the energy functional for p rob lem  (1.1) , defined by 

ę (u)  = Í  G (V u( z ) )  dz  -  í  F (z , u(z))  dz  Vu e  W¿’p (Q).

E vidently  ę  is locally Lipschitz.

T heorem  3.4 I f  hypotheses H 0 and H 1 hold, then problem  (1.1) has at least three 
nontrivial smooth solutions:

u0 e  in t C+, vo e — in t C+, and y0 e CQ(Q) \  (0)

and u0, v0 are local minimizers o f  ę.
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P ro o f  L et

F±(z,  Z) =  F(z ,  ±Z±) V(z, Z) e  Q x  R  

and let y±  : p (Q) — > R  be the locally L ipschitz functionals, defined by

V±(u) =  í  G (V u( z ) )  dz  — Í  F±(z,  u(z))  dz  Vu e  W0—p(Q).
J q J q

By virtue of hypotheses H — (i) and (ii) and L ebourg  m ean  value theorem  for locally 
L ipschitz functionals (see e.g., C larke [9, p. 41]), for a given e > 0, we can find c3 =  
c3 (e) > 0 , such that

F (z ,Z )  ^  — (&(z) +  e ) |Z |p +  c3 for alm ost all z  e  Q, all Z e  R . (3.1)

T hen  using C orollary 2.5, estim ate (3.1) and P roposition  2.8, we have

í  G(Vu)  dz  — Í
J Q JQ

v+(u)  =  G(V u) dz  — I F  (z , u) dz

> , C0 IIVuyp — — Í  & |u |p dz  — - 1|uyp — c4
p ( p  — i) p p  J q

^  — { £o — —  )y«yp — c4 Vu g w 0’p (Q). 
p \  m  /

Choosing e g (0, £0M ), we infer th a t y+ is coercive. A lso, exploiting the com pactness 
of the em bedding of W0’p (Q) in to  L p(Q),  we can easily check th a t y+ is sequentially  
w eakly low er sem icontinuous. So, by the W eierstrass theorem , we can find u0 g 
W0’p(Q), such tha t

y + (u0) =  inf y+(u)  =  m+.  (3.2)
ugW0‘ p(Q)

By virtue of hypotheses H '0(iv) and H — (iii), for a given e > 0 ,w e can find 5 =  5(e) > 0 
and ß — =  ß — (e) > 0, such th a t for alm ost all z  g Q and all y  g R w, Z g R  with ||y  || <  & 
and |Z | < &, we have

G(y)  <  - yy||T and F ( z ,Z )  > — IZIT- (3.3)
T T

L et u g in t C+ and let t g (0, 1) be small, such that

tu(z)  g [0,5] and ||V (tu)(z)\\ g [0 ,& ] Vz g Q.

Then, using (3.3), we have

y+(tu)  =  /  G ( V (tu)) dz  — F(z ,  tu) dz
J Q J Q

< - IV uy; — ßX - i K
t T t T

f  ( .T . .. ||T )
=  T ( e |u y T — ßil|u ||£). 

Choosing e e  (0, , we see that

ty+(tu) < 0 ,
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(see (3.2)), i.e., u0 =  0. 
F rom  (3.2) , we have

y+(u0) = m+ < 0 =  y + (0)

0 e 3y+(u0),

V ( u 0) = u0,

w here u*0 e  L p (Q), u*0 e  dF+(z,  u0(z))  for alm ost all z e  Q.
F rom  the nonsm ooth  chain ru le (see C larke [9, p. 42]), we have

(3.4)

dF+(z,  Z) C {£3F(z ,  0) : £ e [ 0 ,  1]} 
9F(z ,  Z)

if Z < 0, 
if 0 <  Z <  1, 
if 1 < Z .

(3.5)

O n (3.3) we act w ith —u0 e  W 0’p (Q) and using (3.5) and L em m a 2.4, we obtain

C0
p  _ 1

l|Vu_|| p <  0,

i.e., u0 ^  0, u0 =  0 . 
F rom  (3.4) , we have

Since

- d iv  a (  V u0(z)) 
u0\an =  0

= u0(z) in Q ,

V u0(z) =  0 on {u0 =  0}

(Stam pacchia theorem ; see e.g., G asm ski-Papageorgiou [19, p. 195]), we infer that

u0(z) e dF(z ,  u0(z)) for alm ost all z e  Q

(see (3.5)). So, u0 is a nontrivial positive solu tion  of prob lem  (1.1) . M oreover, as 
before (see the p roof of P roposition  2.6), from  the nonlinear regularity  theory  (see 
L adyzhenskaya-U raltseva [25] and L ieberm an  [26]), we have th a t u0 e C+ \  {0}. Let 
q =  ||u0||TO and let ye > 0 be as postu lated  by hypothesis H 1 (iv). Then

—d iv a ( V u 0(z)) + Yqu0( z )p—1 = u*0(z) + yem ( z ) p—1 >  0 for alm ost all z e Q,

d iv a (V u 0(z)) ^  yeu0( z)p 1 for alm ost all z  e  Q

and thus u0 e in t C+ (see M ontenegro  [30, T heorem  6]).
If

W+ =  {u e  W0’p(Q) : u(z)  ^  0 for alm ost all z e  Q},

then  clearly

V\w+ = V+\w+ ■
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So, u0 is a local C1 (n)-m in im izer of y. Invoking P roposition  2.6, we infer th a t u0 is a 
local W0’p( n )-m inim izer of y.

Similarly, w orking w ith the functional y - , we produce one m ore constan t sign 
sm ooth  solution v0 6 —int C+ o f problem  (1.1), w hich is a local m inim izer of the 
functional y.

W ithou t any loss of generality, we m ay assum e tha t

V(v0) <  V(u0)

(the analysis is sim ilar, if the opposite inequality  is true) and th a t the set K y is 
finite (otherw ise, we already have infinity solutions for p rob lem  (1.1)). R easoning 
as in A izicovici-Papageorgiou-Staicu [1, p roof of P roposition  29] (see also G asinski- 
Papageorgiou [20, T heorem  3.4]), we can find q 6 (0, 1) small, such that

V(v0) <  y ( m )  < inf \ v (u )  : \\u -  u0|| =  q} =  ne , IK  -  u0|| > q. (3.6)

A s we did for y+,  in a sim ilar way, using hypothesis H 1 (ii), we can check th a t y  is
coercive and so it satisfies the Palais-Sm ale condition. This fact, toge ther w ith (3.6) 
perm it the use of the  nonsm ooth  m ountain  pass theorem  (see T heorem  2.1). So, we 
can find y0 6 W0’p (n ) ,  such tha t

y ( v 0) <  y ( u 0) < nQ <  y ( y 0) (3.7)

and

0 6 3y(y0). (3.8)

From  (3.7) it is clear th a t y0 6  {v0, u0}, while from  (3.8) , we have

V (  y 0) = u0,

w here «0 6 L p' (n ), u0(z) 6 3F(z ,  y 0(z)) for alm ost all z 6 n .  H ence y0 is a solution 
of (1.1) and the nonlinear regularity  theory  im plies th a t y0 6 C 1(n). It rem ains to 
show th a t y 0 =  0. F rom  T heorem  2.1, we have

c =  y ( y 0) =  inf max y (Y(t ) ) ,  (3.9)
Y er 0<t<1

w here

r  =  {y  6 C ([0 , 1]; W1'p(n ))  : y(0)  = v0, Y(1) = ^ } .

From  (3.9) , we see that, if we can find y* 6 r ,  such that

v>(y*(0) < 0 Vt 6 T,

then

c = y ( y 0) < 0 =  y ( 0)

and so y0 =  0. H ence our effort is on producing such a path  y* 6 r .
To this end, let

rc  =  {y  6 C ([0, 1]; C m )  : y(0)  = v>, Y(1) = u0} .
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By virtue of the density of the  em bedding of CI1(Q) into W0’ p(Q),  we see th a t Tc is 
dense in T. W e can find y  e  Tc, such th a t 0 g  y ( [0, 1]). Since

Y ([0 , 1]) c  C0(Q) and 0 e  y ([0 , 1]), 

we can find X e  (0, 1) small, such that

X\\Vu(z)\\ y  S, and X\u(z)\ y  S Vz e Q, u e  y ([0 ,1]) (3.10)

(w here S is as in (3.3) ) and

inf llulU = m  > 0. (3.11)
uey([0,1]) T

For all u e Y [0 , 1] , we have

y(Xu) = I G(XV u) dz  — I F  (z ,Xu)  dz
Q Q

y  XTellVulH — P X l l u l l TT

y  XT (sc5 — p 1m)  (3.12)

for som e c5 >  0 (see (3.3), (3.10) , (3.11) and no te th a t y ( [0, 1]) is com pact in
W0’p(Q)). C hoosing e e (0 , ^cm) and setting y  = Xy,  from  (3.12), we see tha t

y \y  < 0 (3.13)

and y  is a continuous path  in W0’p (Q) which connects Xv0 and Xu0.
N ext, we will produce a continuous path  in W0’p (Q) which connects Xu0 and u0 

and along which y  is strictly negative. To this end, recall tha t

m+ =  inf y+(u) < 0 =  y+ (0).
ueW^ ' p  (Q)

A lso, we m ay assum e th a t Ky++ = {u0} or o therw ise we already have a second 
positive solution (no te th a t by v irtue of (3.5) and the nonlinear regularity  theory, 
K y+ c  C+). Invoking T heorem  2.2, we can find a continuous deform ation  h : [0, 1 ]x  
y+ — > y+ , such that

h ( 1 , y 0+) c  y + + J  Km++ = y m + J { u 0} =  {u0} (3.14)

(since y rm+ =  0 ) and

y+ (h(t, u)) y  y+(u) Vt e [ 0 ,  1], u e y 0+. (3.15)

C onsider the continuous path  y+ : [0 , 1] — > W0’p (Q), defined by

y+(t) = h(t, Xu0)+ Vt e [ 0 ,  1].

Then

y+ (0) =  h(0, Xu0)+ = (Xu0)+ = Xu0.
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Also

Y+(1) =  h ( \ , X u 0)+ =  uo

(see (3.14)). H ence y+ is a continuous path  in W^’p(Q) which connects Xu0 and u0. 
M oreover, from  (3.15) and since ^ |W+ =  y+ |W+, we have

y(y+(t))  =  y ( h ( t ’ Xu0)+) =  ę+ (h(t’ Xu0)+)
^  y+(Xu0) =  y (Xu0) < 0 Vi e [0, 1]

(see (3.13)), so

^ Iy+ <  0. (3.16)

In a sim ilar fashion, we produce a continuous path  Y- in W0’p (Q) which connects Xv0 
and v0 and

Vlr_ < 0. (3.17)

W e concatenate y- , Y and y+ and produce y* e r ,  such that

V'lYt < 0

(see (3.13), (3.16) and (3.17) ), so y 0 =  0 (see (3.9) ).
So y0 e  C0(n)  \  {0} is the th ird  nontrivial sm ooth  solution of (1.1) . □

4 Second M ultiplicity T heorem . N odal Solutions

In this section, we look for nodal solutions. To the best of our know ledge, the re  has 
been  no previous w ork producing nodal solutions for equations driven by a nonho- 
m ogeneous d ifferential operato r. To do this, we need  to  streng then  the hypotheses 
on the  nonsm ooth  po ten tia l F(z ,  Z). F or this purpose, le t us first in troduce som e 
notation . Consider a m easurable function f : ^  x  R  — > R , such th a t for every r > 0, 
we can find ar e  L x  (fi)+ for which we have

| f  (z, Z) | ^  ar(z) for alm ost all z  e  ^  and all |Z | ^  r.

W e allow f  (z, •) to  have jum p discontinuities and define

fi (z, Z) =  lim inf f  (z, Z') and f u ( z ’ Z) =  lim sup f  (z,Z') .  (4.1)
Z ^ Z Z'^Z

F or alm ost all z  e  ^ ,  these limits are  finite. W e assum e th a t bo th  f l and f u are su- 
perpositionally  m easurable. This m eans that, if u : ^  — > R  is a m easurable function, 
then  so are functions z  i— > f i i z ,  u(z))  and z  i— > f u( z , u ( z ) ) .

W e set

F (z ,Z )  =  f  f  (z, s) ds.
0

T hen  for alm ost all z  e  ^ ,  the  function F(z ,  •) is locally Lipschitz and

d F  (z, Z) =  [ fi (z, Z), fu(z,  Z)]

(see e.g., C hang [6] or C larke [9]). W e have F(z ,  0) =  0 for alm ost all z  e  Q.
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So, now  we can sta te precisely the new  stronger conditions on the nonsm ooth  
potential.

H 2: F : n  x  R  — > R  is a function, such that

F(z ,  Z) = f  f  (z, s) ds,
0

w here f : n  x  R  — > R  is a m easurable function satisfying:

(i) th e re  exist a 6 L ^ ( n ) +  and c > 0 , such that

\ f  (z, Z)\ ^  a(z) + c\Z \p - 1 for alm ost all z 6 n ,  all Z 6 R;

the  functions f l (z, Z) and f u(z, Z) defined by (4.1) are superpositionally  m ea
surable and for alm ost all z 6 n ,  the function Z -— ► f  ( z ,Z)  is continuous at 
Z =  0;

(ii) th e re  exists a function d  6 L <x’(n)+,  d ( z )  <  - j -  for alm ost all z 6 n ,  d  =  1, 
such tha t

lim sup p — Z'’1 , ZZ ^  d(z )  uniform ly for alm ost all z 6 n ;
Z^±<x, \Z \p

(iii) th e re  exist t  6 ( 1, p)  and c6 > 0 , such that

f l (z,  Z)Z ^  c6|Z \t  for alm ost all z 6 n  and all Z 6 R.

Rem ark  4.1 N ote th a t the above hypotheses imply that

3 F(z ,  0) =  {0} for alm ost all z 6 n .

A lso no te  tha t

u*Z ^  0 for alm ost all z 6 n ,  all Z 6 R  and all u* 6 3F(z ,  Z)

(sign condition).

Example  4.2 The following po ten tia l function F  satisfies hypotheses H 2:

F(Z) = - \Z \p +  m a x i1  \Z\t , 1  \Z |q l  +  c\Z\,
p  I t  q  J

w here d  < - - 1 , t ,  q 6 (0, p)  and c ^  0. If t  = q  and c > 0, then  F  is no t a C 1- 
function.

F irst we show th a t prob lem  (1.1) has extrem al constan t sign sm ooth  solutions, i.e., 
the re  exists a sm allest nontrivial positive solu tion  and a biggest nontrivial negative 
solution. ( )

H0': H ypotheses H0 hold and the re  exists q 6 (t ,  p) ,  such th a t the  m ap t ^  G 0(t q )

is convex, w ith G 0 (t) = f0 a0 (s)sds.

Proposition  4.3 I f  hypotheses H'0 and H 2 hold, then problem  (1.1) has a smallest 
nontrivial posit ive solution u+ 6 in t C+ and a biggest nontrivial negative solution 
v-  6 —int C+.
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P ro o /  W e consider the following auxiliary D irichlet problem :

—d iv a(Vu(z ) )  = c6\ u ( z ) \ —2u(z)  in Q, (4 2 )
u Un =  0

Claim P roblem  (4.2) has a unique nontrivial positive solution u e  in t C+ and a
unique nontrivial negative solution v e  —int C+.

L et : W0’p (Q) — > R  be the C 1-functional, defined by

f+(u )  = i  G(V u( z ) )  d z  6 llu+llT Vu e  w 0 ,p(Q).
J q t

U sing C orollary 2.5, we have

f+ ( u)  y  ------ 0----- ||u ||p — c7||u ||T Vu e  W0’p (Q), (4.3)
p (  p  — 1)

for som e c7 >  0.
Since t < p,  from  (4.3) we infer th a t is coercive. A lso, it is sequentially  weakly

low er sem icontinuous. So, we can find u e W ^ p (Q), such tha t

(u) =  inf f+ ( u)  = m+.  (4.4)
ueWp p(Q)

A s in the p roof of T heorem  3.4, using hypotheses H^(iv)  and H 2 (iii) and since 
t  <  p , we obtain

(see (4.4)), so

F rom  (4.4) , we have 

thus

f+( u)  = m+ < 0 =  f + ( 0)

u =  0 .

f  (u) =  0 ,

V(u)  = c6(u+)T—1 . (4.5)

A cting on (4.5) w ith —u— e  W0’p(Q) and using L em m a 2.4, we ob ta in  u y  0, u =  0. 
So, from  (4.5) , we have th a t u solves (4.2) and in fact the nonlinear regularity  theory 
(see L adyzhenskaya-U raltseva [25] and L ieberm an [26]) and the nonlinear m axim um  
principle of M ontenegro  [30, T heorem  6], imply th a t u e  in t C+.

To show the  uniqueness of th e  solution u e  in t C+, inspired by D iaz-Saa [11], we 
in troduce the in tegral functional £ : W0’p(Q) — > R  =  R  J  {+<^}, defined by

hi \ \  fn G ( V u q) dz  if u y  0, u q e  W0,q(Q),£(u) =  i 0 -
+ w  otherwise.

Clearly £ is convex, low er sem icontinuous and it is no t identical + ro .
L et u e  W ^p (Q) be a nontrivial positive solution of the auxiliary prob lem  (4.2). 

The nonlinear regularity  theory  (see [25, 26]) and the nonlinear m axim um  principle
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(see [30]) imply th a t u e  in t C+. N ote th a t uq ^  0 and (uq) q e  w 0’q(H). So, uq is in 
the effective dom ain of the R -valued functional Z. F or h e CQ(Q,) and t > 0 small, we 
have uq + th e C+ and so the directional derivative of Z a t uq in the direction  h exists. 
M oreover, using the  chain rule, we have

, q r (G ◦  D)'(u) f  - d i v a(Vu)  , s
Z (u )(h) = L  uq-i h d z  = L  uq- i h d z ■ (4.6)

L et w be any nontrivial positive solu tion  of (4.2). A s above, we have th a t w e
in t C+. By virtue of the convexity of Z and (4.6), we have

f  (  d iv a(Vu)  d iv a ( V w ) \  q q
0 <  / ------- ^  ) (uq -  wq) dz,J a \  u q -1 wq -1

f t  i-
(see (4.2) and recall th a t t < q)  and thus

0 <  c6 I ( f t —T — W—  ) (Ul — Wq) d z , <  0

Similarly, we establish the uniqueness of the nontrivial negative solution v e 
-  in t C+. This proves the Claim.

Now, let u be a nontrivial positive solution for prob lem  (1.1). Such a solution exists 
by v irtue of T heorem  3.4 and

- d i v a(Vu(z ))  = u*(z) for alm ost all z e  (4.7)

w here u* e L p  (Œ), u* (z) e dF(z ,  u(z))  for alm ost all z e  Œ. It follows tha t u e  in t C+ 
(see [25, 26]). Let

h+(z ,Z )  =
0 if Z < 0 ,
c6f T—1 if 0 <  Z <  u(z),  (4.8)
c6u(z )T—1 if u(z) < Z-

This is a C aratheodory  function (i.e., for all Z 6 R , the function z -— > h+(z,  Z) is 
m easurable and for alm ost all z 6 n ,  the function Z -— ► h+(z,  Z) is continuous). 
W e set

H+(z , Z)  = f  h+(z,  s) ds
0

and consider the C 1-functional ft+ : W0’p (n )  — > R , defined by

ft+(u) = i  G(V u( z ) )  dz  -  i  H+(z,  u(z))  dz  Vu 6 W f t n ) .
n n

It is clear from  (4.8) and C orollary 2.5 th a t ft+ is coercive. A lso, it is sequentially 
weakly low er sem icontinuous. So, we can find u  6 W0’p (n ), such tha t

f t+ ®  =  inf ft+(u) = m+.  (4.9)
u6W1‘p (n)

so

u =  w.
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A s before, since t < p , we have that

f + (  u ) =  m+ < 0 =  (0)

(see (4.9)), i.e., u_ =  0.
F rom  (4.9) , we have

w here

y'+ ( u ) =  0 ,

so

V (  u ) = Nh+ ( u ), (4.10)

Nh+ (u )( )  = h +(-, u ( )  Vu e  W0’p(Q).

A cting on (4.10) w ith _ u _  e W 0’p (Q), we ob ta in  u  ^  0, u  =  0. O n (4.10) we act also 
w ith (u _  u)+ e  W ^p(Q). T hen

{V( u ), ( u  _  u )+) = h+(z,  u  ) ( u  _  u)+dz
J q

= I C6u(z )T_1( u  _  u)+dz  
J q

y  I  u* ( u  _  u)+dz
J Q

= {V(u),  ( u  _  u )+

(see (4.7) and hypothesis H 2 (iii)), so

I  (a(Vu) _  a(Vu) ,  V B  _ V u ) RNdz  y  0,
J {u>u}

thus

\{u > u}\N =  0

(see L em m a 2.4) and we obtain

u  y  u .

So

u  e  [0 , u], u  =  0 ,

w here

[0, u] =  {w e W0’p (Q) : 0 y  w(z)  y  u(z)  for alm ost all z e  Q}.

T hen  (4.10) becom es

V (  u  ) =  c6u T _ 1

(see (4.8)) and so

u  = u e  in t C+

(see the Claim ).
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T he above argum ent shows tha t

every nontrivial positive solu tion  u  e  W0’p (Q) of (1.1) satisfies u ^  u. (4.11)

A  sim ilar argum ent, using this tim e v e  —int C+ (see the Claim ), shows that

every nontrivial negative solu tion  v e  W0’p (Q) of (1.1) satisfies v ^  v. (4.12)

Now  we are ready  to  establish the existence of extrem al nontrivial constan t sign 
solutions of (1.1) . So, le t S+ be the  set of nontrivial positive solutions of (1.1) . F rom  
T heorem  3.4 we know  th a t S+ =  0. L et C  c  S+ be a chain (i.e., a to ta l o rdered  subset 
of S+). F rom  D unford-Schw artz [12, p. 336], we know  th a t th e re  exists a sequence 
[un}ny1 C C, such that

inf un =  inf C.
n^1

M oreover, we can have the sequence [u„}„^1 decreasing (see H eikkila- 
Lakshm ikantham  [22, L em m a 1.1.5; p. 15]). W e have

V (u n) =  u*n 'Vn >  1, (4.13)

w here un e  L p' (Q) and u^(z)  e  dF(z ,  un (z))  for alm ost all z  e  Q. E vidently  the 
sequence [u„ } „ ^ 1 c  W0’p(Q) is bounded  (see (4.13) and recall th a t un ^  u 1 for all 
n ^  1). So, we m ay assum e that

un — > u weakly in W ° p(Q),  (4.14)

un — > u in L p(Q). (4.15)

O n (4.13) we act w ith un -  u, pass to  the  lim it as n ^  + to  and use (4.14). Then

lim V(un),  un -  u =  0
rt^ + TO ' 1

and so

un — > u in W °p(Q) (4.16)

(see P roposition  2.7). By virtue of hypothesis H 2 (i), the sequence [u^}«^ C L p' (Q) 
is bounded  and so, passing to  a subsequence if necessary, we m ay assum e tha t

u^ — > u* weakly in L p  (Q).

Invoking P roposition  3.9 of H u-P apageorg iou  [23, p. 694], we have

u*(z)  c  conv lim sup dF(z ,  un (z)) c  dF(z ,  u(z))  for alm ost all z  g Q.
n ^ + ^

So, if in (4.13) we pass to  the  lim it as n ^  and use (4.16), we have

V(u)  =  u*,

w here u* g L p' (Q), u*(z) g dF(z ,  u(z))  for alm ost all z  g Q and

u ^  u

(see (4.11)).
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T herefore, we infer th a t u e  S+ and u e  inf C. Since C  is an arb itra ry  chain, from  
the K uratow ski-Z orn  lem m a, we know  th a t S+ has a m inim al elem ent u+ >  u, 
u+ e  in t C+ (from  the nonlinear regularity  theory). U sing L em m a 3.2 of Gasiriski- 
P apageorgiou [20] (the lem m a rem ains valid if the p-L aplacian  is replaced by the 
m ore general differential opera to r V , since all we need is the m onotonicity  of V ), we 
have th a t S+ is dow nw ard directed  (i.e., if u , w  e  S+, then  the re  exists y  e  S+, such 
th a t y  ^  min[u, w}). T herefo re u+ e in t C+ is the sm allest positive solu tion of (1.1).

Similarly, we produce the biggest nontrivial negative solu tion  v-  e  —int C+ of 
p rob lem  (1.1) w ith v-  ^  v (see (4.12)) using this tim e L em m a 3.3 of Gasm ski- 
Papageorgiou [20]. □

H aving these extrem al solutions we can produce a nodal solution and have the 
second m ultiplicity theorem , w hich provides precise sign inform ation for all th ree 
solutions.

T heorem  4.4 I f  hypotheses  H0 and H 2 hold, then problem  (1.1) has at least three 
nontrivial sm ooth  solutions

L et u+ g in t C+ and v— g —int C+ be the two extrem al constan t sign solutions of 
problem  (1.1) postu lated  in P roposition  4.3. W e have

m0 G in t C+, v0 g —int C + , and y0 g C1 (fi) \  {0} nodal.

Pr o o f  F rom  T heorem  3.4 we already have two constan t sign solutions

m0 g in t C+ and v0 g —int C+.

- div (V u + (z^  =  u+(z)  for alm ost all z  e  Q, 

w here u+ e L p' (Q), u+(z)  e  9F(z ,  u+(z))  for alm ost all z  e  Q, and 

- d iv  (V v- (z)) =  v - ( z )  for alm ost all z  e  Q,

w here v -  e  L p' (Q), v - ( z )  e  9F(z ,  v- (z)) for alm ost all z  e  Q. 
W e consider the  following trunca tion  of f  (z, ■):

v - ( z )  if Z < v - ( z ) ,

f  (z, Z) =  1 f  (z, Z) if v—(z) <  Z <  u+(z), (4.17)

u+(z)  if u + ( z ) < Z .

Also, let

f ± ( z , Z )  =  f ( z ,  ± Z ±).

W e set

F (z,Z)  =  [z, s) ds, F±( z ,Z )  =  -.(z, s) ds
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and consider the locally Lipschitz functionals ę,  ę± : W0’p(Q) — > R , defined by

ę(u)  = í  G (V u( z ) )  dz  -  Í  F  (z, u(z))  dz  Vu e  Wy  p(Q),
J q J q

ę±(u)  = í  G (V u (z ) )  dz  -  Í  F ± ( z ’ u(z))  dz Vu e  Wy p (Q).
J q J q

A s in the p roo f of P roposition  4.3, we show  that

K ę  ç  [v_, u+], Kę+ =  {0, u+}, Kę_ =  {v_, 0}. (4.18)

Claim u+ and v_ are local m inim izers of the functional ę.
E vidently  is coercive (see (4.17) ) and sequentially  weakly low er sem icontinu

ous. So, we can find u+ e W y p(Q),  such that

ę+(u+) =  inf ę+(u) = m+.  (4.19)
ueWp p (Q)

F rom  hypothesis H 2 (iii) and since t  < p , we have

ę+(u+) = m+ < o =  ę + (0)

(see (4.19)), i.e., u+ =  0, so

u+ = u+

(see (4.18) and (4.19)). _
B ut u+ e  in t C+ and ę \ W+ = ę +\W+. H ence u+ is a local C ¿(Q)-m inim izer of ę,  thus

by virtue of P roposition  2.6, it is also a local W0’p (Q)-m inim izer of ę . Similarly, for
v_ e  —int C+, using this tim e the functional ę_.  This proves the Claim.

A s before (see the p roof of T heorem  3.4), w ithout any loss of generality , we may 
assum e th a t ę (v_)  y  ę(u+)  and because of the Claim , we can find q e  (0, 1) small, 
such tha t

ę ( v _ ) y  ę(u+) < inf {ę(u)  : \\u _  u+\\ =  q} =  ||v_ _  u+\\ > q. (4.20)

(see A izicovici-Papageorgiou-Staicu [1, p roof of P roposition  29] or Gasiriski- 
P apageorgiou [20, T heorem  3.4]).

Since ę  is coercive (see (4.17)), it satisfies the Palais-Sm ale condition. This fact 
and (4.20), perm it the use of the m ountain  pass theo rem  (see T heorem  2.1). So, we 
can find a so lu tion  y 0 e  C^(Q) \  {u+, v_} of prob lem  (1.1) (see (4.19) and (4.18) ). 
M oreover, as in the p roof of T heorem  3.4, using T heorem  2.2, we show th a t y0 =  0. 
Since y0 e [v_, u+] n  C¿(Q) (see (4.18) and use the nonlinear regularity  theory), y0 g  
{u+, v_} and given the extrem ality  of u+ and v_,  we conclude tha t y0 e C¿(Q) \  {0} 
m ust be nodal. □

R em ark 4.5 C om pared  with the  results of L iu-L iu [27, T heorem  1.1] and Liu [28, 
T heorem  1.2], our w ork here is m ore general in m any respects. In bo th  the a fo re
m entioned  works, the d ifferential opera to r is the  p-L aplacian  (i.e., G ( y) = p ||y ||p), 
F (z, ■) e  C 1, asym ptotically at ± œ  no in teraction  is allow ed w ith X1 and they do not 
provide sign inform ation  for the th ird  solution. H ow ever, the ir condition  on f  (z, ■) 
n ear the origin is a little m ore general than  ours, since f  (z, ■) can be (p  _  1)-linear
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near zero. H ere  we are forced to  assum e a “concave” nonlinearity  near the origin 
in o rder to  overcom e the  nonhom ogeneity  of the differential o p era to r and produce 
extrem al constan t sign solutions and th rough  them  produce a nodal solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution 
Noncommercial License which permits any noncommercial use, distribution, and reproduction in 
any medium, provided the original author(s) and source are credited.
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