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Abstract: We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising
in mechanics and engineering. The approach to such problems is based on the notions of an operator subdiffe-
rential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the
existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static
hemivariational ineqaulities, and finally, we present ideas leading to inequality problems with multivalued and
nonmonotone boundary conditions encountered in mechanics.
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1. Introduction

The paper is a shortened version of the original parts of an invited talk presented by the author at the Sixth Symposiumon Nonlinear Analysis (SNA2011) held in Toruń, Poland, September 7–9, 2011. The goal is to review and report onthe results of recent studies on problems involving operator subdifferential inclusions in Banach spaces, quasi-statichemivariational inequalities, and their applications.The notion of hemivariational inequality was introduced by P.D. Panagiotopoulos in the early 1980s, cf. [17, 18], as ageneralization of the variational inequality. The hemivariational inequality formulation exploits the notion of the gen-eralized gradient of Clarke–Rockafellar, cf. [1]. The latter was introduced for a class of locally Lipschitz functions and
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Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

allows to give variational formulations of several mechanical phenomena involving the nonconvex and nondifferentiableenergy functionals. Thus the theory of hemivariational inequalities provides mathematical results which arise and areapplicable to variational theory of engineering problems involving nonmonotone multivalued relations. In the stationarycase the hemivariational inequalities can be formulated as the substationary point problems for the corresponding non-differentiable, nonsmooth and nonconvex energy functionals. The formulations of mechanical problems as hemivariationalinequalities allow to give positive answers to unsolved or partially unsolved problems, cf. [9–12, 15, 16]. More informationon modeling and analysis of contact phenomena can be found in [5, 7, 8, 20].The goal of this paper is to give a survey on modeling of contact problems with nonsmooth potentials and on analysis ofquasi-static hemivariational inequalities. We have tried to keep the presentation as simple as possible and this makesit accessible also to the newcomer in this field.The content of the paper is as follows. We consider two classes of subdifferential inclusions in a framework of evolutiontriple of spaces. The first class involves inclusions with a history-dependent term for which we provide an existence anduniqueness result. The proof is based on arguments on pseudomonotone operators and fixed point. Then we specializethis result in the study of a class of history-dependent hemivariational inequalities. Such kind of problems arises in alarge number of mathematical models which describe quasistatic processes of contact between a deformable body andan obstacle. To provide an example we consider a viscoelastic problem in which the frictional contact is modeled withsubdifferential boundary conditions. We prove that this contact problem leads to a history-dependent hemivariationalinequality in which the unknown is the velocity field. Then we apply our result in order to prove the unique weaksolvability of the corresponding contact problem. In the second class of inclusions, we consider time-dependent possiblynonconvex nonsmooth functions and their Clarke subdifferentials operating on the unknown function. First we prove theexistence of a weak solution. Then we study the asymptotic behavior of a sequence of solutions when a small parameterin the inertial term tends to zero. We prove that the limit function is a solution of a parabolic hemivariational inequality.Finally, we give applications to quasi-static viscoelastic frictional contact problems.
2. Preliminaries

In this section we recall some definitions we shall use in this paper, see e.g. Zeidler [21] and Denkowski et al. [2, 3].Given a Banach space X , we denote its norm by ‖ ·‖X . The dual space is denoted by X ∗ and 〈 · , · 〉X∗×X , denoted alsoby 〈 · , · 〉, is the duality pairing between X and X ∗. The symbol w-X is used for the space X endowed with its weaktopology. The notation L(X, Y ) stands for the space of linear bounded operators from a Banach space X to a Banachspace Y . Also, we denote by 2X the collection of all subsets of X . For U ⊂ X , we also write ‖U‖X = sup{‖u‖X : u ∈ U}.Let θ : X → R be a locally Lipschitz function. The generalized directional derivative of θ at x ∈ X in the direction v ∈ Xis defined by
θ0(x; v) = lim sup

y→x, λ↓0
θ(y+λv)− θ(y)

λ .

The generalized gradient of θ at x is the subset of X ∗ given by
∂θ(x) = {ζ ∈ X ∗ : θ0(x; v) ≥ 〈ζ, v〉, v ∈ X}.

A locally Lipschitz function θ is called regular (in the sense of Clarke, cf. [1]) at x ∈ X if for all v ∈ X the one-sideddirectional derivative θ′(x; v) exists and satisfies θ0(x; v) = θ′(x; v) for all v ∈ X .Let T : X → 2X∗ . An operator T is said to be pseudomonotone if it satisfies the following conditions:(a) for every x ∈ X , Tx is a nonempty, convex and weakly compact set in X ∗;(b) T is u.s.c. on every finite dimensional subspace of X into X ∗ endowed with the weak topology; and(c) if xn → x weakly in X , x∗n ∈ Txn and lim sup〈x∗n, xn−x〉 ≤ 0, then for each z ∈ X there exists x∗(z) ∈ Tx such that
〈x∗(z), x −z〉 ≤ lim inf 〈x∗n, xn−z〉.
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S. Migórski

Let L : D(L) ⊂ X → X ∗ be a linear densely defined maximal monotone operator. An operator T is said to be pseu-
domonotone with respect to D(L) (shortly L-pseudomonotone) if and only if (a) and (b) hold and(d) if {xn} ⊂ D(L) is such that xn → x weakly in X , x ∈ D(L), Lxn → Lx weakly in X ∗, x∗n ∈ Txn, x∗n → x∗ weakly in X ∗and lim sup〈x∗n, xn〉 ≤ 〈x∗, x〉, then x∗ ∈ Tx and 〈x∗n, xn〉 → 〈x∗, x〉.
An operator T is said to be coercive if there exists a function c : R+ → R with c(r) → ∞ as r → ∞ such that
〈x∗, x〉 ≥ c(‖x‖X )‖x‖X for every (x, x∗) ∈ Graph(T ).A single-valued operator T : X → X ∗ is said to be hemicontinuous, if for all u, v, w ∈ X the functional t 7→ 〈T (u+ tv), w〉is continuous on [0, 1]. T : X → X ∗ is pseudomonotone if for each sequence {xn} ⊆ X such that it converges weaklyto x0 ∈ X and lim sup〈Txn, xn−x0〉 ≤ 0, we have 〈Tx0, x0−x〉 ≤ lim inf 〈Txn, xn−x〉 for all x ∈ X .Finally, we recall the following surjectivity result, cf. [2, Theorem 1.3.73], for multivalued operators which are pseu-domonotone with respect to D(L).
Proposition 2.1.
If X is a reflexive, strictly convex Banach space, L : D(L) ⊂ X → X ∗ is a linear densely defined maximal monotone
operator and T : X → 2X∗ \ {∅} is bounded, coercive and pseudomonotone with respect to D(L), then the operator L+ T
is surjective.

3. History-dependent subdifferential inclusions

Let Ω ⊂ Rd be an open bounded subset of Rd with a Lipschitz continuous boundary ∂Ω and Γ ⊆ ∂Ω, d = 1, 2, 3. Let
V be a closed subspace of H1(Ω;Rs), s ≥ 1, H = L2(Ω;Rs) and Z = Hδ (Ω;Rs) with a fixed δ ∈ (1/2, 1). Denoting by
i : V → Z the embedding, by γ : Z → L2(Γ;Rs) and γ0 : H1(Ω;Rs) → H1/2(Γ;Rs) ⊂ L2(Γ;Rs) the trace operators, weget γ0v = γ(iv) for all v ∈ V . For simplicity, in what follows, we omit the notation of the embedding i and we write
γ0v = γv for all v ∈ V . It is well known from the theory of Sobolev spaces, cf. [2, 3, 21], that (V ,H, V ∗) and (Z,H, Z ∗)form evolution triples of spaces and the embedding V ⊂ Z is compact. We denote by ce the embedding constant of Vinto Z , by ‖γ‖ the norm of the trace in L

(
Z, L2(Γ;Rs)) and by γ∗ : L2(Γ;Rs) → Z ∗ the adjoint operator to γ. We alsointroduce the following spaces:

V = L2(0, T ;V ), Z = L2(0, T ;Z ) and Ĥ = L2(0, T ;H),
where 0 < T < +∞. Since the embeddings V ⊆ Z ⊆ H ⊆ Z ∗ ⊆ V ∗ are continuous, it is known that the embeddings
V ⊆ Z ⊆ Ĥ ⊆ Z∗ ⊆ V∗ are also continuous, where Z∗ = L2(0, T ;Z ∗) and V∗ = L2(0, T ;V ∗).Let A : (0, T )×V → V ∗, S : V → V∗, J : (0, T )×L2(Γ;Rs) → R and f : (0, T ) → V ∗ be given. We consider the followinginclusion of subdifferential form.
Problem 3.1.Find u ∈ V such that

A(t, u(t)) + Su(t) + γ ∗∂J(t, γu(t)) 3 f(t) for a.e. t ∈ (0, T ). (1)
We note that in (1) the notation Su(t) stands for (Su)(t), i.e. Su(t) = (Su)(t) for all u ∈ V and a.e. t ∈ (0, T ). Thesymbol ∂J denotes the Clarke subdifferential of a locally Lipschitz function J(t, · ). We adopt the following definition.
Definition 3.2.A function u ∈ V is called a solution to Problem 3.1 if and only if there exists ζ ∈ Z∗ such that for a.e. t ∈ (0, T ),

A(t, u(t)) + Su(t) + ζ(t) = f(t) and ζ(t) ∈ γ ∗∂J(t, γu(t)).
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Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

In order to state a result on the solvability of Problem 3.1, we need the following hypotheses.
I. A : (0, T )×V → V ∗ is such that(I.a) A( · , v) is measurable on (0, T ) for all v ∈ V ;(I.b) A(t, · ) is hemicontinuous and strongly monotone for a.e. t ∈ (0, T ), i.e., 〈A(t, v1) − A(t, v2), v1−v2〉V ∗×V ≥

m1‖v1−v2‖2V for all v1, v2 ∈ V with m1 > 0;(I.c) ‖A(t, v)‖V ∗ ≤ a0(t) + a1‖v‖V for all v ∈ V , a.e. t ∈ (0, T ) with a0 ∈ L2(0, T ), a0 ≥ 0 and a1 > 0;(I.d) A(t, 0) = 0 for a.e. t ∈ (0, T ).
II. S : V→ V∗ is such that

‖Su1(t)− Su2(t)‖V ∗ ≤ LS ∫ t

0 ‖u1(s)− u2(s)‖V ds
for all u1, u2 ∈ V, a.e. t ∈ (0, T ) with LS > 0.

III. J : (0, T )×L2(Γ;Rs)→ R is such that(III.a) J( · , u) is measurable on (0, T ) for all u ∈ L2(Γ;Rs)(III.b) J(t, · ) is locally Lipschitz on L2(Γ;Rs) for a.e. t ∈ (0, T );(III.c) ‖∂J(t, u)‖L2(Γ;Rs) ≤ c0 + c1‖u‖L2(Γ;Rs) for all u ∈ L2(Γ;Rs), a.e. t ∈ (0, T ) with c0, c1 ≥ 0;(III.d) (z1−z2, u1−u2)L2(Γ;Rs) ≥ −m2‖u1−u2‖2L2(Γ;Rs) for all zi ∈ ∂J(t, ui), ui, zi ∈ L2(Γ;Rs), i = 1, 2, a.e. t ∈ (0, T ),
m2 ≥ 0;(III.e) J0(t, u;−u) ≤ d0(1+‖u‖L2(Γ;Rs)) for all u ∈ L2(Γ;Rs), a.e. t ∈ (0, T ) with d0 ≥ 0.

We remark that condition II is satisfied for the operator S : V→ V∗ given by
Sv(t) = R

(
t,
∫ t

0 v(s)ds+ v0
) for all v ∈ V, a.e. t ∈ (0, T ), (2)

where R : (0, T )×V → V ∗ is such that R( · , v) is measurable on (0, T ) for all v ∈ V , R(t, · ) is a Lipschitz continuousoperator for a.e. t ∈ (0, T ) and v0 ∈ V . It is also satisfied for the Volterra operator S : V→ V∗ given by
Sv(t) = ∫ t

0 C (t−s)v(s)ds for all v ∈ V, a.e. t ∈ (0, T ), (3)
where C ∈ L∞(0, T ;L(V , V ∗)). Clearly, in the case of the operators (2) and (3) the current value Sv(t) at the moment tdepends on the history of the values of v at the moments 0 ≤ s ≤ t and, therefore, we refer to the operators of theform (2) or (3) as history-dependent. We extend this definition to all the operators S : V→ V∗ which satisfy condition IIand, for this reason, we say that the subdifferential inclusions of the form (1) are history-dependent subdifferential
inclusions. The main feature of such inclusions consists in the fact that they contain operators which, at any moment
t ∈ (0, T ) depend on the history of the solution up to the moment t. This feature makes the difference with respect tothe time-dependent subdifferential inclusions studied in literature in which, usually, the operators involved are assumedto depend on the current value of the solution u(t).In order to prove the existence and uniqueness for Problem 3.1, we first state a result on the unique solvability ofa subdifferential inclusion in which the time variable plays the role of a parameter.
Lemma 3.3.
Assume that I holds and f ∈ V∗. If one of the following hypotheses:(i) (III.a)–(III.d) and m1 > max{c1, m2}c2

e‖γ‖2,(ii) III and m1 > m2c2
e‖γ‖2
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is satisfied, then the problem

A(t, u(t)) + γ ∗∂J(t, γu(t)) 3 f(t) for a.e. t ∈ (0, T ) (4)
has a unique solution u ∈ V.

Proof. We provide main steps of the proof without details. First, since the operator A(t, · ) is strongly monotone and
A(t, 0) = 0 for a.e. t ∈ (0, T ), it follows that A(t, · ) is coercive with m1 > 0, i.e. 〈A(t, v), v〉V ∗×V ≥ m1‖v‖2V for all
v ∈ V , a.e. t ∈ (0, T ). Moreover, since the operator A(t, · ) satisfies (I.b)–(I.c), it is pseudomonotone for a.e. t ∈ (0, T ).This follows from the facts that every strongly monotone operator is monotone and every bounded, hemicontinuous andmonotone operator is pseudomonotone, cf. [21, Proposition 27.6]. Next, we define the operator B : (0, T )×V → 2Z∗ by
B(t, v) = γ∗∂J(t, γv) for all v ∈ V , a.e. t ∈ (0, T ). Under either the hypothesis (i) or (ii), we can establish the followingproperties of the operator B.
(IV.a) B(·, v) is measurable for all v ∈ V ;(IV.b) ‖B(t, v)‖Z∗ ≤ b0 (1 + ‖v‖V ) for all v ∈ V , a.e. t ∈ (0, T ) with b0 > 0;(IV.c) for all v ∈ V and a.e. t ∈ (0, T ), B(t, v) is nonempty, convex, weakly compact subset of Z ∗;(IV.d) 〈B(t, v), v〉V ∗×V ≥ −b1‖v‖2V − b2‖v‖V − b3 for all v ∈ V , a.e. t ∈ (0, T ) with b1, b2, b3 ≥ 0;(IV.e) the graph of B(t, ·) is closed in Z × (w−Z ∗) topology for a.e. t ∈ (0, T ), i.e. if ζn(t) ∈ B(t, vn) with vn, v ∈ V ,

vn → v in Z and ζn(t), ζ(t) ∈ Z ∗, ζn(t)→ ζ(t) weakly in Z ∗, then ζ(t) ∈ B(t, v).
Subsequently, we define the multivalued map F : (0, T )×V → 2V ∗ by F(t, v) = A(t, v) + B(t, v) for all v ∈ V anda.e. t ∈ (0, T ). From (I.a) and (IV.a), it is clear that F( · , v) is a measurable multifunction for all v ∈ V . Exploiting[3, Proposition 6.3.66], we show that F(t, · ) is pseudomonotone and coercive for a.e. t ∈ (0, T ). Therefore, applying thefundamental surjectivity result, cf. e.g. [3, Theorem 6.3.70], it follows that F(t, · ) is surjective. This implies that for a.e.
t ∈ (0, T ) there exists a solution u(t) ∈ V of the problem (4). Furthermore, owing to the coercivity of F(t, · ), we deducethe following estimate:

‖u(t)‖V ≤ c(1+‖f(t)‖V ∗ ) for a.e. t ∈ (0, T ) with c > 0. (5)Using the strong monotonicity of A(t, · ), (III.d) and the hypothesis m1 > m2c2
e‖γ‖2, we prove now that the solution to theproblem (4) is unique. Also, we are able to prove that the solution of the problem (4) is a measurable function on (0, T ).Since f ∈ V∗, from the estimate (5), we conclude that u ∈ V and (4) hold, which completes the proof of the lemma.

The existence and uniqueness result for Problem 3.1 reads as follows.
Theorem 3.4.
Assume I, II and f ∈ V∗. If either (i) or (ii) of the hypothesis of Lemma 3.3 holds, then Problem 3.1 has a unique solution.

Proof. We use a fixed point argument. Let η ∈ V∗. We denote by uη ∈ V the solution of the following problem:
A(t, uη(t)) + γ ∗∂J(t, γuη(t)) 3 f(t)− η(t) for a.e. t ∈ (0, T ). (6)

By Lemma 3.3 we know that uη ∈ V exists and is unique. Next, we consider the operator Λ : V∗ → V∗ defined by
Λη(t) = Suη(t) for all η ∈ V∗, a.e. t ∈ (0, T ).

We show by using the Banach contraction principle that the operator Λ has a unique fixed point η∗ ∈ V∗. Then uη∗is a solution to Problem 3.1, which concludes the existence part of the theorem. The uniqueness part follows from theuniqueness of the fixed point of Λ. Namely, let u ∈ V be a solution to Problem 3.1 and define the element η ∈ V∗ by
η(t) = Su(t) for a.e. t ∈ (0, T ). It follows that u is a solution to the problem (6) and, by the uniqueness of solutionsto (6), we obtain u = uη. This implies Λη = Suη = Su = η and by the uniqueness of the fixed point of Λ we have η = η∗,so u = uη∗ , which completes the proof.
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4. Quasistatic hemivariational inequalities

Let V and Z be reflexive, separable Banach spaces, and let H be a Hilbert space. Suppose that V ⊂ Z ⊂ H ≈ H∗ ⊂
Z ∗ ⊂ V ∗, where H∗, Z ∗ and V ∗ denote dual spaces to H, Z and V , respectively, all embeddings are continuous and Vis compactly embedded in Z . We denote by 〈 · , · 〉 the duality of V and V ∗, and the pairing between Z and Z ∗ as well.Given a fixed number 0 < T < ∞ and 2 ≤ p < ∞, we introduce the following spaces: V = Lp(0, T ;V ), Z = Lp(0, T ;Z ),
Ĥ = L2(0, T ;H), Z∗ = Lq(0, T ;Z ∗), V∗ = Lq(0, T ;V ∗) with 1/p + 1/q = 1 and W = {w ∈ V : w ′ ∈ V∗}, where the timederivative is understood in the sense of vector-valued distributions. The latter is a separable, reflexive Banach spacewith the norm ‖w‖W = ‖w‖V + ‖w ′‖V∗ . We have W ⊂ V ⊂ Z ⊂ Ĥ ⊂ Z∗ ⊂ V∗ with continuous embeddings. It is wellknown, cf. e.g. [3, Proposition 8.4.14], that the space W is embedded continuously in C (0, T ;H) (the space of continuousfunctions on [0, T ] with values in H), i.e. every element of W, after a possible modification on a set of measure zero, hasa unique continuous representative in C (0, T ;H). Moreover, since V is embedded compactly in Z , then so is W in Z,cf. [3, Theorem 8.4.13].Consider the following evolutionary inclusion of the form:

{
A(t)u′(t) + Bu(t) +M∗∂J(t,Mu(t)) 3 f(t) for a.e. t ∈ (0, T ),
u(0) = u0. (7)

We remark that, by the definition of the Clarke subdifferential, problem (7) is equivalent to the following inequality:
{〈
A(t)u′(t) + Bu(t)− f(t), v〉 + J0(t,Mu(t);Mv) ≥ 0 for all v ∈ V , a.e. t ∈ (0, T ),
u(0) = u0,

where J0 stands for the generalized directional derivative of J(t, · ). For this reason problem (7) is called a hemivariationalinequality.
Definition 4.1.A function u ∈ L∞(0, T ;V ) is called a solution to (7) if and only if u′ ∈ V and there exists η ∈ Z∗ such that


A(t)u′(t) + Bu(t) + η(t) = f(t) for a.e. t ∈ (0, T ),
η(t) ∈ M∗∂J(t,Mu(t)) for a.e. t ∈ (0, T ),
u(0) = u0.

We note that if u is a solution to (7), then u ∈ L∞(0, T ;V ) ⊂ V, i.e. u ∈ W 1,p(0, T ;V ). Since W 1,p(0, T ;V ) ⊂ C (0, T ;V )continuously, the initial condition u(0) has a meaning in V .In addition to our notation, let X be a Banach space. We assume the following hypotheses.
H(A) A ∈ L∞(0, T ;L(V , V ∗)) is an operator such that A(t) is coercive, i.e. there is a constant α > 0 such that for a.e.

t ∈ (0, T ), 〈A(t)v, v〉 ≥ α‖v‖pV for all v ∈ V .
H(B) B ∈ L(V , V ∗) is monotone (nonnegative) and symmetric.
H(J) J : (0, T )×X → R is a function such that

(i) J( · , x) is measurable on (0, T ) for all x ∈ X ;(ii) J(t, · ) is locally Lipschitz on X for a.e. t ∈ (0, T );(iii) ‖∂J(t, x)‖X∗ ≤ c(1+‖x‖2/qX ) for all x ∈ X , a.e. t ∈ (0, T ) with c > 0.
H(M) M ∈ L(Z, X ).
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H0 f ∈ V∗, u0 ∈ V , u1 ∈ H.
H1 If p = 2, then α > 2cTc2

e‖M‖max{1, ‖M‖}, where ce > 0 is an embedding constant of V into Z and ‖M‖ =
‖M‖L(Z,X ).

The following is the main existence result on the evolution inclusion (7).
Theorem 4.2.
Under hypotheses H(A), H(B), H(J), H(M), f ∈ V∗, u0 ∈ V and H1, the inclusion (7) admits at least one solution.

The proof of Theorem 4.2 is based on the so-called vanishing acceleration method which we describe below. To this end,we consider an evolution second order inclusion of the form{
εu′′(t) + A(t)u′(t) + Bu(t) +M∗∂J(t,Mu(t)) 3 f(t) for a.e. t ∈ (0, T ),
u(0) = u0, √

εu′(0) = u1, (8)
where ε > 0. For ε fixed, we write for simplicity u for the solution uε of (8).
Definition 4.3.A function u ∈ V is called a solution to (8) if and only if u′ ∈W and there exists η ∈ Z∗ such that


εu′′(t) + A(t)u′(t) + Bu(t) + η(t) = f(t) for a.e. t ∈ (0, T ),
η(t) ∈ M∗∂J(t,Mu(t)) for a.e. t ∈ (0, T ),
u(0) = u0, √

εu′(0) = u1.

Similarly, as before, we note that if u is a solution to (8), then u ∈ W 1,p(0, T ;V ). Since the embeddings W 1,p(0, T ;V ) ⊂
C (0, T ;V ) and W ⊂ C (0, T ;H) are continuous, the initial conditions u(0) and u′(0) have a meaning in V and H,respectively.First, we comment on the existence result for (8). The important step is to derive the following uniform estimate.
Lemma 4.4.
Let ε > 0 be fixed. Assume hypotheses H(A), H(B), H(J), H(M) and H0, and let u be a solution to (8). If p > 2, then
there exists a constant C > 0 independent of ε such that

‖u‖C (0,T ;V ) + ‖u′‖V +√ε‖u′‖L∞(0,T ;H) + ε‖u′′‖V∗ ≤ C
(1 + ‖u0‖2/qV + ‖u1‖2/qH + ‖f‖2/qV∗

)
.

Moreover, this estimate still holds for p = 2 provided H1 is satisfied.

From [13, Theorem 8], we obtain the following result.
Theorem 4.5.
If hypotheses H(A), H(B), H(J), H(M), H0 and H1 hold, then for every fixed ε > 0 the problem (8) admits at least one
solution.

The following is the existence result for the operator inclusion (7).
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Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Theorem 4.6.
Let the hypotheses H(A), H(B), H(J), H(M), H0 and H1 hold. For every ε fixed, let uε be a solution to (8) given by
Theorem 4.5. Then there exists u fulfilling u ∈ L∞(0, T ;V ), u′ ∈W, such that the following convergences hold:

uε → u weakly* in L∞(0, T ;V ), u′ε → u′ weakly in V,
√
εu′ε → 0 weakly* in L∞(0, T ;H), εu′′ε → 0 weakly in V∗,

as ε → 0. Moreover, the limit function u is a solution to the problem (7).
The study of inclusions of type (7) is motivated by several contact problems of solid mechanics. It is well known that thedynamic equations of motion, representing momentum conservation, that govern the evolution of the state of the body,are of the form u′′i − σij,j = fi, where u is a displacement, σ is the stress tensor and f is the density (per unit volume) ofapplied forces. In many cases we are interested in situations in which the system configuration and the external forcesand tractions evolve slowly in time in such a way that the accelerations in the system are rather small and negligible,so that the inertial (the second order time derivative) terms can be neglected. In such a way, we obtain the quasistaticapproximation (equilibrium equations) for the equations of motion, −Div σ = f , where Div is the divergence operator.In this approximation, at each time instant the system is in equilibrium, and the external forces are balanced by theinternal stresses. Rigorous mathematical treatment of quasistatic problems is recent. The rapid growth of the theoryof quasistatic contact models can be seen from several monographs and many papers dedicated to such phenomena, cf.Duvaut and Lions [4], Han and Sofonea [6], Shillor et al. [19] and references therein. When we assume that the processis slow and the accelerations are negligible, mathematically it means that the system changes character, from beingof a hyperbolic type to an elliptic or a parabolic type. To our knowledge quasistatic hemivariational inequalities havebeen studied in the literature only recently and a recent existence result for such problems is provided in Migórskiand Ochal [13]. We mention that quasistatic problems modeled by variational inequalities with strongly monotone andLipschitz operators were considered in [6, 19]. We also point out that the result of Theorem 4.6 can be applicable toseveral important and challenging quasistatic models of contact phenomena. Finally, we remark that the question ofuniqueness of solutions to both dynamical and quasistatic hemivariational inequality is left open. It would be alsointeresting to extend the result of Theorem 4.6 to a class of problems with nonlinear operators A(t) and B.
5. History-dependent hemivariational inequality

In this section we provide a result on existence and uniqueness of a solution to a class of hemivariational inequalitiesassociated with Problem 3.1. We adopt the notation of Section 3. The problem under consideration reads as follows.
Problem 5.1.Find u ∈ V such that

〈A(t, u(t)), v〉V ∗×V + 〈Su(t), v〉V ∗×V + ∫Γ j0(t, γu(t); γv)dΓ ≥ 〈f(t), v〉V ∗×V (9)
for all v ∈ V and a.e. t ∈ (0, T ).
In the study of the hemivariational inequality (9), in addition to the previous assumptions, we need the followinghypothesis.
V. j : Γ× (0, T )×Rs → R is such that(V.a) j( · , · , ξ) is measurable on Γ× (0, T ) for all ξ ∈ Rs and j( · , · , 0) ∈ L1(Γ× (0, T ));(V.b) j(x, t, · ) is locally Lipschitz on Rs for a.e. (x, t) ∈ Γ× (0, T );
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S. Migórski

(V.c) ‖∂j(x, t, ξ)‖Rs ≤ c0 + c1‖ξ‖Rs for a.e. (x, t) ∈ Γ× (0, T ), all ξ ∈ Rs with c0, c1 ≥ 0;(V.d) (ζ1−ζ2) · (ξ1−ξ2) ≥ −m2‖ξ1−ξ2‖2Rs for all ζi, ξi ∈ Rs, ζi ∈ ∂j(x, t, ξi), i = 1, 2, a.e. (x, t) ∈ Γ× (0, T ) with
m2 ≥ 0;(V.e) j0(x, t, ξ;−ξ) ≤ d0(1+‖ξ‖Rs ) for a.e. (x, t) ∈ Γ× (0, T ), all ξ ∈ Rs with d0 ≥ 0.

Note that in the condition (V.d) the dot denotes the inner product in Rs. From Theorem 3.4, we deduce the followingexistence and uniqueness result for the hemivariational inequality (9). The details on its proof can be found in [14].
Theorem 5.2.
Assume that I and II hold and f ∈ V∗. If one of the following hypotheses:(i) (V.a)–(V.d) and m1 > max{√3c1, m2}c2

e‖γ‖2,(ii) V and m1 > m2c2
e‖γ‖2

is satisfied, then Problem 5.1 has a solution u ∈ V. If, in addition, the regularity condition:

either j(x, t, ·) or − j(x, t, ·) is regular on Rs for a.e. (x, t) ∈ Γ× (0, T )
holds, then the solution of Problem 5.1 is unique.

6. Quasi-static frictional contact problems

A large number of quasistatic contact problems with elastic or viscoelastic materials leads to a hemivariational inequalityof the form (9) in which the unknown is either the velocity or the displacement field. In both cases the abstract results ofSections 3, 4 and 5 work and can be used to provide the unique weak solvability of the corresponding contact problems.In this section we illustrate the use of these results in the study of two contact problems.The physical setting of the first contact problem is as follows. A viscoelastic body occupies a domain Ω of IRd, d = 2, 3,with surface ∂Ω which is partitioned into three disjoint measurable parts ΓD,ΓN and ΓC such that m(ΓD) > 0. We areinterested in the evolution process of the mechanical state of the body in the bounded interval of time [0, T ], where
T > 0. The body is clamped on ΓD and so the displacement field vanishes there. Surface tractions of density fN acton ΓN and volume forces of density f 0 act in Ω. We assume that the forces and tractions change slowly in time so thatthe acceleration of the system is negligible and, therefore, the process is quasistatic. Moreover, the body is in contactwith an obstacle on ΓC , the so-called foundation. The contact is frictional and is modeled with subdifferential boundaryconditions.We use the notation ν = (νi) for the outward unit normal at ∂Ω. We denote by u = (ui), σ = (σij ), and ε(u) = (εij (u))the displacement vector, the stress tensor, and the linearized strain tensor, respectively. We recall that the componentsof the linearized strain tensor ε(u) are given by εij (u) = (ui,j + uj,i)/2. We denote by Sd the space of second ordersymmetric tensors on Rd or, equivalently, the space of symmetric matrices of order d. The canonical inner products andthe corresponding norms on Rd and Sd are given by

u · v = uivi, ‖v‖Rd = (v · v)1/2 for all u = (ui), v = (vi) ∈ Rd,
σ :τ = σijτij , ‖τ‖Sd = (τ :τ)1/2 for all σ = (σij ), τ = (τij ) ∈ Sd,

respectively.With these preliminaries, the classical formulation of the quasistatic contact problem we consider in this section is thefollowing.
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Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Problem 6.1.Find the displacement field u : Ω× [0, T ]→ Rd and the stress field σ : Ω× [0, T ]→ Sd such that, for all t ∈ (0, T ),
σ (t) = A(t, ε(u′(t))) + B(t, ε(u(t))) in Ω, (10a)Div σ (t) + f 0(t) = 0 in Ω, (10b)

u(t) = 0 on ΓD, (10c)
σ (t)ν = fN (t) on ΓN , (10d)

−σν(t) ∈ ∂jν(t, u′ν(t)) on ΓC , (10e)
−στ (t) ∈ ∂jτ (t,u′τ (t)) on ΓC , (10f)

u(0) = u0 in Ω. (10g)
We present a short description of the equations and conditions in Problem 6.1 and we refer the reader to [6, 15, 19] formore details and mechanical interpretation.The equation (10a) represents the viscoelastic constitutive law in which A and B are given nonlinear operators, calledthe viscosity operator and elasticity operator, respectively. The explicit dependence of the viscosity and elasticityoperators A and B with respect to the time variable allows to model situations when the properties of the materialdepend on the temperature, which plays the role of a parameter, i.e. its evolution in time is prescribed. Equality (10b)is the equilibrium equation, where Div represents the divergence operator, i.e. Div σ = (σij,j ). Conditions (10c) and (10d)are the displacement and traction boundary conditions, respectively, and (10g) is the initial condition in which thefunction u0 denotes the initial displacement field.Conditions (10e) and (10f) represent the frictional contact conditions in which jν and jτ are given functions. The subscripts
ν and τ for σ and u′ indicate normal and tangential components of tensors and vectors. The symbol ∂j denotes the Clarkesubdifferential of j with respect to the last variable. Concrete examples of frictional models which lead to subdifferentialboundary conditions of the form (10e), (10f) with the functions jν and jτ satisfying assumptions VIII and IX below can befound in [12, 15]. Here, we restrict ourselves to remark that these examples include the viscous contact and the contactwith nonmonotone normal damped response, associated to a nonmonotone friction law, to Tresca’s friction law or to apower-law friction. Our results below are valid for the corresponding quasistatic frictional contact problems.In the study of the contact problem (10a)–(10g) we use standard notation Q = Ω× (0, T ), ΣD = ΓD× (0, T ), ΣN =ΓN× (0, T ) and ΣC = ΓC× (0, T ). For all v ∈ H1(Ω;Rd) we still denote by v the trace of v on Γ and we use thenotation vν and vτ for the normal and tangential components of v on ∂Ω given by vν = v · ν and vτ = v − vνν. Werecall that the normal and tangential components of the stress field σ on the boundary are defined by σν = (σν) · ν and
στ = σν − σνν. Next, we introduce the spaces V and H, defined by V = {v = (vi) ∈ H1(Ω;Rd) : v = 0 a.e. on ΓD}and H = L2(Ω; Sd).We assume that the viscosity operator A and the elasticity operator B satisfy
VI. A : Q×Sd → Sd is such that(VI.a) A( · , · , ε) is measurable on Q for all ε ∈ Sd;(VI.b) A(x, t, · ) is continuous on Sd for a.e. (x, t) ∈ Q;(VI.c) (A(x, t, ε1)−A(x, t, ε2)) : (ε1 − ε2) ≥ mA‖ε1 − ε2‖2Sd for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q with mA > 0;(VI.d) ‖A(x, t, ε)‖Sd ≤ a0(x, t) + a1‖ε‖Sd for all ε ∈ Sd, a.e. (x, t) ∈ Q with a0 ∈ L2(Q), a0 ≥ 0 and a1 > 0;(VI.e) A(x, t, 0) = 0 for a.e. (x, t) ∈ Q.
VII. B : Q×Sd → Sd is such that(VII.a) B( · , · , ε) is measurable on Q for all ε ∈ Sd;(VII.b) ‖B(x, t, ε1)−B(x, t, ε2)‖Sd ≤ LB‖ε1−ε2‖Sd for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q with LB > 0;(VII.c) B( · , · , 0) ∈ L2(Q; Sd).
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The contact potentials jν and jτ satisfy the following hypotheses.
VIII. jν : ΣC ×R→ R is such that(VIII.a) jν( · , · , r) is measurable on ΣC for all r ∈ R and jν( ·, · , 0) ∈ L1(ΣC );(VIII.b) jν(x, t, · ) is locally Lipschitz on R for a.e. (x, t) ∈ ΣC ;(VIII.c) |∂jν(x, t, r)| ≤ c0ν + c1ν |r| for all r ∈ R, a.e. (x, t) ∈ ΣC with c0ν , c1ν ≥ 0;(VIII.d) (ζ1−ζ2)(r1−r2) ≥ −mν |r1−r2|2 for all ζi ∈ ∂jν(x, t, ri), ri ∈ R, i = 1, 2, a.e. (x, t) ∈ ΣC with mν ≥ 0;(VIII.e) j0ν (x, t, r;−r) ≤ dν(1+ |r|) for all r ∈ R, a.e. (x, t) ∈ ΣC with dν ≥ 0.
IX. jτ : ΣC ×Rd → R is such that(IX.a) jτ ( · , · , ξ) is measurable on ΣC for all ξ ∈ Rd and jτ ( · , · , 0) ∈ L1(ΣC );(IX.b) jτ (x, t, · ) is locally Lipschitz on Rd for a.e. (x, t) ∈ ΣC ;(IX.c) ‖∂jτ (x, t, ξ)‖Rd ≤ c0τ + c1τ‖ξ‖Rd for all ξ ∈ Rd, a.e. (x, t) ∈ ΣC with c0τ , c1τ ≥ 0;(IX.d) (ζ1−ζ2) · (ξ1−ξ2) ≥ −mτ‖ξ1−ξ2‖2Rd for all ζi ∈ ∂jτ (x, t, ξ i), ξ i ∈ Rd, i = 1, 2, a.e. (x, t) ∈ ΣC with mτ ≥ 0;(IX.e) j0τ (x, t, ξ;−ξ) ≤ dτ (1+‖ξ‖Rd ) for all ξ ∈ Rd, a.e. (x, t) ∈ ΣC with dτ ≥ 0.

The volume force and traction densities satisfy
f 0 ∈ L2(0, T ; L2(Ω;Rd)), fN ∈ L2(0, T ; L2(ΓN ;Rd)) (11)

and, finally, the initial displacement is such that
u0 ∈ V. (12)

We turn now to the variational formulation of Problem 6.1. Suppose that (u, σ ) is a couple of sufficiently smooth functionswhich solve (10a)–(10g). Let v ∈ V . Then, using (10b), we have
(σ (t), ε(v))H = (f 0(t), v)L2(Ω;Rd) + ∫

∂Ωσ (t)ν · v dΓ for a.e. t ∈ (0, T ). (13)
We take into account the boundary conditions (10c) and (10d) to see that∫

∂Ωσ (t)ν · v dΓ = ∫ΓNfN (t) · v dΓ + ∫ΓC
(
σν(t)vν + στ (t) · vτ)dΓ for a.e. t ∈ (0, T ). (14)

On the other hand, from the definition of the Clarke subdifferential, (10e) and (10f), we have
−σν(t)vν ≤ j0ν (t, u′ν(t); vν), −στ (t) · vτ ≤ j0τ (t,u′τ (t); vτ ) on ΣC ,

which imply that ∫
ΓC
(
σν(t)vν + στ (t) · vτ)dΓ ≥ −∫ΓC

(
j0ν (t, u′ν(t); vν) + j0τ (t,u′τ (t); vτ ))dΓ (15)

for a.e. t ∈ (0, T ). Consider the function f : (0, T )→ V ∗ given by
〈f (t), v〉V ∗×V = (f 0(t), v)L2(Ω;Rd) + (fN (t), v)L2(ΓN ;Rd) (16)

for all v ∈ V and a.e. t ∈ (0, T ). We combine (13)–(16) to obtain
(σ (t), ε(v))H + ∫ΓC

(
j0ν (t, u′ν(t); vν) + j0τ (t,u′τ (t); vτ ))dΓ ≥ 〈f (t), v〉V ∗×V
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Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

and, using the constitutive law (10a), it follows
(
A(t, ε(u′(t))), ε(v))

H
+ (B(t, ε(u(t))), ε(v))

H
+ ∫ΓC

(
j0ν (t, u′ν(t); vν) + j0τ (t,u′τ (t); vτ ))dΓ ≥ 〈f (t), v〉V ∗×V (17)

for all v ∈ V and a.e. t ∈ (0, T ). Let w = u′ denote the velocity field. Then, by using the initial condition (10g), itfollows that
u(t) = ∫ t

0 w(s)ds+ u0 for all t ∈ [0, T ]. (18)
Therefore, (17) and (18) lead to the following variational formulation of problem (10a)–(10g), in terms of velocity.
Problem 6.2.Find a velocity field w ∈ V such that
(
A(t, ε(w(t))), ε(v))

H
+(B(t, ε(∫ t

0 w(s)ds+ u0
))

, ε(v))
H

+ ∫
ΓC
(
j0ν (t, wν(t); vν) + j0τ (t,wτ (t); vτ ))dΓ ≥ 〈f (t), v〉V ∗×V

for all v ∈ V and a.e. t ∈ (0, T ).
The hemivariational inequality in Problem 6.2 is of the form of the inequality in Problem 5.1. From Theorem 5.2, weobtain the following result on Problem 6.2.
Theorem 6.3.
Assume that (VI.a), VII, (11) and (12) hold. If one of the following hypotheses:(i) (VIII.a)–(VIII.d), (IX.a)–(IX.d) and m1 > max{√3(c1ν+c1τ ), mν , mτ}c2

e‖γ‖2,(ii) VIII, IX and m1 > max{mν , mτ}c2
e‖γ‖2

is satisfied, then Problem 6.2 has at least one solution. If, in addition,

either jν(x, t, ·), jτ (x, t, ·) are regular or − jν(x, t, ·), −jτ (x, t, ·) are regular for a.e. (x, t) ∈ ΣC , (19)
then the solution of Problem 6.2 is unique.

Let w be a solution of Problem 6.2 and denote by u and σ the functions defined by (18) and (10a). Then, the couple(u, σ ) is called a weak solution of the frictional contact problem (10a)–(10g). We conclude, under the hypotheses ofTheorem 6.3, that the frictional contact problem (10a)–(10g) has at least one weak solution with the following regularity:
u ∈ W 1,2(0, T ;V ) and σ ∈ L2(0, T ;H) with Div σ ∈ L2(0, T ;V ∗).

If, in addition, the regularity condition (19) holds, then the weak solution of Problem 6.1 is unique.We now pass to the second problem of this section. We consider the quasistatic viscoelastic contact with nonmonotonenormal compliance and friction. As in the first problem, we assume that the volume forces and surface tractions changeslowly in time so that the acceleration in the system is negligible. We show that the quasistatic model can be formulatedas a time dependent hemivariational inequality of the form (7) and the abstract result of Theorem 3.4 is applicable inthis case. For the mechanical formulation of the process we use the notation introduced above. We set Q = Ω× (0, T ).Again we denote by u : Q → Rd the displacement field, by σ : Q → Sd the stress tensor and by ε(u) = {εij (u)},
εij (u) = (∂jui+∂iuj )/2 the strain tensor. We assume a linear viscoelastic model with the constitutive law of the Kelvin–Voigt type

σij = aijklεkl(u′) + bijklεkl(u) in Q,
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where C(t) = {aijkl(t)} and G = {bijkl}, i, j, k, l = 1, . . . , d, are the viscosity and the elasticity tensors, respectively.Concerning the contact conditions, we consider the following subdifferential relations −σν ∈ ∂jν(x, t, uν) and −στ ∈
∂jτ (x, t,uτ ). The functions jν : ΓC × (0, T )×R → R and jτ : ΓC × (0, T )×Rd → R are locally Lipschitz in their lastvariables and ∂jν , ∂jτ denote their Clarke subdifferentials. The initial displacement is denoted by u0. The classicalformulation of the mechanical problem is as follows. Find the displacement field u : Ω× [0, T ]→ Rd and the stress field
σ : Ω× [0, T ]→ Sd such that, for all t ∈ (0, T ),

σ (t) = C(t)ε(u′(t)) + Gε(u(t)) in Ω, (20a)Div σ (t) + f 0(t) = 0 in Ω, (20b)
u(t) = 0 on ΓD, (20c)

σ (t)ν = fN (t) on ΓN , (20d)
−σν(t) ∈ ∂jν(t, uν(t)) on ΓC , (20e)
−στ (t) ∈ ∂jτ (t,uτ (t)) on ΓC , (20f)

u(0) = u0 in Ω. (20g)
For concrete examples of boundary conditions (20e) and (20f), we refer to [4, 6, 16–18].In order to obtain a variational formulation of the problem (20a)–(20g) we need additional notation. Let V = {v = (vi) ∈
H1(Ω;Rd) : v = 0 a.e. on ΓD}, Z = Hδ (Ω;Rd) with a fixed δ ∈ (1/2, 1), H = L2(Ω;Rd) and X = L2(ΓC ;Rd). On V weconsider the inner product and the corresponding norm given by 〈u, v〉V = 〈ε(u), ε(v)〉L2(Ω;Sd), ‖v‖V = ‖ε(v)‖L2(Ω;Sd) for
u, v ∈ V . Since m(ΓD) > 0, the Korn inequality ‖v‖H1(Ω;Rd) ≤ c‖ε(v)‖L2(Ω;Sd) for v ∈ V with c > 0 holds, and thereforethe norms ‖ ·‖H1(Ω;Rd) and ‖ ·‖V are equivalent on V . Moreover, we put M = γ ∈ L(Z, X ), γ is the trace operator, and,for simplicity, p = 2.We also assume that the viscosity and elasticity tensors have the usual properties of ellipticity, symmetry and positivity.
H(C) C : Q×Sd → Sd is a viscosity tensor, C(t) = {aijkl(t)}, such that aijkl = aklij = aijlk ∈ L∞(Q) and there exists

m1 > 0 satisfying C(t)τ :τ ≥ m1‖τ‖2Sd for all τ ∈ Sd, a.e. in Q.
H(G) G : Ω×Sd → Sd is an elasticity tensor, G = {bijkl}, such that bijkl = bklij = bijlk ∈ L∞(Ω) and Gτ :τ ≥ 0 for all

τ ∈ Sd, a.e. in Ω.
Next, we define the operators A(t), B ∈ L(V , V ∗) by

〈A(t)u, v〉 = 〈C(t)ε(u), ε(v)〉L2(Ω;Sd), 〈Bu, v〉 = 〈Gε(u), ε(v)〉L2(Ω;Sd) (21)
for t ∈ (0, T ) and u, v ∈ V , and f ∈ V∗ by (16). Analogously as in the first contact problem, we derive the followinghemivariational inequality which is a weak form of (20a)–(20g): find u : (0, T ) → V such that u ∈ L∞(0, T ;V ), u′ ∈ Vand〈A(t)u′(t)+Bu(t), v〉+ ∫ΓC

(
j0ν (t, uν ; vν) + j0τ (t, uτ ; vτ ))dΓ ≥ 〈f(t), v〉 for a.e. t ∈ (0, T ) and all v ∈ V ,

u(0) = u0.
(22)

Let us consider the functional J : (0, T )×X → R defined by
J(t, v) = ∫ΓC

(
jν(x, t, vν(x)) + jτ (x, t, vτ (x)))dΓ for a.e. t ∈ (0, T ) and all v ∈ X, (23)

where X = L2(ΓC ;Rd).
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Lemma 6.4.
Under the hypotheses VIII and IX, the functional J defined by (23) satisfies(i) J( · , v) is measurable for all v ∈ X and J( · , 0) ∈ L1(0, T );
(ii) J(t, · ) is Lipschitz on bounded subsets of X;

(iii) ‖∂J(t, v)‖X∗ ≤ c(1+‖v‖X ) for all v ∈ X, a.e. t ∈ (0, T ) with c = 2√2 max{cν , cτ} max{1,√m(ΓC )};
(iv) for all v, w ∈ X, we have

J0(t, v ;w) ≤ ∫ΓC
(
j0ν (t, vν ;wν) + j0τ (t, vτ ;wτ ))dΓ, (24)

where J0(t, v ;w) denotes the directional derivative of J(t, · ) at a point v ∈ X in the direction w ∈ X. If, in addition,

either jν(x, t, · ), jτ (x, t, · ) are regular or − jν(x, t, · ), −jτ (x, t, · ) are regular, (25)
then either J(t, · ) or −J(t, · ) is regular, respectively and (24) holds with equality.

Under our notation we associate with the hemivariational inequality (22) the following inclusion of type (7): find
u ∈ L∞(0, T ;V ) with u′ ∈ V such that

{
A(t)u′(t) + Bu(t) + γ∗∂J(t, γu(t)) 3 f(t) for a.e. t ∈ (0, T ),
u(0) = u0. (26)

Remark 6.5.We notice that if the hypotheses VIII and IX hold, then every solution to (26) is a solution to (22). The converse holdsprovided jν and jτ satisfy the regularity condition (25). These facts follow from the definition of the Clarke subdifferentialand Lemma 6.4 (iv).
The existence and regularity result for the hemivariational inequality (22) reads as follows.
Theorem 6.6.
If the hypotheses H(C), H(G), (VIII.a)–(VIII.c), (IX.a)–(IX.c), (11), (12) hold and m1 > 2cT c2

e‖γ‖max{1, ‖γ‖}, where c is
given in Lemma 6.4 (iii), ce > 0 is the embedding constant of V into Z and ‖γ‖ = ‖γ‖L(Z ;X ), then the problem (22) admits
at least one solution u ∈ L∞(0, T ;V ) with u′ ∈ V.

Proof. It follows from H(C) and H(G) that the operators A(t) and B defined by (21) satisfy H(A) with α = m1 and H(B),respectively. It is a consequence of Lemma 6.4 (i)–(iii) that the functional J given by (23) satisfies H(J). Also H(M) followseasily by the properties of the trace operator. The conclusion follows from Theorem 4.2 and Remark 6.5.
We conclude this section with short comments on multivalued boundary conditions (20e) and (20f) which are met in solidmechanics. The condition (20e) is a generalization of a normal compliance condition to the nonmonotone setting. Letthe function jν : R → R be defined by jν(r) = ∫ r0 pν(s)ds, where for simplicity we drop the (x, t)-dependence and thefunction pν ∈ L∞loc(R) is such that |pν(s)| ≤ p1(1+ |s|) for s ∈ R with p1 > 0 and limits limr→s± pν(r) exist for all s ∈ R.It is well known, see e.g. [16, 18], that ∂jν(r) = p̂ν(r) for r ∈ R, where the multivalued function p̂ν : R→ 2R is given by
p̂ν(r) = [p(1)

ν (r), p(2)
ν (r)], [ · , · ] denotes an interval in R and

p(1)
ν (r) = lim

ε→0+ ess inf
|τ−r|≤ε

pν(τ), p(2)
ν (r) = lim

ε→0+ ess sup
|τ−r|≤ε

pν(τ).
In this case VIII holds and (20e) has the form −σν ∈ p̂ν(uν) on ΓC × (0, T ). Modifications of this example describe the non-monotone zigzag relations in contact laws for a granular material and a reinforced concrete, cf. [18, Sections 2.4 and 7.2],
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[16, Section 4.6] and [12]. We also observe that if, in addition, pν is a continuous function, then (20e) reducesto −σν = pν(uν) on ΓC× (0, T ) which is a well-known classical normal compliance condition. The normal compli-ance contact condition describes a reactive foundation. It assigns a reactive normal pressure which depends on theinterpenetration of the asperities on the boundary surface and those of the foundation. We mention that the normalcompliance condition is considered in engineering and certain mathematical publications as an approximation of theSignorini nonpenetration condition, and this idealization makes sense for practical reasons, cf. [19].In the friction condition (20f), if jτ = 0, we obtain the frictionless contact. If jτ (x, t, ξ) = S(x, t)‖ξ‖Rd , where
S ∈ L∞(ΓC × (0, T )) and S > 0 a.e., then we get a version of the static Tresca friction law where the friction bounddepends on time. In the friction condition (20f) we suppose that the tangential shear on the contact surface is given as anonmonotone, time dependent and possibly multivalued function of the tangential displacement. For other examples offunctions jν and jτ , we refer to [12]. Other two- and three-dimensional nonconvex zigzag superpotential laws are detailedin [15, 16].
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