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Abstract We consider a nonlinear elliptic problem driven by a nonlinear non-
homogeneous differential operator and a nonsmooth potential. We prove two
multiplicity theorems for problems with coercive energy functional. In both the-
orems we produce three nontrivial smooth solutions. In the second multiplicity
theorem, we provide precise sign information for all three solutions (the first
positive, the second negative and the third nodal). Out approach is variational,
based on the nonsmooth critical point theory. We also prove an auxiliary result
relating smooth and Sobolev local minimizer for a large class of locally Lipschitz
functionals.
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418 L. Gasinski, N.S. Papageorgiou

1 Introduction

Let ~ ¢ RN be a bounded domain with a C2-boundary 3”. In this paper we study
the following nonlinear elliptic problem with anonsmooth potential (hemivariational
inequality):

i-diva(Vu(z)) 6 3F(z, u(z)) in ()
junr = 0. ()

Here a: RN —>RN is a C*-map, which is strictly monotone and satisfies certain
other regularity conditions (see hypotheses HD). Two important special cases of the
map a are the following:

a(y) = llyll-2y Vy 6 RN

which corresponds to the p-Laplace differential operator
Apu = div (||Vullp-2Vu) Vu 6 W0’p(Q)
and
a(y) = liyllp-2y + milyllg-2y Vy 6 RN,
withn ~ 0,27~ g~ p < +ro, which corresponds to the (p, 9)-differential operator
Apu + fiAqu, withu 6 WOp(").

Also F? xR — >R is ameasurable potential which is onlylocally Lipschitz and
in general nonsmooth in the second variable. By 3F(z,Z) we denotethe generalized
(Clarke) subdifferential of Z — > F(z, Z) (see Section 2).

We are interested in the existence of multiple nontrivial solutions for problem
(1.1), when the energy functional of the problem is coercive. We prove two such
multiplicity theorems (“three solutions theorems”). In the first, we produce three
nontrivial smooth solutions, two of which have constant sign (one positive and the
other negative). In the second multiplicity theorem, by strengthening the hypotheses
on the potential F(z, ®, we show that the third solution is nodal (sign changing).
To the best of our knowledge this is the first result (even for smooth problems,
i.e., when F(z, 36 C:(R)), which produces a nodal solution for problems with a
nonhomogeneous differential operator.

Our approach is variational based on the nonsmooth critical point theory (see
Gasinski-Papageorgiou [18] and Motreanu-Radulescu [31]). We mention that three
solutions theorems for coercive equations were proved by Ambrosetti-Lupo [2],
Ambrosetti-Mancini [3], lannizzotto [24], Struwe [34] for certain parametric semi-
linear equations (lannizzotto [24] deals with hemivariational inequalities, while the
other consider “smooth” problems) and by Averna-Marano-Motreanu [4], Liu-Liu
[27], Liu [28], Papageorgiou-Papageorgiou [33] for problems driven by p-Laplacian
(Averna-Marano-Motreanu [4] deal with parametric hemivariational inequalities,
while the others examine “smooth” potentials). Our work here is closer to those
of Liu-Liu [27] and Liu [28], since no parameter appears in (1.1) and our the-
orems extend the results of [27] and [28] in many different ways. In the next
three papers of Filippakis-Gasiriski-Papageorgiou [14] and Gasinski-Papageorgiou
[16, 17] we also find multiplicity results for hemivariational inequalities in the case
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Coercive Problems with Nonhomogeneous Differential Operator 419

of various boundary value conditions: Dirichlet, periodic and Neumann. Finally,
we mention that hemivariational inequalities arise naturally in problems of non-
smooth mechanics. For several such applications, we refer to the book of Naniewicz-
Panagiotopoulos [32].

In the next section, for the convenience of the reader, we recall some basic
facts from the nonsmooth critical point theory, which is based on the notion of
subdifferential of a locally Lipschitz functional. We also prove an auxiliary result of
independent interest relating smooth and Sobolev local minimizers for a large class
of nonsmooth locally Lipschitz functions.

2 Mathematical Background—Preliminary Results

Let X be a Banach space and X* its topological dual. By { ¢) we denote the duality
brackets for the pair (X*, X). For a given locally Lipschitz functional y : X — >R,
the generalized directional derivative y0(z; h) ofy atx e X in the direction h e X, is
defined by

AN J—
yOEx; h) ¢ Yimsupy(x ) =y (X) .
XN X t
t\ 0
It is easy to see that the map x i—>yO0(x; h) is sublinear continuous. Therefore,

it is the support function of a nonempty, convex and w*-compact set dy(x) ¢ X¥*,
defined by

dy(x) = {x*e X*: {x*, h) ~ y°(x; h) forallh e X }.

The multifunction x i— > dy(x) is called the generalized (or Clarke) subdifferential of
y.Ify : X — >R iscontinuous convex, theny islocally Lipschitz and the generalized
subdifferential of y coincides with the subdifferential in the sense of convex analysis,
given by

dey(x) = {x*e X* :{x*,h) ~ y(x + h) —y(h) forallh eX }.

Moreover, ify e Cx(X), then y is locally Lipschitz and dy(x) = {y'(x)}.
Ify,”~:X — >R are locally Lipschitz functionals and X e R, then

d(y + ft)(x) ¢ dy(x) + 3*(x) Vxe X
and
d(Xy)(x) = Xdy(x) Vxe X, XeR.

The generalized subdifferential has a very rich calculus, which extends that of smooth
and of continuous convex functionals. For more details, we refer to the book of
Clarke [9].

Lety : X —>R be a locally Lipschitz functional. We say that x e X is a critical
point of y, if 0 e dy(x). If x e X is a local extremum of y (i.e., x is either a local
minimizer or a local maximizer of y), then x e X is a critical point of y.

For a given locally Lipschitz functionaly : X — >R, we set

my() = inf{|]x*[*: x* e dy(x)}
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420 L. Gasinski, N.S. Papageorgiou

(here | «|* denotes the norm of the dual space X*). We say that y satisfies the
Palais-Smale condition, if the following holds:

Every sequence [xn}n*i ¢ X, such that {y(xn)}n>l ¢ R is abounded sequence
and

mv(Xn) —>0
admits a strongly convergent subsequence.

Using this compactness-type condition, we can have the following nonsmooth
extension of the well known mountain pass theorem.

Theorem 2.1 If X is a Banach space, y: X — >R is a locally Lipschitz functional
which satisfies the Palais-Smale condition, x0,x1 e X aresuch that [x | —xO0| > r > 0,

max {y(x0), y(x\)} < inf{y(x) : |x —xO0||]=r} = nO
and

C = g YO

where
T = {y e C([0, I]; X) : y(0) = x0, Y(I) = xi}.
then ¢ » nOand c is a critical value of the functional y.
The nonsmooth critical point theory was initiated with the work of Chang [6]
Detailed presentations of the theory with extensions and generalizations can be

found in the books of Gasmski-Papageorgiou [18] and Motreanu-Radulescu [31].
Lety : X — >R be alocally Lipschitz functional and c e R. We define

yc= {xe X :y(x) <c}
Ky = {xe X :0e dy(x)}.
Ky = {x e Ky : y(x) = c}.

The next result is due to Corvellec [10] and it is the nonsmooth counterpart of the so
called second deformation theorem (see Gasiriski-Papageorgiou [19, p. 628]).

Theorem 2.2 If X is a Banach space, y :X — >R is alocally Lipschitzfunctional
which satisfies thePalais-Smale condition, ae R, b e R U[+c»}, KyOy—(a, b) =0
and Kyg isfinite and contains only local minimizers ofy, then there exists a continuous
deformation h: [0, I1x yb — >yb, such that:

(a) h(t, ¢)|Ka = id\Kafor all te [0, I];
(b) h(l,yb)c yaU"Ky
(c) y(h(t,x)} » y(x)forall (t, x) e [0, I]xyb.

In particular yaU K@ is a weak deformation retract ofyb.
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Coercive Problems with Nonhomogeneous Differential Operator 421
In the analysis of problem (1.1),in addition to the Sobolev space W0’p(Q), we will
also use the Banach space
Co(Q) = {ue C\Q) :u|xg=0}
This is an ordered Banach space with positive cone
C+ = {ue C1™) : u(z) ~ Oforallz e Q}.

This cone has a nonempty interior, given by
) i du i
intC+ = jueC+:u(z) >0forallze Q, — (z)< Oforallz e 3Qj,

where n(-) denotes the outward unit normal on 3Q.

For the next auxiliary result, we can be more general and allow the map a(-)to be
z-dependent. More precisely, we introduce the following hypotheses:

HO0:G:Qx RN —>Risa”-function, such that G(z, 0) = 0, VyG(z, y) = a(z, y)
and a(z, 0) = Ofor almostallz e Q and

(i) ae CLQ x (RN{0}); RN);
(ii)  there existcO > 0and n ~ 0,such that foreveryz e Q and everyye RN
we have

co(n + lyl)P2lI£12 < (Vya(z, y)E, £)Rn  VEe RN;
(iii)  there exists ci > 0, such that for every z e Q and every y e RN\ {0}, we have

W vya(z, y) | < ci(n + llyll)p—=2,

with n as in (ii);
(iv) for every q > 0,there exists c2= c2(q) > 0, such that

\a(z, y) —a(z', y)| < c2(i + |lyl)p—lz —z|| Vz eQ, z' e dQ, [yl < a.
Example 2.3 The following maps satisfy hypotheses HO:
(a) Let
Gi(z,y) = b&(Z)IIyllp,

with & e C1(Q), &(z) >0forallz e Qand 1< p < +ro. Then

ai(z, y) = &(@)llyllr—2y-

This potential function corresponds to a weighted p-Laplacian differential
operator.
(b) Let

Bale,y) = 52 byl + €O 1
p q

with & ,& e C-(Q), &(z) > 0, &(z) >0 forall ze Qand 2~ g™ p < +ro.
Then

a2(z,y) = &lL(z)Nyllp=2y + & (z)llyllg-=2y.
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422 L. Gasinski, N.S. Papageorgiou

This potential function corresponds to a weighted (p, gO-differential operator.
Problems with such potentials were studied recently by Cingolani-Degiovanni
[7], Figueiredo [13], Medeiros-Perera [29].

(c) Let

Gs(z,y) = (lyllp+ In (1+ |lyHp)),

with 0 e C1(fi), G(z) >0forallze andp ™ 2 Then

a3(z,y) = A(j lp—2y+ it t_syo

From hypotheses HO and using the integral form of the mean value theorem, we
obtain the following auxiliary result.

Lemma 2.4 If hypotheses HOhold, then for all z 6 ~, a(z, ® is strictly monotoneand
for all (z, y) 6 ~ x RN, we have

(a(z, y), Y)Kv > p —illyllp and \a(z,y)| < ci(™+ |lyl})p-1.

An easy consequence of this lemma are the following growth estimates for the
potential G(z, ».

Corollary 2.5 If hypotheses HOhold, thenfor all z 6 ~, G(z, ® isstrictly convex and

( @ ) hUB 2 Bz, y) < & 4 JlyllBvlly) € Q & RIEN
pp -

The next result relates local CO(&) and W p(E)-minimizers for a large class of
locally Lipschitz functionals. Such a result was first proved for

G(y) = 2 1lyll2

and smooth (i.e.,, C1) functionals by Brézis-Nirenberg [5]. It was extended to the case

G(y) = L llyllp,
P

with 1< p < and smooth functionals by Garcia Azorero-Manfredi-Peral
Alonso [15] (see also Guo-Zhang [21], where p ~ 2). For a nonsmooth version we
refer to Gasinski-Papageorgiou [18, p. 655]. The next proposition extends all the
aforementioned works. Moreover our proof is simpler.

So, let FO: Ex R — >R be a measurable function, such that for almost all z e
the function Z — > F0(z,Z) is locally Lipschitz and

ju ~ a(z) + c\Z|r-1 foraa.ze all Ze R, allue dF0(z,2),
withae Le(Q)+,c>0and 1< r < p* where

Np
p = N—p ifp<N,
ifp ~ N.
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Coercive Problems with Nonhomogeneous Differential Operator 423
Let ty0i wO’p(£) — >R be the functional, defined by
fo(u) = 1 G(z’Vu(z))dz - | Fo(z’u(z))dz Vue W¢p(£).
IR IR
Evidently tyOis Lipschitz continuous on bounded sets, hence it is locally Lipschitz.

Proposition 2.6 If hypotheses Hohold and u0e WO’p(£) is a local CA(£)-minimizer
of f O, i.e., there exists $0 > 0, such that

foo(uoo) < tyo(uo T h) Vhe CO(E)’ IhCo® < $0’

then u0e C”A"fa) for some B e (0’ 1) and it is also a local WO’ p(£)-minimizer of ty0,
i.e., there exists $1 > 0, such that

fo(uo) < to(uo T h) Vhe W¢p(£)' |lhy < $1.

Proof Leth e C¢(£) and consider t > 0 small. Then by hypothesis
fo(uo) < fo(uo T th)’
S0
0 < "O0(uo; h). (2.1)

Since h e C¢(£) is arbitrary, @uO0; ¢ is continuous and C¢(£) is dense in WOp(£),
from (2.1), we infer that

0 N tyOo(uo;h) Vh e WOp(£)’
S0
0 e dfo(uo)
and thus
V (u0) = u*, (2.2)
where V: WAp(Q) —>W-1,p'(Q) = WOp(Q)* (with p+ p = 1) is the nonlinear

map, defined by

(V(u), y) = i (a(z, Vu), Vy)RNdz Vu,y e W0p(Q)
Ja

and w0e Lr(Q) (with 1+ 1 = 1), u*(z) e dFO0(z, uo(z)) for almost all z e Q (see
Clarke [9, p. 83]). From (2.2), it follow's that

-diva(z, Vuo(z)) = uo(z)e dF”z, u((z)) inQ, ()
uol3Q = 0. (23)

Invoking Theorem 7.1 of Ladyzhenskaya-Uraltseva [25, p. 286], wehave that u0e
L X (Q). Then on (2.3) we can useTheorem 1 of Lieberman [26]andconclude that
ude C17™(Q) forsome f e (0, 1).
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424 L. Gasinski, N.S. Papageorgiou

Next weshow that uOs also a local WA’p(CE)-minimizer of ft0.Weargue by

contradiction. So, suppose that u0O is not a localW*’p(Q)-minimizer of ~0. For
& >0,let

%e = {ug WOp(E) : \W\r < é}
and consider the following minimization problem:

inf yo(uo+h) = még > —e. (2.4)
he%

Since uOis not a local W0’p(Q)-minimizer of ft0, we have
m0 < fu(u0)- (2.5)

Let {hn\h>1 c Bs be a minimizing sequence for problem (2.4). Using Corollary 2.5

andthe growth hypothesis on dFO0(z, ¢), we see that the sequence {hn}h>1 CW1p(Q)
is bounded.So, passing to a subsequence if necessary, we may assume that

hn —>hs weakly in W0’p(Q), (2.6)
hn —>hs in Lr(Q). 2.7
Clearly f 0is sequentially weakly lower semicontinuous. So, from (2.6), we have
AQ(uO+ hs) < liminff O(u0+ hn),
hence
S

fO(uo+ hs) = m;

and thus he = 0 (see (2.5)).

So, the infimum in problem (2.4) is realized at some hse Bs\ {0} (see (2.6)).
Invoking the nonsmooth Lagrange multiplier rule of Clarke [8], we can find Xs ~ 0,
such that

0 G d"0(u0+ hs) - Xs\hs\r hs,
o)

V(uo + hs) = u*+ Xs\hs\ 2hs,

where u* g Lr(fi), Us(z) GdFO(z, (u0+ hs)(z)) for almost all z G fi. Then

i-diva(z, V(uo + hs)(z)) = us(z) + Xs\hs(z)\r-2hs(z) in fi,

lhs\afi = 0. 8)
From (2.3) and (2.8), for almost all z G fi, we have
-div (a(z, V(uo+ hs)(z)) - a(z, Vuo(z)j)
= u*(z) - U0o(z) + Xs\hs(z)\r-2hs(z) (2.9)
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Coercive Problems with Nonhomogeneous Differential Operator 425

Case 1 Suppose that Xe 6 [- 1, 0] for alle 6 (0, 1].
We set

We(z) = (u0+ he)(z),
Oe(z, y)

a(z,y) - a(z, Vm(z)).
Then from (2.9), for almost all z 6 fl,we have
-div Ce(z, VWe(z)) = uUs(z) - ud(z) + Xe\(We - u0)(z)\r 2(We - m)(z). (2.10)

On (2.10) we apply Theorem 7.1 of Ladyzhenskaya-Uraltseva [25, p. 286] and
produce M1> 0, such that

llwe|lTO < Mi Ve 6 (0, 1]. (2.11)

Clearly oe(z, y) satisfies hypotheses HO. This fact and(2.11), permit the use of
Theorem 1 of Lieberman [26] and so we can find y 6 (0, 1) and M2> O,such that

we 6 COy(& and IW ~”An) ~ M2 Ve 6 (0, 1] (2.12)

Case 2 Suppose that Xen < -1 foralln ~ 1, withen\ 0,en6 (0, 1] foralln ~ 1
In this case we set

u0 + hen

Ve,
Oen(z, y) = Tri—r(a(z, Vuo(z) + y) - a(z, Vu0(z))).
\"en1

Then for almostallz 6 n and alln » 1, we have
-div°en(z,Vhen(z)) = -\‘IA'Ie"r‘]'I\'(uI (z) - u0(z)) - \he, (2). (2.13)
For every Z 6 W0’p(n), we have
(V(u0),Z) = an u0z dz (2.14)
(see (2.3)) and
[V(uSn),z) = an u*nZdz + Xeann \Wen - uOV\r-2(Wen- ~)Z dz (2.15)

(see (2.9)).
Letp ~ land consider the function |Wen- uO\p(Wen- u0). Then

V (\Wen - uQ\P{We, - u0)) = (p + 1)\Wen- uO\"V (Wen- u0),

o)
\wSh - uo\P(wS - W§ G WQp(Q) 'in> 1

(recall that wS,wq g Cj(")).
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426 L. Gasinski, N.S. Papageorgiou

So, we can use this function as the test function £ in (2.14) and (2.15). We do this
and then subtract (2.14) from (2.15). Using Lemma 2.4, for alln » 1we obtain

on {@+ 1) (a(z, W) —a(z, Vu), Vwh —V
Jaq
= (u*n—a* (wh — ul)\wh — dz
JQ
+ X j \wdh— uO\r-+xdz. (2.16)
Q

Because of (2.11), recalling that u0 e C1/(Q) and using Holder inequality with expo-
nents y.q» (_ysWe have

/ « _ u0)(ws,_ u0)\wsn_ uo\Pdz
AN M3 i \wh —u0|X+1ldz
Q -1
< M3IQINp |[wh —u01 vn > 1, - (2.17)

for some M3 > 0. Here |+ In stands for the Lebesgue measure on RN. We return to
(2.16) and use (2.17). Then

3 1
—XS\WH —u0  \r+ M 3\Q \\+ Wk | N

SO

1 =
—Xsn\wen —u0|r+X ~ M3IQIn X x 1, nx 1

We letx »~ + ~ and obtain
| |‘r_1
_"sn\we, . M ANCM3 Vn Nl

o)
|W§n—u8tr ]IA"__l Vn & 1 £2.18),

We return to (2.13) and denote the right hand side by rs,,(z, 2). If M4 = |uQ| +
M1 > 0 (see (2.11)), then for almostall z e Q and all Ze [—M4, M 4], we have

\n$ (z,Z)\ < 77— [M5+ M3] Vn> 1,
(z.2) et ]

for some M5 > 0. This fact and since aS (z, y) satisfies hypotheses HO, permit the use
of Theorem 1 of Lieberman [26] and so we can find yoe (0, 1) and M6 > 0, such that

hh e C@r(Q) and \\hJ|C,T O < M6 Vn > 1 (2.19)
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Recallthatfor every y'e (0, 1) the space Cp’Y(Q) isembedded compactly in
C1(Q). So,from (2.12) and (2.19) and by passing to asuitablesubsequence if
necessary, we have

u0d+ hh — > u0 in Cp(Q)

(recall that en\ 0). Because uOis a local CO(Q)-minimizer of 20, we can find n0 " 1,
such that

f'o(ud) < f'O(uo+ h&) Vn > (2.20)
On the other hand since h$h are solutions of (2.4) and because of (2.5), we have

AQ(UO+ h%) < ~0(uo) Vvn> 1 (2.21)
Comparing (2.20) and (2.21), we reach a contradiction. This proves that u0is a local

WO0’p(Q)-minimizer of fi0. O

Recall (see the above proof) that vV : W°p(Q) — >W-1,p'(Q) isthe nonlinear map,
defined by

(V(u), vy) = Ji (a(z,Vu), Vy)dz Vu,y e WOp(Q). (2.22)
q

From Lemma 3.2 of Gasiriski-Papageorgiou [20, p. 562], we have the following
result.

Proposition 2.7 If hypotheses HOhold and V : WOp(Q) — >W Ip'(Q) isdefined by
(2.22), then V iscontinuous, bounded (i.e.,, maps bounded sets to bounded sets), strictly

monotone and of type (S)+, i.e.,, ifun — >u weakly in W f p(Q) and

limsup (V(un), un—u ~ 0,

then un — >u in W0’p(Q).

Letk!be the first eigenvalue of (—Ap, W°p(Q)).We know thatk! > Qisisolated,
simple and

IIVulp > MINIp Vue WO0p(Q)

(see Gasiriski-Papageorgiou [19]).
From Aizicovici-Papageorgiou-Staicu [1, Lemma 12], we have

Proposition 2.8 If&e Lp(Q)+, &(z) » p-\ for almostallz e Q, & = p—4, then there
exists 99 > 0, such that

IVullp- f &ulpdz > ~"IMIp Vue WQp(Q).
p-1 Jq
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428 L. Gasinski, N.S. Papageorgiou

Finally we mention that throughout this work, for every u 6 WO0’p(n), we set
lull- = [IvVullp
(by virtue of Poincare inequality) and
u+ = max{0,u}, u~ = max{0, -u}.

We know that u+, u- 6 W0’p(n) and u = u+ - u-, \u\ = u+ + u-.We mention that
the notation | m| will also be used to denote the RN-norm. No confusion is possible,
since it will always be clear from the context which norm is used. Also, as indicated
in the proof of Proposition 2.6, \m\n denotes the Lebesgue measure on RN.

3 First Multiplicity Theorem

In this section we prove a multiplicity theorem, which produces three nontrivial
smooth solutions, two of which have constant sign (one positive, the other negative).
To do this we need to drop the z-dependence on the map a. For easy reference, we
state in detail the hypotheses:

HO0: G : RN — >R isa C1-function, such that G(0) = 0, VG(y) = a(y) = ao(|ly )y,
a0(t) > 0,a(0) = 0 and

(i) a6 CIRN\{0}; RN)
(ii)  there existc0 > 0 and n ~ 0,such that for everyy 6 RN\ {0}, we have

o(n + llyll)p-21zI2 < (Va(y)Z, Z)RN VZ6 Rn;

(iii)  there exists c1> 0, such that for everyy 6 RN\ {0}, we have

[Va(y) \ < ci(n +\\yll)p-2,

with n as in (ii);
(iv) there existst 6 (1,p), such that

G
1in S - .
yAO0 11>t

Remark 3.1 Clearly, hypotheses HO are a particular case of hypotheses HO. The
reason we have dropped the z-dependence is that we need an extension of the
nonlinear strong maximal principle of Vazquez [35], valid for the p-Laplacian, to
more general nonhomogeneous differential operators, like the one in this paper.
The only such result for z-dependent operators is that of Zhang [36], who though
requires that n = 0 in hypotheses HO(ii) and (iii). Such a condition excludes from
consideration (p, q)-differential operators. Note that the examples presented after
hypotheses HO, satisfy hypotheses HO (of course with d = d1 = d2 = 1).

The hypotheses on the nonlinear potential F(z, Z) are the following:
HL1 F:n x R —>R is a measurable function, such that for almost all z 6 n, we
have F(z, 0) = 0,0 6 3F(z, 0), F(z, ®is locally Lipschitz and
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(1) there exista 6 L*(n)+ and ¢ > 0, such that
\u¥\  ~a(z) + c\Z\p-1 foralmostallz 6 n,allZ 6 R, allu*6 3F(z,2);

(i)  thereexistsd 6 L™(n)+, d(z) < p-i foralmostallz 6 n, d = j-1,such that

limsup — Z ™ d(z) uniformly for almostallz 6 n;
ZME<X, \Z\

(iii) ift 6 (1,p) isasin hypothesis HO(iv), then there exists f 0 > 0, such that

liminft F~L ZZ > ff0 uniformly foralmost all z 6n;
fr \t h y

(iv) for every g > 0, there exists ye > 0, such that, if
0(z,Z) = min{u* : u* 6 3F(z,2)\,
then

0(z,Z) + Yq\Z\p-2Z ~ 0 for almostallz 6 n, all Z 6 [—q, q].
Remark 3.2 Hypothesis H1(ii) implies that for almost all z 6 n, the function F(z, ®
is p-(sub)linear near £ro. Hypothesis H1(iii) implies the presence of a “concave”

nonlinearity near the origin. We stress that no sign condition is imposed on the
elements of 3F(z, 2). Instead, we impose the weaker condition H 1(iv).

Example 3.3 The following potential function F(Z) satisfies hypotheses H 1 (for the
sake of simplicity, we drop the z-dependence):

(I:IZIT if \ZI< 1,

-1 ZIpif 1?21 > 1,
JZp

with 1< t < p, c = —. Note that F isnot a C1-function.

Lete : Wgp(Q) — >R be the energy functional for problem (1.1), defined by
e(u) = 1 G(Vu(z))dz- i F(z,u(z))dz Vue W¢p(Q).
Evidently e is locally Lipschitz.

Theorem 3.4 If hypotheses HO and H! hold, then problem (1.1) has at least three
nontrivial smooth solutions:

uoe intC+, voe —intC+, and yOe CQ(Q)\ (0)

and u0, vOoare local minimizers ofe.
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Proof Let
Ft(z,2) = F(z, £Z%) V(z,2) e QxR
and lety+ : p(Q) — >R be the locally Lipschitz functionals, defined by

Vi(u) = 1 G(Vu(z))dz — i Fx(z, u(z))dz Vue Wop(Q).
Jg Jag

By virtue of hypotheses H—{) and (ii) and Lebourg mean value theorem for locally
Lipschitz functionals (see e.g., Clarke [9, p. 41]), for a given e > 0, we can find c3 =
c3(e) > 0, such that

F(z,Zz) » —(&(z) + e)|Z|p+ c3 foralmostallze Q, allZe R. 3.1)
Then using Corollary 2.5, estimate (3.1) and Proposition 2.8, we have
v+(u) = | GWw)dz— 1l F(z,u)dz
JQ JQ

> ,® HVuyp —— [ &ulpdz —- Juyp —c4
p(p —i) P plq
" —{fo—— )y«yp—c4 Vug w0’p(Q).
p\ m/
Choosing e g (0, £0M), we infer that y+ is coercive. Also, exploiting the compactness

of the embedding of WOp(Q) into L p(Q), we can easily check that y+ is sequentially
weakly lower semicontinuous. So, by the Weierstrass theorem, we can find u0g

WO0’p(Q), such that

y+(u0) = inf  y+(u) = m+. 3.2)
ug\0p(Q

By virtue of hypotheses HO(iv) and H —iii), for agivene > 0,we can find 5= 5(e) >0
and B—= RB—e) > 0, such that for almostallz g Q and ally g Rw,Z g R with |[y|| < &
and |Z| < & we have

G(y) < -_I_yy||T and F(z,2) > E 1ZIT- (3.3)
Letu g int C+ and let t g (0, 1) be small, such that
tu(z) g [0,5] and |V(tu)(2)\ g[0,&] Vzg Q

Then, using (3.3), we have

y+(tu) / G(V(tu)dz — F(z, tu)dz
JQ JQ

A

. IVuy;r—Xt- iK

¥

T

T . |T))
luy T—Rilul|£).
Choosing e e (0, ,we see that

ty+(tu) < 0,
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SO
y+(Uuo = m+ < 0 = y+(0)

(see (3.2)), i.e.,, u0 = 0.
From (3.2), we have

0 e 3y+(u0),
o)
V(u0) = uo, (3.4)

where U0 e Lp (Q), v0e dF+(z, u0(z)) for almostallz e Q.
From the nonsmooth chain rule (see Clarke [9, p. 42]), we have

0 if Z <0,
dF+(z, 2) C {£3F(z,0): £e[0, 1]} if0< Z< 1, (3.5)
9F(z, 2) ifl<Z.

On (3.3) we act with —u0 e WO0’p(Q) and using (3.5) and Lemma 2.4, we obtain

D vu_p < o
1

i,e, u0” 0,u0=0.
From (3.4), we have

-div a(Vuo(z)) = u0(z) inQ,
udlan = 0

Since
Vuo(z) = 0 on {u0= 0}
(Stampacchia theorem; see e.g., Gasmski-Papageorgiou [19, p. 195]), we infer that
u0(z) e dF(z, uo(z)) foralmostallz e Q

(see (3.5)). So, u0is a nontrivial positive solution of problem (1.1). Moreover, as
before (see the proof of Proposition 2.6), from the nonlinear regularity theory (see
Ladyzhenskaya-Uraltseva [25] and Lieberman [26]), we have that u0e C+ \ {0}. Let
g = ||u0]|TOand let ye > 0 be as postulated by hypothesis H1(iv). Then

—diva(Vu0(z)) + YquO(z)p—+ = U0(z) + yem(z)p—t > 0 foralmostallz e Q,
S0
diva(Vuo0(z)) ™ vyeuO(z)p 1 foralmostallz e Q

and thus u0 e int C+ (see Montenegro [30, Theorem 6]).
If

W+ = {ue WOPp(Q) : u(z) » 0foralmostallz e Q},
then clearly

Viw+ = V+w+m
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So, uOis a local C1(n)-minimizer of y. Invoking Proposition 2.6, we infer that uOis a
local WO’p(n)-minimizer ofy.

Similarly, working with the functional y-, we produce one more constant sign
smooth solution v0 6 —int C+ of problem (1.1), which is a local minimizer of the
functional y.

Wi ithout any loss of generality, we may assume that

V(v0) < V(u0)

(the analysis is similar, if the opposite inequality is true) and that the set Ky is
finite (otherwise, we already have infinity solutions for problem (1.1)). Reasoning
as in Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 29] (see also Gasinski-
Papageorgiou [20, Theorem 3.4]), we can find q 6 (0, 1) small, such that

V(v0) < y(m)<infiv(u) : W- u0| = q} = nelK-u0|>q. (3.6)

As we did fory+, in asimilar way, using hypothesis H1(ii),we cancheck thaty is
coercive and so it satisfies the Palais-Smale condition. This fact, together with (3.6)
permit the use of the nonsmooth mountain pass theorem (see Theorem 2.1). So, we
can find y0 6 WO0p(n), such that

y(v0) < y(uo) < mQ < y(y0) @7
and
0 6 3y(yo). (3.8)
From (3.7) it is clear that y0 6 {vO, u0}, while from (3.8), we have
V(y0o) = uo,

where «0 6 Lp'(n), u0(z) 6 3F(z, yo(z)) for almost all z 6 n. Hence y0is a solution
of (1.1) and the nonlinear regularity theory implies that y0 6 C1(n). It remains to
show that y0 = 0. From Theorem 2.1, we have

¢ = y(y0) = jaf max y(¥Y(1)), (3:9)
where
r={y 6 C([0.1:W1'p(n)) : y(0) =vOY(1)="}.
From (3.9), we see that, if we can find y* 6 r, such that
V(y*(0) < 0 Vt6 T,
then

¢ =y(y0o < 0= y(0)

and so yO = 0. Hence our effort is on producing such a path y* 6 r.
To this end, let

rc = {y 6 C([0,1;C m ) :y(0) =v> Y(1) = u0}.
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By virtue of the density of the embedding of CL(Q) into WO’p(Q), we see that Tcis
dense in T. We can find y e Tc, such that 0 g y ([0, 1]). Since

Y([0,1]) ¢ CO(Q) and 0 e y([O,1]),
we can find X e (0, 1) small, such that
X\Wu(z)\\'y S, and Xw(z)\ y S Vze Quey([0,1] (3.10)
(where Sis as in (3.3)) and

infllullU = m > 0. 3.11
uey&o,l T ( )

Forallue Y [0, 1] ,we have

y(Xu) = | G(XVu)dz — | F(z,Xu) dz
Q Q
y XTellVulH —PXI1ullT
y XT(sc5—pim) (3.12)

for some c¢5> 0 (see (3.3),(3.10), (3.11) and note thaty ([0, 1])is compact in
WO0’p(Q)). Choosing ee (0, ~cm) and setting y =Xy, from (3.12), we see that

yly <0 (3.13)

and y is a continuous path in WO’p(Q) which connects Xv0and Xu0.

Next, we will produce a continuous path in W0’p(Q) which connects Xu0 and u0
and along which y is strictly negative. To this end, recall that

m+ = inf  y+(u) < 0 = y+(0).
ueW- (Q

Also, we may assume that Ky++ = {u0} or otherwise we already have a second
positive solution (note that by virtue of (3.5) and the nonlinear regularity theory,
Ky+c C+). Invoking Theorem 2.2, we can find a continuous deformation h: [0, 1]x
y+ — >y+, such that

h(l,y8) ¢ y++J Knm+ = ym+J{u0} = {u0} (3.14)
(since ym+ = 0) and
y+ (h(t, u)) y y+(u) Vte[O, 1], ue yo+ (3.15)
Consider the continuous path y+: [0, 1] — > WO0’p(Q), defined by
y+(t) = h(t, Xu0)+ Vte[O0, 1]
Then

y+(0) = h(0, Xu0)+ = (Xu0)+ = XuO.
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Also
Y+(1) = h(\,Xu0)+ = uo

(see (3.14)). Hence y+ is a continuous path in W”’p(Q) which connects Xu0 and u0.
Moreover, from (3.15) and since ~|W+ = y+ |W+, we have

y(y+(t)) = y(h(t’XuQ)+) = e+ (h(t’Xu0)+)
N y+(Xu0) = y(Xu0) < 0 Vie [0, ]

(see (3.13)), so
Myt < 0. (3.16)

In a similar fashion, we produce a continuous path Y- in W0’p(Q) which connects Xv0
and voand

Vir_ < 0. (3.17)

We concatenate y-, Y and y+ and produce y* e r, such that

Vit < 0
(see (3.13), (3.16) and (3.17)), so y0 = 0 (see (3.9)).
So y0e CO(n) \ {0} is the third nontrivial smooth solution of (1.1). a

4 Second Multiplicity Theorem. Nodal Solutions

In this section, we look for nodal solutions. To the best of our knowledge, there has
been no previous work producing nodal solutions for equations driven by a nonho-
mogeneous differential operator. To do this, we need to strengthen the hypotheses
on the nonsmooth potential F(z, Z). For this purpose, let us first introduce some
notation. Consider a measurable function f : ~ x R — >R, such that for every r > 0,
we can find ar e Lx (fi)+ for which we have

|f(z, 2)| ~ ar(z) foralmostallze ~ andall [Z|" 1.
We allow f (z, ¢) to have jump discontinuities and define
fi(z, 2) = liminff (z,Z) and fu(z’Z) = limsup f (z,Z2"). 4.1)
VAN A A4
For almost all z e ”, these limits are finite. We assume that both fl and fu are su-
perpositionally measurable. This means that, ifu: ~ — >R is a measurable function,

then so are functions z i— > fiiz, u(z)) and z i— > fu(z, u(z)).
We set

F(z,2) = fo f (z, s) ds.
Then for almost all z e ~, the function F(z, ) is locally Lipschitz and

dF (z, 2) = [fi(z, 2), fu(z, 2)]
(see e.g., Chang [6] or Clarke [9]). We have F(z, 0) = 0 for almostallz e Q.
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So, now we can state precisely the new stronger conditions on the nonsmooth
potential.
H2:F:n x R —>R is a function, such that

F(z,2) = f0 f (z, s) ds,

where f :n x R — >R isa measurable function satisfying:
(i) there exista 6 L~(n)+ and c > 0, such that
\f(z, Z\ ~ a(z) + c\Z\p-1 foralmostallz 6 n, all Z6 R;

the functions fl(z, Z) and fu(z, Z) defined by (4.1) are superpositionally mea-
surable and for almost all z 6 n, the function Z — »f (z,Z) is continuous at
Z= 0

(if)  there exists a functiond 6 L<X(n)+, d(z) < -j- foralmostallz 6 n,d = 1,
such that

limsup p—2,2ZZ ~ d(z) uniformly for almostallz 6 n;
M, \Z\p

(iii)  thereexistt 6 (1,p) and c6 > 0, such that

fl(z, )z ~ c6|z¢t for almostallz 6n and all Z 6 R.

Remark 4.1 Note that the above hypotheses imply that
3F(z, 0) = {0} foralmostallz 6 n.
Also note that
u*Z ~ 0 foralmostallz 6 n, allZ6 R and all u* 6 3F(z, 2

(sign condition).
Example 4.2 The following potential function F satisfies hypotheses H2:

F(z) = - \Zp+ maxil\a\t, 1 \Z[gl + c\2\,
p It q J
where d < --1,t,9g6 (0,p) and c™ 0. Ift =q and ¢ >0, then F is not a C1-
function.

First we show that problem (1.1) has extremal constant sign smooth solutions, i.e.,
there exists a smallest nontrivial positive solution and a biggest nontrivial negative
solution. ()

HO": Hypotheses HO hold and there exists q 6 (t, p), such thatthe map t~ GO(tq)

is convex, with GO(t) = f0 a0(s)sds.
Proposition 4.3 If hypotheses H'0 and H2 hold, then problem (1.1) has a smallest

nontrivial positive solution u+ 6 int C+ and a biggest nontrivial negative solution
V- 6 —int C+.
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Proo/ We consider the following auxiliary Dirichlet problem:

—diva(Vu(z)) = c6\u(z)\—=2u(z) inQ, 42)
uUn = 0

Claim Problem (4.2) has a unique nontrivial positive solution u e intC+ and a
unique nontrivial negative solution v e —int C+.

Let :WO0p(Q) — >R be the Cl-functional, defined by

f+(u) = i G(Vu(z))dz 6 lluHIT Vue wO0,p(Q).
Jq t

Using Corollary 2.5, we have

f+(u) y - O--=[lullp —c7||u]IT Vu e WOp(Q), (4.3)
p(p —1

for some c7 > 0.
Since t < p, from (4.3) we infer that is coercive. Also, it issequentially weakly

lower semicontinuous. So, we can find u e W” p(Q), such that

U = inf  f+(u) = m+. 4.4
(u) LeWbpQ (u) (4.4)

As in the proof of Theorem 3.4, using hypotheses H”(iv) and H2(iii) and since
t < p, we obtain

f+(u) = m+ < 0 = f+(0)

(see (4.4)), so

From (4.4), we have
f (uy =0,
thus
V(u) = c6(u+)T. (4.5)

Acting on (4.5) with —u—e WO’p(Q) and using Lemma 2.4, we obtain uy 0, u = 0.
So, from (4.5), we have that u solves (4.2) and in fact the nonlinear regularity theory
(see Ladyzhenskaya-Uraltseva [25] and Lieberman [26]) and the nonlinear maximum
principle of Montenegro [30, Theorem 6], imply that u e int C+.

To show the uniqueness of the solution u e int C+, inspired by Diaz-Saa [11], we

introduce the integral functional £: W0p(Q) — >R = R J {+<"}, defined by

E{u)\ _ I\ fn G(Vuqg)dz if uy 0, uge W8,q(Q),_
+w otherwise.

Clearly £ is convex, lower semicontinuous and it is not identical +ro.
Let ue W”p(Q) be a nontrivial positive solution of the auxiliary problem (4.2).
The nonlinear regularity theory (see [25, 26]) and the nonlinear maximum principle
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(see [30]) imply that u e int C+. Note that ug” 0 and (ug)q e WOq(H). So, ugis in
the effective domain of the R-valued functional Z. For h e CQ},) and t > 0 small, we
have uq+ th e C+ and so the directional derivative of Zat uqgin the direction h exists.
Moreover, using the chain rule, we have

. q r (G- D)'(u) f -diva(Vu) , S
zw)h =L  ug-l hdz = L ugl hdzm (4.6)

Let w beany nontrivialpositive solution of (4.2). Asabove, we have that w e
int C+. By virtue of the convexity of Z and (4.6), we have

fo( diva(Vu) diva(Vw)\ ¢ q
0 < ja\ ------- 0g-1 wq-1 )(ug- waq)dz,

o)
0 < felt (iL—T—W— )(Ul —Wq) dz,< 0
(see (4.2) and recall that t < qg) and thus

u= w

Similarly, we establish the uniqueness of the nontrivial negative solution v e
- int C+. This proves the Claim.

Now, let u be a nontrivial positive solution for problem (1.1). Such a solution exists
by virtue of Theorem 3.4 and

-diva(Vu(z)) = u*(z) foralmostallze 4.7

where u*e Lp (E), u*(z) e dF(z, u(z)) for almostallz e & It follows thatu e int C+
(see [25, 26]). Let

0 if Z<0,
h+(z,2) = c6f T2 if 0< Z < u(z2), (4.8)
cou(z)TLif u(z) <z

This is a Caratheodory function (i.e., for all Z 6 R, the function z — >h+(z, 2) is
measurable and for almost all z 6 n, the function Z — w»h+(z, 2) is continuous).
We set

H+(z,2) = fO h+(z, s) ds
and consider the C1-functional ft+: W0’p(n) — >R, defined by

ft+(u) = i G(Vu(z))dz- i H+(z, u(z))dz Vueé Wftn).
n n

It is clear from (4.8) and Corollary 2.5 that ft+ is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find u 6 W0’p(n), such that

ft+® = inf  ft+(u) = m+. (4.9)
usW p(n)
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As before, since t < p, we have that

f+(u) = m+ < 0 = 0)
(see (4.9)),i.e., u=0.
From (4.9), we have
y+(u) =0,
S0
V(u) = Nh+(u), (4.10)
where

Nh+(u)() = h+(u() Vue WO0p(Q).

Acting on (4.10) with _u_ e WO0p(Q), we obtainu ~ 0,u = 0. On (4.10) we act also
with (u_ u)+ e W”p(Q). Then

h+(z, u )(u _ u)+dz

{V(u), (u_u+)

I Gou(z)T_1(u _ u)+dz
Jg

I u*(u _ u)+dz

<

J
V(w), (u_uw+

(see (4.7) and hypothesis H2(iii)), so

| (a(Vu) _ a(Vu), VB _VUu)RNdz y 0,
J{w=u

thus

{u>u}N =0

(see Lemma 2.4) and we obtain

So
ue [0,u, u =0,
where
[0,u] = {we WOp(Q) : 0y w(z) y u(z) for almostall z e Q}.

Then (4.10) becomes

V(u) = cauT_!
(see (4.8)) and so

u = u e intC+

(see the Claim).
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The above argument shows that
every nontrivial positive solution u e W0’p(Q) of (1.1) satisfies u ~ wu. (4.11)
A similar argument, using this time v e —int C+ (see the Claim), shows that
every nontrivial negative solution v e WO0p(Q) of (1.1) satisfies v * v. (4.12)

Now we are ready to establish the existence of extremal nontrivial constant sign
solutions of (1.1). So, let S+ be the set of nontrivial positive solutions of (1.1). From
Theorem 3.4 we know that S+ = 0. Let C ¢ S+ be achain (i.e., atotal ordered subset
of S+). From Dunford-Schwartz [12, p. 336], we know that there exists a sequence
[un}nyl C C, such that

infun = infC.
n"™1
Moreover, we can have the sequence [u,},”1 decreasing (see Heikkila-
Lakshmikantham [22, Lemma 1.1.5; p. 15]). We have
V(un) = uh 'Vn> 1, (4.13)

where une Lp'(Q) and u”(z) e dF(z, un(z)) for almost all z e Q. Evidently the

sequence [u,},*1 c WO0p(Q) is bounded (see (4.13) and recall that un ~ ul for all
n ~ 1). So, we may assume that

un — > u weakly in W °p(Q), (4.14)
un —> u in Lp(Q). (4.15)
On (4.13) we act with un - u, pass to the limitasn ~ +to and use (4.14). Then
rtlf\irl]'IO'V(un)' un - ul =0
and so
un —>u in W°p(Q) (4.16)

(see Proposition 2.7). By virtue of hypothesis H2(i), the sequence [u*r}«” C Lp'(Q)
is bounded and so, passing to a subsequence if necessary, we may assume that

u» — > u* weakly in L p (Q).
Invoking Proposition 3.9 of Hu-Papageorgiou [23, p. 694], we have

u*(z) ¢ conv Iirlqsu/\p dF(z, un(z)) ¢ dF(z, u(z)) foralmostallz g Q.
n-*+

So, if in (4.13) we pass to the limitas n » and use (4.16), we have
V(u) = u*
where u* g L p'(Q), u*(z) g dF(z, u(z)) for almostallz g Q and
u”™u

(see (4.11)).
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Therefore, we infer that u e S+ and u e infC. Since C is an arbitrary chain, from
the Kuratowski-Zorn lemma, we know that S+ has a minimal element u+ > y,
u+ e int C+ (from the nonlinear regularity theory). Using Lemma 3.2 of Gasiriski-
Papageorgiou [20] (the lemma remains valid if the p-Laplacian is replaced by the
more general differential operator V, since all we need is the monotonicity of V), we
have that S+ is downward directed (i.e., if u,w e S+, then there exists y e S+, such
thaty ~ min[u, w}). Therefore u+ e int C+ is the smallest positive solution of (1.1).

Similarly, we produce the biggest nontrivial negative solution v- e —int C+ of
problem (1.1) with v- ~ v (see (4.12)) using this time Lemma 3.3 of Gasmski-
Papageorgiou [20]. O

Having these extremal solutions we can produce a nodal solution and have the
second multiplicity theorem, which provides precise sign information for all three
solutions.

Theorem 4.4 1f hypotheses HO and H2 hold, then problem (1.1) has at least three
nontrivial smooth solutions

m0 GintC+, v0g —intC+, and y0g Ci(fi)\ {O}nodal.

Proof From Theorem 3.4 we already have two constant sign solutions
mgintC+ and v0g —int C+.

Let u+ g int C+ and v—g —int C+ be the two extremal constant sign solutions of
problem (1.1) postulated in Proposition 4.3. We have

- div(Vu+(z®» = u+(z) foralmostallz e Q,
where u+ e Lp'(Q), u+(z) e 9F(z, u+(z)) for almostall z e Q, and
-div (Vv- (2)) = v-(z) foralmostallz e Q,

where v- e Lp'(Q), v-(z) e 9F(z, v- (z)) for almost all z e Q.
We consider the following truncation of f (z,

v-(z) ifZ <v-(2),
f(z,2) = 1f(z 2) if v—2) < Z < u+(2), (4.17)
u+(z) ifu+(z)<z.
Also, let

f(z,2) = f(z, +Z4).

We set

F(z,2) [z,s)ds, F=%(z,Z) = -(z5)ds
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and consider the locally Lipschitz functionals ¢, ex : W0’p(Q) — >R, defined by

e(u) i G(Vu(z))dz - Ji F(z, u(z)) dz Vue Wyp(Q),

Jq q

ex(u) i G(Vu(z))dz- 1 Fx(z’u(z))dz Vue Wyp(Q).
Jq Jq

As in the proof of Proposition 4.3, we show that

Ke ¢ [v_,u+], Ke+ = {0, u+}, Ke_ = {v_, O} (4.18)

Claim u+ and v_ are local minimizers of the functional e.
Evidently is coercive (see (4.17)) and sequentially weakly lower semicontinu-
ous. So, we can find u+ e Wyp(Q), such that

e+(u+) = inf  e+(u) = m+. (4.19)
ueWpp(Q

From hypothesis H2(iii) and since t < p, we have
g+(u+) = m+ < o = ¢+(0)
(see (4.19)), i.e., u+ = 0, so
u+ = u+

(see (4.18) and (4.19)). _
Butu+ eintC+ and e\W+ = ¢ +\W+. Hence u+ is alocal C¢(Q)-minimizer of ¢, thus
by virtue of Proposition 2.6, it is also a local WO’p(Q)-minimizer of ¢.Similarly, for
v_ e —int C+, using this time the functional e_. This proves the Claim.
As before (see the proof of Theorem 3.4), without any loss of generality, we may
assume that e(v_) y e(u+) and because of the Claim, we can find g e (0, 1) small,
such that

e(v_) y e(u+) < inf{e(u) : W_ ut\ =q} = [lv_ _ u+\ > q. (4.20)

(see Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 29] or Gasiriski-
Papageorgiou [20, Theorem 3.4]).

Since e is coercive (see (4.17)), it satisfies the Palais-Smale condition. This fact
and (4.20), permit the use of the mountain pass theorem (see Theorem 2.1). So, we
can find a solution yoe CA(Q) \ {u+, v_} of problem (1.1) (see (4.19) and (4.18)).
Moreover, as in the proof of Theorem 3.4, using Theorem 2.2, we show that y0 = 0.
Since yOe [v_, u+] n C¢{(Q) (see (4.18) and use the nonlinear regularity theory), y0 g
{u+, v_} and given the extremality of u+ and v_, we conclude that yOe C¢(Q) \ {0}
must be nodal. O

Remark 4.5 Compared with the results of Liu-Liu [27, Theorem 1.1] and Liu [28,
Theorem 1.2], our work here is more general in many respects. In both the afore-
mentioned works, the differential operator is the p-Laplacian (i.e., G(y) = pllyllp),
F(z, ® e C1,asymptotically at £ no interaction is allowed with X1 and they do not
provide sign information for the third solution. However, their condition on f (z, ®
near the origin is a little more general than ours, since f (z, ® can be (p _ 1)-linear
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near zero. Here we are forced to assume a “concave” nonlinearity near the origin
in order to overcome the nonhomogeneity of the differential operator and produce
extremal constant sign solutions and through them produce a nodal solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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