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Abstract. We consider the identification problem of three operators having different
properties for the systems governed by nonlinear second order evolution inclusions with
the Volterra integral term. For the abstract identification problem, we show the existence
of optimal solutions. We provide applications to evolution hemivariational inequalities
and to viscoelastic frictional contact problem of mechanics.
Keywords: Identification, Evolution inclusion, Inverse problem, Hemivariational in-
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1. Introduction. In this paper, we study the problem of estimation of parameters in
an abstract evolution inclusion of second order. We consider a nonlinear inclusion with
the Volterra memory operator. Such inclusion serves as a mathematical model for several
important problems arising in mechanics, physics and engineering science. For this reason
the mathematical literature dedicated to identification problems is extensive, see, e.g., [1,
3, 9, 14, 15, 16, 17, 18, 19, 28]. The direct problem under consideration is formulated as
the following Cauchy problem for evolution inclusion in the framework of evolution triple
of spaces 

u′′(t) + A(p, t, u′(t)) +B(p, t, u(t)) +

∫ t

0

C(p, t− s)u(s)ds+

+F (t, u(t), u′(t)) 3 f(t) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0,

(∗)

where A, B : (0, T )× V → V ∗ are nonlinear operators, C(t) is a bounded linear operator
from V to its dual V ∗, for t ∈ (0, T ), F : (0, T )× V × V → 2Z

∗
stands for a multivalued

mapping, f ∈ L2(0, T ;V ∗), u0 ∈ V , v0 ∈ H, V and Z are reflexive Banach spaces with
V ⊂ Z compactly, H is a Hilbert space such that Z ⊂ H and 0 < T < ∞. The operators
A, B and C depend on some unknown (i.e., to be estimated) parameters p with values in
an admissible family P of parameters.

The aim of this paper is to prove a new existence result for the identification problem for
(∗) and to apply this result in the analysis of integrodifferential hemivariational inequality
and in the study of parameters in a viscoelastic frictional contact problem. The trait of
novelty of our paper arises in the special structure of the abstract problem (∗) which is
governed by an operator depending on the history of the solution and which contains a
special form of the multivalued term. The direct problem (∗) without the Volterra memory
term and time independent operator B has been studied in [6] with F : (0, T )×H×H →
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2H , [24] in the case B is linear, continuous, symmetric and coercive operator, and in
[20] in the case B is linear, continuous, symmetric and monotone. None of the results
on nonlinear evolution inclusions in [6, 11, 12, 20, 24] can be applied in the study of
hemivariational inequalities because of their restrictive assumption on the multivalued
term which was supposed to have values in H. For the hemivariational inequalities and
the contact problems under consideration, the multivalued term has values in the space
dual to Z which is larger than H.
The identification problem for the model (∗) is a new one and has not been considered

in the literature. This problem is studied in the first part of the paper and it consists in
finding parameters which appear in the operators A, B and C which give the best fit of
the solutions to (∗) to the observation data. The problem is formulated as an optimal
control one. This is a widely used approach to the identification problems which cov-
ers the estimation of the unknown parameters appearing in the system by minimizing a
quadratic cost functional of the difference between observed value and desired value, the
so-called output least-square identification problem. The well-posedness of the identifica-
tion problem for systems governed by (∗) is established by using the direct method of the
calculus of variations. To this end, we obtain a new result on the continuous dependence
of the solution to (∗) on the parameters. It is assumed that the parameter-dependent
operators A, B and C satisfy suitable continuity hypotheses uniformly in p ∈ P .
In the second part of the paper we present applications of our result to the dynamic

hemivariational inequalities describing the frictional contact problems for viscoelastic ma-
terials with long memory. We mention that the notion of hemivariational inequality was
introduced and investigated in the early 1980s by Panagiotopoulos [26, 27]. These in-
equalities are a natural generalization of variational inequality and they are derived from
nonsmooth and nonconvex superpotentials by using the generalized gradient of Clarke, cf.
[4]. In the mechanical problem under consideration the operators A, B and C correspond
to the viscosity, elasticity and relaxation operators, respectively. The integrodifferential
hemivariational inequality is derived from the evolution inclusion (∗) where the multi-
valued term is of the form of the Clarke subdifferential of a locally Lipschitz superpo-
tential. By means of hemivariational inequality, many problems in nonsmooth contact
mechanics involving multivalued and nonmonotone constitutive laws and boundary con-
ditions can be treated mathematically. The real-world applications of hemivariational
inequalities include models of tectonic plate movement, construction and exploitation of
machines, metal forming, artificial limbs and joints, teeth implants, bone remodeling mod-
els, semipermeable membranes, ultrasonic transducers, etc. that can ultimately be used
for the improvement of industrial applications of economic benefits.
The optimization, control and identification of systems described by evolution equa-

tions on Banach spaces have been studied in [1, 2]. The inverse problems for damped
second order evolution systems can be found in [19, 28] while the applications to smart
materials technology and control are investigated in [3]. On the other hand, the theory of
hemivariational inequalities and their applications to mechanical problems are extensively
studied in recent years, cf. [11, 12, 13, 16, 20, 21, 22, 23, 24, 25]. The identification and
control problems for various classes of hemivariational inequalities have been considered
in [14, 15, 17, 18].
The paper is organized as follows. The prelimary material is recalled in Section 2 and

a result on the unique solvability of (∗) is given in Section 3. Section 4 is devoted to
the existence of solutions to the identification problem for the evolution inclusion. The
applications are given in Sections 5 and 6 where we provide results for hemivariational
inequality and the frictional contact problem for viscoelastic materials with memory.
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2. Preliminaries. In this section we recall the basic notation and definitions needed in
the sequel.

Let V and Z be separable and reflexive Banach spaces with their topological duals V ∗

and Z∗, respectively. Let H denote a separable Hilbert space and we identify H with its
dual. We assume that V ⊂ H ⊂ V ∗ and Z ⊂ H ⊂ Z∗ are evolution triples of spaces
where all embedings are continuous, dense and compact (see, e.g., Chapter 23.4 of [29],
Chapter 3.4 of [6]). We also suppose that V is compactly embedded in Z. Let ‖·‖, | · | and
‖ · ‖V ∗ denote the norms in V , H and V ∗, respectively, and let 〈·, ·〉 be the duality pairing
between V ∗ and V . Given a finite interval (0, T ), we also introduce the following spaces

V = L2(0, T ;V ), Z = L2(0, T ;Z), Ĥ = L2(0, T ;H), Z∗ = L2(0, T ;Z∗), V∗ = L2(0, T ;V ∗)
and W = {v ∈ V | v′ ∈ V∗}, where the time derivative is understood in the sense of
vector-valued distributions. The duality pairing between V∗ and V is denoted by

〈〈z, w〉〉 =
∫ T

0

〈z(t), w(t)〉dt for z ∈ V∗, w ∈ V .

It is well known (cf. [6]) that the space W is embedded continuously in C(0, T ;H) (the
space of continuous functions on [0, T ] with values in H), i.e., every element of W , after
a possible modification on a set of measure zero, has a unique continuous representative
in C(0, T ;H). Moreover, since V is embedded compactly in H, then so does W into
L2(0, T ;H) (cf. [6]).

Let (Ω,Σ) be a measure space, X be a separable Banach space and let 2X be a family
of all subsets of X. A multifunction F : Ω → 2X is called graph measurable if GrF =
{(ω, x) ∈ Ω × Y | x ∈ F (ω)} ∈ Σ × B(X) with B(X) being the Borel σ-field of X. It is
said to be measurable if for each closed set C ⊂ X, the set F−(C) = {ω ∈ Ω | F (ω)∩C 6=
∅} ∈ Σ (cf. Section 4.2 of [5]).

Let X and Y be Banach spaces. A multifunction F : X → 2Y \ {∅} is lower semicon-
tinuous (upper semicontinuous, respectively) if for C ⊂ Y closed, the set F+(C) = {x ∈
X | F (x) ⊂ C} (F−(C) = {x ∈ X | F (x) ∩ C 6= ∅}, respectively) is closed in X. F is
bounded on bounded sets if F (B) = ∪x∈BF (x) is a bounded subset of Y for all bounded
sets B in X.

Let Y be a reflexive Banach space and 〈·, ·〉 denotes the duality pairing between Y and its
dual. An operator T : Y → Y ∗ is called to be monotone if 〈Ty−Tz, y−z〉 ≥ 0 for all y, z ∈
Y . It is said to be pseudomonotone if yn → y0 weakly in Y and lim sup〈Tyn, yn − y0〉 ≤ 0
imply that 〈Ty0, y0−y〉 ≤ lim inf〈Tyn, yn−y〉 for all y ∈ Y . It is said to be demicontinuous
if yn → y0 in Y implies Tyn → Ty0 weakly in Y ∗. It is hemicontinuous if the real-valued
function t → 〈T (y + tv), w〉 is continuous on [0, 1] for all y, v, w ∈ Y .

A multivalued mapping T : Y → 2Y
∗
is said to be pseudomonotone, if it satisfies

(a) for every y ∈ Y , Ty is a nonempty, convex, and weakly compact set in Y ∗;
(b) T is upper semicontinuous from every finite dimensional subspace of Y into Y ∗

endowed with the weak topology;
(c) if yn → y weakly in Y , y∗n ∈ Tyn, and lim sup〈y∗n, yn − y〉 ≤ 0, then for each z ∈ Y

there exists y∗(z) ∈ Ty such that 〈y∗(z), y − z〉 ≤ lim inf〈y∗n, yn − z〉.
Let L : D(L) ⊂ Y → Y ∗ be a linear densely defined maximal monotone operator. A

mapping T : Y → 2Y
∗
is said to be L-pseudomonotone (pseudomonotone with respect to

D(L)) if and only if (a), (b) and the following hold:

(d) if {yn} ⊂ D(L) is such that yn → y weakly in Y , y ∈ D(L), Lyn → Ly weakly in
Y ∗, y∗n ∈ Tyn, y

∗
n → y∗ weakly in Y ∗ and lim sup〈y∗n, yn − y〉 ≤ 0, then y∗ ∈ Ty and

〈y∗n, yn〉 → 〈y∗, y〉.
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Given a Banach space (X, ‖ · ‖X), the symbol w–X is always used to denote the space
X endowed with the weak topology. By L(X,X∗) we denote the class of linear and
bounded operators from X to X∗. If U ⊂ X, then we write ‖U‖X = sup{‖x‖X | x ∈ U}.
Furthermore, we will use the following notation

Pf(c)(X) = {A ⊆ X | A is nonempty, closed, (convex)};
P(w)k(c)(X) = {A ⊆ X | A is nonempty, (weakly) compact, (convex)}.

3. Evolution Inclusion. In this section we formulate the second order evolution inclu-
sion which is a direct problem in the identification problem under consideration. We recall
the existence and uniqueness result obtained recently in [21].
Problem P : find u ∈ V such that u′ ∈ W and

u′′(t) + A(t, u′(t)) + B(t, u(t)) +

∫ t

0

C(t− s)u(s)ds+

+F (t, u(t), u′(t)) 3 f(t) a.e. t ∈ (0, T )

u(0) = u0, u′(0) = v0.

Definition 3.1. A function u ∈ V is a solution to Problem P, if u′ ∈ W and there exists
z ∈ Z∗ such that

u′′(t) + A(t, u′(t)) + B(t, u(t)) +

∫ t

0

C(t− s)u(s)ds+ z(t) = f(t) a.e. t ∈ (0, T )

z(t) ∈ F (t, u(t), u′(t)) a.e. t ∈ (0, T )

u(0) = u0, u′(0) = v0.

Remark 3.1. We observe that the statement “u ∈ V is such that u′ ∈ W” is equivalent
to “u ∈ C(0, T ;V ) is such that u′ ∈ W”.

We need the following hypotheses on the data of Problem P .

H(A) : A : (0, T )× V → V ∗ is such that

(i) A(·, v) is measurable on (0, T ) for every v ∈ V ;
(ii) A(t, ·) is hemicontinuous for a.e. t ∈ (0, T );
(iii) A(t, ·) is strongly monotone for a.e. t ∈ (0, T ), i.e., there exists m1 > 0 such that

〈A(t, v)− A(t, u), v − u〉 ≥ m1‖v − u‖2 for a.e. t ∈ (0, T ), all v, u ∈ V ;
(iv) ‖A(t, v)‖V ∗ ≤ a0(t) + a1‖v‖ for a.e. t ∈ (0, T ), all v ∈ V with a0 ∈ L2(0, T ), a0 ≥ 0

and a1 > 0;
(v) 〈A(t, v), v〉 ≥ α‖v‖2 for a.e. t ∈ (0, T ), all v ∈ V with α > 0.

H(B) : B : (0, T )× V → V ∗ is such that

(i) B(·, v) is measurable on (0, T ) for all v ∈ V ;
(ii) B(t, ·) is Lipschitz continuous for a.e. t ∈ (0, T ), i.e., ‖B(t, u)−B(t, v)‖V ∗ ≤ LB‖u−

v‖ for all u, v ∈ V , a.e. t ∈ (0, T ) with LB > 0;
(iii) ‖B(t, v)‖V ∗ ≤ b0(t) + b1‖v‖ for all v ∈ V , a.e. t ∈ (0, T ) with b0 ∈ L2(0, T ) and b0,

b1 ≥ 0.

H(C) : C is such that C ∈ L2(0, T ;L(V, V ∗)).

H(F ) : F : (0, T )× V × V → Pfc(Z
∗) is such that

(i) F (·, u, v) is measurable on (0, T ) for all u, v ∈ V ;
(ii) F (t, ·, ·) is upper semicontinuous from V × V into w–Z∗ for a.e. t ∈ (0, T ), where

V × V is endowed with (Z × Z)-topology;
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(iii) ‖F (t, u, v)‖Z∗ ≤ d0(t) + d1‖u‖ + d2‖v‖ for all u, v ∈ V , a.e. t ∈ (0, T ) with d0 ∈
L2(0, T ) and d0, d1, d2 ≥ 0;

(iv) 〈F (t, u1, v1)−F (t, u2, v2), v1 − v2〉Z∗×Z ≥ −m2‖v1 − v2‖2 −m3‖v1 − v2‖‖u1 − u2‖ for
all ui, vi ∈ V , i = 1, 2, a.e. t ∈ (0, T )
with m2, m3 ≥ 0.

(H0) : f ∈ V∗, u0 ∈ V , v0 ∈ H.

(H1) : α > 2
√
3ce(d1T + d2), where ce > 0 is the embedding constant of V into Z, i.e.,

‖ · ‖Z ≤ ce‖ · ‖.

(H2) : m1 > m2 +
1√
2
m3T .

We shortly comment on the above hypotheses.

Remark 3.2. i) The hypothesis H(A)(ii) and (iii) imply that A(t, ·) is pseudomonotone
for a.e. t ∈ (0, T ), cf. Proposition 27.6(a) of [29] and Remark 1.1.13 of [6].
ii) If the condition H(B)(ii) holds and B(·, 0) ∈ L2(0, T ;V ∗), then ‖B(t, v)‖V ∗ ≤ b(t) +
LB‖v‖ for all v ∈ V , a.e. t ∈ (0, T ), where b(t) = ‖B(t, 0)‖V ∗, b ∈ L2(0, T ), b ≥ 0.
Moreover, it is clear that if B ∈ L∞(0, T ;L(V, V ∗)), then H(B)(ii) holds.
iii) The conditions (H1) and (H2) provide a restriction on the length of time interval T
unless d1 = m3 = 0. This means that under (H1) and (H2), the existence and uniqueness
result of Theorem 3.1 below is local and holds for a sufficiently small time interval. On
the other hand, if the data satisfy (H1) and (H2) with d1 = m3 = 0, then this result is
global in time. For example, we observe that if the multifunction F (t, u, ·) is monotone
for all u ∈ V , a.e. t ∈ (0, T ), i.e., 〈F (t, u, v1) − F (t, u, v2), v1 − v2〉Z∗×Z ≥ 0 for all u,
vi ∈ V , i = 1, 2, a.e. t ∈ (0, T ), then the hypothesis (H2) clearly holds with m2 = m3 = 0
and every m1 > 0.
iv) It follows from Lemma 5 of [21] that under the hypothesis H(F ), the multifunction
G : W 1,2(0, T ;V ) → 2Z

∗
defined by

G(u) = {z ∈ Z∗ | z(t) ∈ F (t, u(t), u′(t)) a.e. on (0, T )}
for u ∈ W 1,2(0, T ;V ) is Pwkc(Z∗)-valued. Hence, the multifunction t 7→ F (t, u(t), u′(t))
has a measurable Z∗ selection and Definition 3.1 makes sense.

The following is the main result on Problem P .

Theorem 3.1. Under hypotheses H(A), H(B), H(C), H(F ), (H0), (H1) and (H2), Prob-
lem P admits a unique solution.

We shortly comment on the proof of Theorem 3.1. In the first step we consider the
evolution inclusion without the Volterra term and the operator B, i.e.,{

u′′(t) + A(t, u′(t)) + F (t, u(t), u′(t)) 3 f(t) a.e. t ∈ (0, T )

u(0) = u0, u′(0) = v0.
(1)

We formulate it as follows{
z′(t) + A(t, z(t)) + F (t,Kz(t), z(t)) 3 f(t) a.e. t ∈ (0, T )

z(0) = v0,
(2)

where (Kv)(t) =
∫ t

0
v(s)ds+ u0. Then, z solves (2) if and only if u = Kz is a solution to

(1). Next, we rewrite (2) as an operator inclusion (L + F)z 3 f , where Lz = z′ denotes
the generalized time derivative, F = A1 + F1 with (A1z)(t) = A(t, z(t) + v0) and

F1z = {z∗ ∈ Z∗ | z∗(t) ∈ F (t,K(z(t) + v0), z(t) + v0) a.e. t ∈ (0, T )}.
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We are able to prove that F is bounded, coercive and pseudomonotone with respect to
the graph norm topology of the domain of L. By exploting the fact that L is closed,
densely defined and maximal monotone operator, from Theorem 1.3.73 of [6], we obtain
that L + F is surjective which implies that (1) is solvable. Subsequently, we show that
the solution to (1) is unique. In the second step we consider the operator Λ defined by

(Λη)(t) = B(t, uη(t)) +

∫ t

0

C(t− s)uη(s)ds,

where uη is the unique solution to the following inclusion{
u′′(t) + A(t, u′(t)) + F (t, u(t), u′(t)) 3 f(t)− η(t) a.e. t ∈ (0, T )

u(0) = u0, u′(0) = v0.
(3)

Applying the Banach Contraction Principle, we show that Λ has a unique fixed point η∗.
The solution of (3) corresponding to η∗ is the unique solution to Problem P . For the
detailed proof we refer to [10, 21].

4. Identification Problem. The goal of this section is to provide the main result of the
paper on the existence of solutions to the identification.
The identification problem consists in finding parameters which give the best fit of

the solutions to Problem P to the observation data. Let P denote the set of admissible
parameters. For p ∈ P we consider the following
Problem Pp: find u ∈ V such that u′ ∈ W and

u′′(t) + A(p, t, u′(t)) + B(p, t, u(t)) +

∫ t

0

C(p, t− s)u(s)ds+

+F (t, u(t), u′(t)) 3 f(t) a.e. t ∈ (0, T )

u(0) = u0, u′(0) = v0.

Let F : P → R be the functional defined by

F(p) = l(u(T ), u′(T )) +

∫ T

0

L(t, u(t), u′(t))dt for p ∈ P, (4)

where u = u(t) = u(t; p) denotes the solution of Problem Pp corresponding to p ∈ P .
The identification problem under consideration is formulated as an optimal control one.

It consists in finding p∗ ∈ P that imparts a minimum to the functional F given by (4)
subject to the dynamics Pp:

F(p∗) = min
p∈P

F(p). (5)

Our goal is to show that the identification problem (5) is solvable. The existence of
solutions to problem (5) is obtained by applying the direct method of the calculus of
variations. To this end, we establish a result on the continuous dependence, in suitable
topologies, of solution to Problem Pp on the parameter.
We admit the following hypotheses.

H(P ) : P is a compact subset of a metric spaces of parameters P̃ .

H(A)1 : The family of operators {A(p, ·, ·), p ∈ P} satisfy H(A) uniformly in p ∈ P and

the mapping p 7→ A(p, t, v) is continuous in the sense that

A(pn, ·, w(·)) → A(p, ·, w(·)) in V∗ for all w ∈ W

whenever pn → p in P .



IDENTIFICATION OF OPERATORS IN EVOLUTION INCLUSIONS WITH APPLICATIONS 3851

H(B)1 : The family of operators {B(p, ·, ·), p ∈ P} satisfy H(B) uniformly in p ∈ P and

the mapping p 7→ B(p, t, v) is continuous in the sense that

B(pn, ·, v(·)) → B(p, ·, v(·)) in V∗ for all v ∈ W

whenever pn → p in P .

H(C)1 : The family of operators {C(p, ·), p ∈ P} is such that C(p, ·) ∈ L2(0, T ;L(V, V ∗))

for all p ∈ P and the mapping p 7→ C(p, t) is continuous in the sense that

C(pn, ·) → C(p, ·) in L2(0, T ;L(V, V ∗))

whenever pn → p in P .

H(l) : l : V ×H → R is sequentially lower semicontinuous on V ×H.

H(L) : L : (0, T )× V ×H → R ∪ {+∞} is such that

(i) L(·, u, v) is measurable on (0, T ) for every u ∈ V , v ∈ H;
(ii) L(t, u, v) > −∞ for a.e. t ∈ (0, T ) and all u ∈ V , v ∈ H;
(iii) L(t, ·, ·) is sequentially lower semicontinuous on V ×H for a.e. t ∈ (0, T ).

Theorem 4.1. Under hypotheses H(A)1, H(B)1, H(C)1, H(F ), (H0), (H1), (H2), H(l)
and H(L), the functional F : P → R defined by (4) is sequentially lower semicontionuous
on P .

Proof: Let pn, p ∈ P , pn → p in P . Let un = u(t; pn), u = u(t; p) denote the solutions
of Problem Pp corresponding to the parameters pn and p, respectively. From Theorem 3.1
we know that un and u are uniquely determined. Everywhere in the proof, we denote by c
a positive generic constant which may depend on A, B, C, u and T but is independent of
n, and whose value may change from place to place. We have un, u ∈ V with u′

n, u
′ ∈ W

and

u′′
n(t) + A(pn, t, u

′
n(t)) + ηn(t) + zn(t) = f(t) a.e. t ∈ (0, T ), (6)

u′′(t) + A(p, t, u′(t)) + η(t) + z(t) = f(t) a.e. t ∈ (0, T ), (7)

where

ηn(t) = B(pn, t, un(t)) +

∫ t

0

C(pn, t− s)un(s)ds a.e. t ∈ (0, T ),

η(t) = B(p, t, u(t)) +

∫ t

0

C(p, t− s)u(s)ds a.e. t ∈ (0, T )

and

zn(t) ∈ F (t, un(t), u
′
n(t)), z(t) ∈ F (t, u(t), u′(t)) a.e. t ∈ (0, T )

with un(0) = u(0) = u0 and u′
n(0) = u′(0) = v0. We will show that {un} converges to u

in the following sense

lim
ε→0

(
‖un − u‖C(0,T ;V ) + ‖u′

n − u′‖C(0,T ;H) + ‖u′
n − u′‖V

)
= 0. (8)

From (6) and (7), we get∫ t

0

〈u′′
n(s)− u′′(s), u′

n(s)− u′(s)〉ds+
∫ t

0

〈A(pn, s, u′
n(s))− A(p, s, u′(s)), u′

n(s)− u′(s)〉ds

+

∫ t

0

〈ηn(s)− η(s), u′
n(s)− u′(s)〉ds+

∫ t

0

〈zn(s)− z(s), u′
n(s)− u′(s)〉Z∗×Zds = 0



3852 S. MIGORSKI

for all t ∈ [0, T ]. Since un, u ∈ W 1,2(0, T ;V ) and V is reflexive, by Theorem 3.4.11 and
Remark 3.4.9 of [5], we know that un and u may be identified with absolutely continuous
functions with values in V and

un(t) = un(0) +

∫ t

0

u′
n(s)ds, u(t) = u(0) +

∫ t

0

u′(s)ds for all t ∈ [0, T ].

Hence,

‖un(t)− u(t)‖ ≤
∫ t

0

‖u′
n(s)− u′(s)‖ds (9)

and by the Jensen inequality, we obtain∫ t

0

‖un(s)− u(s)‖2ds ≤
∫ t

0

(∫ s

0

‖u′
n(τ)− u′(τ)‖dτ

)2

ds

≤
∫ t

0

s

(∫ s

0

‖u′
n(τ)− u′(τ)‖2dτ

)
ds

≤
∫ t

0

s‖u′
n − u′‖2L2(0,t;V )ds ≤

T 2

2
‖u′

n − u′‖2L2(0,t;V )

for all t ∈ [0, T ]. Exploiting H(F )(iv) and Hölder’s inequality, we have∫ t

0

〈zn(s)− z(s), u′
n(s)− u′(s)〉Z∗×Zds

≥−m2

∫ t

0

‖u′
n(s)− u′(s)‖2ds−m3

∫ t

0

‖u′
n(s)− u′(s)‖‖un(s)− u(s)‖ds

≥−m2‖u′
n − u′‖2L2(0,t;V ) −m3‖u′

n − u′‖L2(0,t;V )

(∫ t

0

‖un(s)− u(s)‖2ds
)1/2

≥−m2‖u′
n − u′‖2L2(0,t;V ) −m3‖u′

n − u′‖L2(0,t;V )

T√
2
‖u′

n − u′‖L2(0,t;V )

=−
(
m2 +

m3T√
2

)
‖u′

n − u′‖2L2(0,t;V )

for all t ∈ [0, T ]. Hence, and from the integration by parts formula, we have

1

2
|u′

n(t)− u′(t)|2 +
∫ t

0

〈A(pn, s, u′
n(s))− A(pn, s, u

′(s)), u′
n(s)− u′(s)〉ds

+

∫ t

0

〈A(pn, s, u′(s))− A(p, s, u′(s)), u′
n(s)− u′(s)〉ds−

(
m2 +

m3T√
2

)
‖u′

n − u′‖2L2(0,t;V )

≤−
∫ t

0

〈ηn(s)− η(s), u′
n(s)− u′(s)〉ds for all t ∈ [0, T ].

Since A(p, t, ·) is strongly monotone, uniformly in p ∈ P , for t ∈ [0, T ], we deduce

1

2
|u′

n(t)− u′(t)|2 +
(
m1 −m2 −

m3T√
2

)
‖u′

n − u′‖2L2(0,t;V )

≤
(
‖A(pn, ·, u′(·))− A(p, ·, u′(·))‖L2(0,t;V ∗) + ‖ηn − η‖L2(0,t;V ∗

)
‖u′

n − u′‖L2(0,t;V ) (10)
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for all t ∈ [0, T ]. On the other hand, using the fact that B(p, t, ·) is uniformly in p ∈ P
Lipschitz continuous, for t ∈ [0, T ], we have

‖ηn(s)− η(s)‖V ∗

≤‖B(pn, s, un(s))−B(pn, s, u(s))‖V ∗ + ‖B(pn, s, u(s))−B(p, s, u(s))‖V ∗

+

∥∥∥∥∫ s

0

C(pn, s− τ)(un(τ)− u(τ))dτ

∥∥∥∥
V ∗

+

∥∥∥∥∫ s

0

(C(pn, s− τ)− C(p, s− τ))u(τ)dτ

∥∥∥∥
V ∗

≤LB‖un(s)− u(s)‖+ ‖B(pn, s, u(s))−B(p, s, u(s))‖V ∗

+ ‖C(pn, ·)‖L2(0,t;L(V,V ∗))‖un − u‖L2(0,t;V ) + ‖C(pn, ·)− C(p, ·)‖L2(0,t;L(V,V ∗))‖u‖L2(0,t;V )

for a.e. s ∈ (0, t). Hence, we obtain

‖ηn − η‖2L2(0,t;V ∗) ≤ c
(
‖un − u‖2L2(0,t;V ) + ‖B(pn, ·, u(·))−B(p, ·, u(·))‖2L2(0,t;V ∗)

+ ‖C(pn, ·)‖2L2(0,t;L(V,V ∗))‖un − u‖2L2(0,t;V )

+ ‖C(pn, ·)− C(p, ·)‖2L2(0,t;L(V,V ∗))‖u‖2L2(0,t;V )

)
≤ c

(
‖un − u‖2L2(0,t;V ) + ‖B(pn, ·, u(·))−B(p, ·, u(·))‖2L2(0,t;V ∗)

+ ‖C(pn, ·)− C(p, ·)‖2L2(0,t;L(V,V ∗))

)
which implies

‖ηn − η‖L2(0,t;V ∗) ≤ c
(
‖un − u‖L2(0,t;V ) + ‖B(pn, ·, u(·))−B(p, ·, u(·))‖L2(0,t;V ∗)

+ ‖C(pn, ·)− C(p, ·)‖L2(0,t;L(V,V ∗))

)
for all t ∈ [0, T ]. Substituting this inequality into (10), it follows

1

2
|u′

n(t)− u′(t)|2 +
(
m1 −m2 −

m3T√
2

)
‖u′

n − u′‖2L2(0,t;V ) (11)

≤ c
(
‖A(pn, ·, u′(·))− A(p, ·, u′(·))‖L2(0,t;V ∗) + ‖un − u‖L2(0,t;V )

+ ‖B(pn, ·, u(·))−B(p, ·, u(·))‖L2(0,t;V ∗)

+ ‖C(pn, ·)− C(p, ·)‖L2(0,t;L(V,V ∗))

)
‖u′

n − u′‖L2(0,t;V )

for all t ∈ [0, T ]. Omitting the first term on the left hand side, by (H2), we deduce

‖u′
n − u′‖L2(0,t;V ) ≤ c

(
‖un − u‖L2(0,t;V ) + rn

)
(12)

where

rn = ‖A(pn, ·, u′(·))− A(p, ·, u′(·))‖V∗ + ‖B(pn, ·, u(·))−B(p, ·, u(·))‖V∗

+‖C(pn, ·)− C(p, ·)‖L2(0,T ;L(V,V ∗)).

Using (9), we have

‖un(t)− u(t)‖ ≤
∫ t

0

‖u′
n(s)− u′(s)‖ds ≤

√
T‖u′

n − u′‖L2(0,t;V )

for all t ∈ [0, T ] which together with (12) implies

‖un(t)− u(t)‖ ≤ c
(
‖un − u‖L2(0,t;V ) + rn

)
for all t ∈ [0, T ]
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and

‖un(t)− u(t)‖2 ≤ c

(∫ t

0

‖un(s)− u(s)‖2ds+ r2n

)
for all t ∈ [0, T ].

Applying now the Gronwall inequality, we have ‖un(t)−u(t)‖ ≤ cr2n which, by hypotheses,
entails

lim
n→∞

‖un − u‖C(0,T ;V ) = 0.

Next, from (12), we have ‖u′
n − u′‖L2(0,t;V ) ≤ c

(
‖un − u‖C(0,T ;V ) + rn

)
which implies

lim
n→∞

‖u′
n − u′‖V = 0.

Finally, from (11), after omitting the second term on the left hand side, we obtain

1

2
|u′

n(t)− u′(t)|2 ≤ c
(
‖un − u‖C(0,T ;V ) + rn

)
‖u′

n − u′‖V .

Hence, we deduce
lim
n→∞

‖u′
n − u′‖C(0,T ;H) = 0.

This completes the proof of (8).
From (8) and the hypothesis H(L), we have

L(t, u(t), u′(t)) ≤ lim inf
n→∞

L(t, un(t), u
′
n(t)) for a.e. t ∈ (0, T )

and consequently, by Fatou’s lemma∫ T

0

L(t, u(t), u′(t))dt ≤ lim inf
n→∞

∫ T

0

L(t, un(t), u
′
n(t))dt. (13)

Also from H(l), we obtain

l(u(T ), u′(T )) ≤ lim inf
n→∞

l(un(T ), u
′
n(T )). (14)

Clearly (13) and (14) imply F(p) ≤ lim inf
n→∞

F(pn). This completes the proof of the theo-
rem.
Applying the direct method of the calculus of variations, from H(P ) and Theorem 4.1,

we have the following.

Theorem 4.2. Let the hypotheses H(P ), H(A)1, H(B)1, H(C)1, H(F ), (H0), (H1),
(H2), H(l) and H(L) hold. Then the identification problem (5) admits at least one solu-
tion.

5. Integrodifferential Hemivariational Inequalities. In this section we apply The-
orems 3.1 and 4.2 in the study of a class of second order hemivariational inequalities.
Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ and let ΓC be a

measurable part of Γ, ΓC ⊆ Γ. The direct problem we are interested in is the following
problem called a hemivariational inequality.

Problem (HV I): find u ∈ V such that u′ ∈ W and

〈
u′′(t) + A(t, u′(t)) +B(t, u(t)) +

∫ t

0

C(t− s)u(s)ds, v

〉
+

∫
ΓC

j0(x, t, γu′(t); γv)dΓ ≥ 〈f(t), v〉 for all v ∈ V and a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

In the study of Problem (HV I) we consider the following additional hypothesis.

H(j) : j : ΓC × (0, T )× R d → R is such that
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(i) j(·, ·, ξ) is measurable for all ξ ∈ R and j(·, ·, 0) ∈ L1(ΓC × (0, T ));
(ii) j(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T );
(iii) |∂j(x, t, ξ)| ≤ c̃ (1 + ‖ξ‖Rd) for all ξ ∈ Rd, a.e. (x, t) ∈ ΓC × (0, T ) with c̃ > 0;
(iv) (η1 − η2, ξ1 − ξ2)Rd ≥ −m̃2‖ξ1 − ξ2‖2Rd for all ηi ∈ ∂j(x, t, ξi), ξi ∈ Rd, i = 1, 2, a.e.

(x, t) ∈ ΓC × (0, T ) with m̃2 ≥ 0,

where j0 and ∂j denote the directional derivative and the Clarke generalized gradient of
j(x, t, ·), respectively.

We consider the functional J : (0, T )× L2(ΓC ;R d) → R defined by

J(t, v) =

∫
ΓC

j(x, t, v(x))dΓ a.e. t ∈ (0, T ) and v ∈ L2(ΓC ;Rd). (15)

We recall the following result, cf. Lemma 3.1 of [25].

Lemma 5.1. Assume that H(j) holds. Then the functional J given by (15) satisfies the
following properties.

(i) J(·, v) is measurable for all v ∈ L2(ΓC ;Rd) and J(·, 0) ∈ L1(0, T );
(ii) J(t, ·) is locally Lipschitz for a.e. t ∈ (0, T );
(iii) ‖∂J(t, v)‖L2(ΓC ;Rd) ≤ c0

(
1 + ‖v‖L2(ΓC ;Rd)

)
for all v ∈ L2(ΓC ;Rd), a.e. t ∈ (0, T ) with

c0 > 0;
(iv) (z1 − z2, w1 − w2)L2(ΓC ;Rd) ≥ −m̃2‖w1 − w2‖2L2(ΓC ;Rd)

for all zi ∈ ∂J(t, wi), wi ∈
L2(ΓC ;Rd), i = 1, 2, a.e. t ∈ (0, T ) with m̃2 ≥ 0;

(v) for all u, v ∈ L2(ΓC ;Rd), we have

J0(t, u; v) ≤
∫
ΓC

j0(x, t, u(x); v(x))dΓ, (16)

where J0(t, u; v) denotes the directional derivative of J(t, ·) at a point u ∈ L2(ΓC ;Rd)
in the direction v ∈ L2(ΓC ;Rd).

We now use Theorem 3.1 and Lemma 5.1 to obtain the following existence result.

Corollary 5.1. (A) Assume that H(A), H(B), H(C), H(j), (H0) hold and

α > 2
√
3c0c

2
e‖γ‖2, (17)

m1 > m̃2c
2
e‖γ‖2. (18)

Then Problem (HV I) has at least one solution.
(B) If, in addition to the hypotheses in (A), either j(x, t, ·) or −j(x, t, ·) is regular for

a.e. (x, t) ∈ ΓC × (0, T ), then Problem (HV I) admits a unique solution.

Proof: (A) Define F : (0, T )× V × V → Pfc(Z
∗) by

F (t, u, v) = γ∗∂J(t, γv) for t ∈ (0, T ), u, v ∈ V,

where J is defined by (15), γ : Z → L2(ΓC ;Rd) is the trace operator and γ∗ : L2(ΓC ;Rd) →
Z∗ denotes its adjoint. Using the linearity and continuity of the trace operator, the proper-
ties of the Clarke subdifferential (cf. Propositions 5.6.9 and 5.6.10 of [5]) and Lemma 5.1,
we obtain that F satisfies H(F ), cf. [10, 21] for details. Hence, by Theorem 3.1, we know
that there exists a unique solution u ∈ V such that u′ ∈ W of the evolution inclusion

u′′(t) + A(t, u′(t)) +B(t, u(t)) +

∫ t

0

C(t− s)u(s)ds+

+F (t, u(t), u′(t)) 3 f(t) a.e. t ∈ (0, T )

u(0) = u0, u′(0) = v0.
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According to Definition 3.1, we have

u′′(t) + A(t, u′(t)) +B(t, u(t)) +

∫ t

0

C(t− s)u(s)ds+ ζ(t) = f(t), (19)

for a.e. t ∈ (0, T ) with ζ(t) = γ∗z(t) and z(t) ∈ ∂J(t, γu′(t)) for a.e. t ∈ (0, T ). The
latter is equivalent to (z(t), w)L2(ΓC ;Rd) ≤ J0(t, γu′(t);w) for all w ∈ L2(ΓC ;Rd) and a.e.
t ∈ (0, T ). Hence, using (19) and (16), we deduce〈

f(t)− u′′(t)− A(t, u′(t))−Bu(t)−
∫ t

0

C(t− s)u(s)ds, v

〉
= 〈ζ(t), v〉Z∗×Z =

=(z(t), γv)L2(ΓC ;Rd) ≤ J0(t, γu′(t); γv) ≤
∫
ΓC

j0(x, t, γu′(t); γv)dΓ,

for all v ∈ V and a.e. t ∈ (0, T ). This means that u is a solution to Problem (HV I).
(B) Let u be a solution to Problem (HV I) obtained in (A). It follows from Theorem

5.6.38 of [5] that if either j(x, t, ·) or −j(x, t, ·) is regular for a.e. (x, t) ∈ ΓC × (0, T ), then
either J(t, ·) or −J(t, ·) is regular for a.e. t ∈ (0, T ), respectively, and (16) holds with
equality. Using the equality in (16), it follows〈

u′′(t) + A(t, u′(t)) +B(t, u(t)) +

∫ t

0

C(t− s)u(s)ds− f(t), v

〉
+ J0(t, γu′(t); γv) ≥ 0

for all v ∈ V and a.e. t ∈ (0, T ). From Proposition 2(i) of [22], we have〈
f(t)− u′′(t)− A(t, u′(t))−B(t, u(t))−

∫ t

0

C(t− s)u(s)ds, v

〉
≤ (J ◦ γ)0(t, u′(t); v)

for all v ∈ V and a.e. t ∈ (0, T ). Hence, by Proposition 2(ii) of [22] and the definition of
the subdifferential, we obtain

f(t)− u′′(t)− A(t, u′(t))−B(t, u(t))−
∫ t

0

C(t− s)u(s)ds ∈

∈∂(J ◦ γ)(t, u′(t)) = γ∗∂J(t, γu′(t)) = F (t, u(t), u′(t))

for a.e. t ∈ (0, T ). Thus u is a solution to the evolution inclusion in Problem P . The
uniqueness of solution to Problem (HV I) follows now from the uniqueness result of The-
orem 3.1. It completes the proof.
The identification problem for the hemivariational inequality (HV I) reads as follows:

find the solution p∗ ∈ P of the minimization problem

F(p∗) = min
p∈P

F(p), (20)

where the cost functional is defined by (4) and the dynamics is described by the following
inequality.
Problem (HV I)p: find u ∈ V such that u′ ∈ W and

〈
u′′(t) + A(p, t, u′(t)) +B(p, t, u(t)) +

∫ t

0

C(p, t− s)u(s)ds, v

〉
+

+

∫
ΓC

j0(x, t, γu′(t); γv)dΓ ≥ 〈f(t), v〉 for all v ∈ V and a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

From Theorem 4.2, we obtain the following

Corollary 5.2. Let the hypotheses H(P ), H(A)1, H(B)1, H(C)1, H(j), (H0), (17), (18),
H(l) and H(L) hold. Then the identification problem (20) admits at least one solution.
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6. Viscoelastic Frictional Contact Problem. In this section, we study the problem
of identification of viscosity, elasticity and relaxation operators in a dynamic viscoelastic
frictional contact problem of mechanics. This contact problem leads to a hemivariational
inequality of the form (HV I) for the displacement field.

We shortly describe the mechanical frictional contact problem, for details we refer
to [25]. We suppose that a viscoelastic body occupies a subset Ω of Rd, d = 2, 3 in
applications. The body is acted upon by volume forces and surface tractions and, as
a result, its state is evolving. We are interested in dynamic evolution process of the
mechanical state of the body on the time interval [0, T ] with 0 < T < ∞. The boundary
Γ of Ω is supposed to be Lipschitz continuous and therefore the unit outward normal
vector ν exists a.e. on Γ. It is assumed that Γ is divided into three mutually disjoint
parts ΓD, ΓN and ΓC such that the measure of ΓD is positive. We suppose that the body
is clamped on ΓD, so the displacement field vanishes there. Volume forces of density f1
act in Ω and surface tractions of density f2 are applied on ΓN . The body may come in
contact with an obstacle over the potential contact surface ΓC .

Let Sd be the linear space of second order symmetric tensors on Rd (equivalently, the
space Rd×d

s of symmetric matrices of order d) and let Q = Ω × (0, T ). For simplicity we
skip the dependence of various functions on the spatial variable x ∈ Ω∪Γ. The frictional
contact problem under consideration can be stated as follows:
find the displacement field u : Q → Rd and the stress tensor σ : Q → Sd such that

u′′(t)− div σ(t) = f1(t) in Q (21)

σ(t) = A(t, ε(u′(t))) + B(t, ε(u(t))) +
∫ t

0

C(t− s)ε(u(s))ds in Q (22)

u(t) = 0 on ΓD × (0, T ) (23)

σ(t)ν = f2(t) on ΓN × (0, T ) (24)

−σν(t) ∈ ∂jν(t, u
′
ν(t)), −στ (t) ∈ ∂jτ (t, u

′
τ (t)) on ΓC × (0, T ) (25)

u(0) = u0, u′(0) = v0 in Ω. (26)

Conditions (25) represent the frictional contact condition in which jν and jτ are given
functions and the subscripts ν and τ for σ and u′ indicate normal and tangential com-
ponents of tensors and vectors. The symbol ∂j denotes the Clarke subdifferential of j
with respect to the last variable. Concrete examples of frictional conditions which lead
to subdifferential boundary conditions of the form (25) with the functions jν and jτ sat-
isfying assumptions H(jν) and H(jτ ) below can be found in [23]. We only remark that
these examples include the viscous contact and the contact with nonmonotone normal
damped response, associated to a nonmonotone friction law, to Tresca’s friction law or to
a power-law friction.

Equation (22) describes the constitutive law, where A is a nonlinear operator describing
the purely viscous properties of the material, while B and C are the nonlinear elasticity and
the linear relaxation operators, respectively. Note that the the operators A and B may
depend explicitly on the time variable and this is the case when the viscosity properties
of the material depend on the temperature field which plays the role of a parameter
and which evolution in time is prescribed. In the inverse problem formulated below we
consider these three operators to depend on a parameter to be identified. One-dimensional
constitutive laws of the form (22) can be constructed by using rheological arguments, cf.
[7], Chapter 6 of [8, 25]. For a detailed description of the model (21)-(26), we refer to
[25].
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In order to give the variational formulation of the problem (21)-(26), we recall the
following notation. The inner products and the corresponding norms on Rd and Sd are
defined by

u · v =uivi, ‖v‖Rd = (v · v)1/2 for all u, v ∈ Rd,

σ : τ =σijτij, ‖τ‖Sd = (τ : τ)1/2 for all σ, τ ∈ Sd.

Summation convention over repeated indices running from 1 to d is used and the index
that follows a comma indicates a partial derivative. We also introduce the spaces H =
L2(Ω;Rd), H = L2(Ω;Sd), H1 = {u ∈ H | ε(u) ∈ H}, H1 = {τ ∈ H | div τ ∈ H}, where
ε : H1(Ω;Rd) → L2(Ω;Sd) and div : H1 → L2(Ω;Rd) denote the deformation and the
divergence operators, respectively, given by

ε(u) = {εij(u)}, εij(u) =
1

2
(ui,j + uj,i), div σ = {σij,j}.

Given v ∈ H1/2(Γ;Rd) we denote by vν and vτ the usual normal and the tangential
components of v on the boundary Γ, vν = v · ν, vτ = v − vνν. Similarily, for a smooth
tensor field σ : Ω → Sd, we define its normal and tangential components by σν = (σν) · ν
and στ = σν − σνν.
Let V be the closed subspace of H1(Ω;Rd) given by

V =
{
v ∈ H1(Ω;Rd) | v = 0 on ΓD

}
.

On the space V we consider the inner product and the corresponding norm defined by

〈u, v〉V = 〈ε(u), ε(v)〉H, ‖v‖ = ‖ε(v)‖H for u, v ∈ V.

It follows from Korn’s inequality that ‖ · ‖H1(Ω;Rd) and ‖ · ‖ are the equivalent norms on V .
In the study of problem (21)-(26) we consider the following assumptions on the viscosity

operator A, on the elasticity operator B and on the relaxation operator C.
H(A) : A : Q× Sd → Sd is such that

(i) A(·, ·, ε) is measurable on Q for all ε ∈ Sd;
(ii) A(x, t, ·) is continuous on Sd for a.e. (x, t) ∈ Q;
(iii) ‖A(x, t, ε)‖Sd ≤ c1 (b(x, t) + ‖ε‖Sd) for all ε ∈ Sd, a.e. (x, t) ∈ Q with b ∈ L2(Q),

b ≥ 0 and c1 > 0;
(iv) (A(x, t, ε1)−A(x, t, ε2)) : (ε1−ε2) ≥ m1‖ε1−ε2‖2Sd for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q

with m1 > 0;
(v) A(x, t, ε) : ε ≥ c2‖ε‖2Sd for all ε ∈ Sd, a.e. (x, t) ∈ Q with c2 > 0.

H(B) : B : Q× Sd → Sd is such that

(i) B(·, ·, ε) is measurable on Q for all ε ∈ Sd;

(ii) ‖B(x, t, ε)‖Sd ≤ b̃1(x, t) + b̃2‖ε‖Sd for all ε ∈ Sd, a.e. (x, t) ∈ Q with b̃1 ∈ L2(Q), b̃1,

b̃2 ≥ 0;
(iii) ‖B(x, t, ε1) − B(x, t, ε2)‖Sd ≤ LB‖ε1 − ε2‖Sd for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Q with

LB > 0.

H(C) : C : Q × Sd → Sd is such that C(x, t, ε) = c(x, t)ε and c(x, t) = {cijkl(x, t)} with

cijkl = cjikl = clkij ∈ L2(0, T ;L∞(Ω)).

The contact and frictional potentials jν and jτ satisfy the following hypotheses.

H(jν) : jν : ΓC × (0, T )× R → R satisfies

(i) jν(·, ·, r) is measurable for all r ∈ R and jν(·, ·, 0) ∈ L1(ΓC × (0, T ));
(ii) jν(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T );
(iii) |∂jν(x, t, r)| ≤ cν (1 + |r|) for a.e. (x, t) ∈ ΓC × (0, T ), all r ∈ R with cν > 0;
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(iv) (η1 − η2)(r1 − r2) ≥ −mν |r1 − r2|2 for all ηi ∈ ∂jν(x, t, ri), ri ∈ R, i = 1, 2, a.e.
(x, t) ∈ ΓC × (0, T ) with mν ≥ 0.

H(jτ ) : jτ : ΓC × (0, T )× Rd → R satisfies

(i) jτ (·, ·, ξ) is measurable for all ξ ∈ R d and jτ (·, ·, 0) ∈ L1(ΓC × (0, T ));
(ii) jτ (x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T );
(iii) ‖∂jτ (x, t, ξ)‖Rd ≤ cτ (1 + ‖ξ‖Rd) for a.e. (x, t) ∈ ΓC × (0, T ), all ξ ∈ Rd with cτ > 0;
(iv) (η1 − η2, ξ1 − ξ2)Rd ≥ −mτ‖ξ1 − ξ2‖2Rd for all ηi ∈ ∂jτ (x, t, ξi), ξi ∈ Rd, i = 1, 2, a.e.

(x, t) ∈ ΓC × (0, T ) with mτ ≥ 0.

The volume force and traction densities satisfy

H(f) : f1 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(ΓN ;Rd))
and the initial data have the regularity
H(0) : u0 ∈ V , v0 ∈ H.

For examples of superpotentials jν and jτ which satisfy H(jν) and H(jτ ), we refer to
Example 5.1 of [25].

We introduce the operators A : (0, T )× V → V ∗, B : (0, T )× V → V ∗ and C : (0, T )×
V → V ∗ defined by

〈A(t, u), v〉 = 〈A(t, ε(u)), ε(v)〉H (27)

〈B(t, u), v〉 = 〈B(t, ε(u)), ε(v)〉H (28)

〈C(t)u, v〉 = 〈C(t, ε(u)), ε(v)〉H (29)

for u, v ∈ V and t ∈ (0, T ). We also consider the function f : (0, T ) → V ∗ given by

〈f(t), v〉 = 〈f1(t), v〉H + (f2(t), v)L2(ΓN ;Rd) for u, v ∈ V, a.e. t ∈ (0, T ). (30)

The variational formulation of the problem (21)-(26) (cf. [25]) is the following:

find u : (0, T ) → V such that u ∈ V , u′ ∈ W and〈
u′′(t) + A(t, u′(t)) + B(t, u(t)) +

∫ t

0

C(t− s)u(s)ds, v

〉
+

+

∫
ΓC

(
j0ν(x, t, u

′
ν(x, t); vν(x)) + j0τ (x, t, u

′
τ (x, t); vτ (x))

)
dΓ ≥

≥ 〈f(t), v〉 for all v ∈ V and a.e.t ∈ (0, T )

u(0) = u0, u′(0) = v0.

(31)

The unique solvability of the problem (31) is given by the following result.

Theorem 6.1. Assume that H(A), H(B), H(C), H(jν), H(jτ ), H(f), H(0) hold, c2 >
2
√
3c0c

2
e‖γ‖2 and m1 > (mν+mτ )c

2
e‖γ‖2. Then problem (31) admits at least one solution.

If, in addition, {
either jν(x, t, ·) and jτ (x, t, ·) are regular

or − jν(x, t, ·) and − jτ (x, t, ·) are regular
(32)

for a.e. (x, t) ∈ ΓC × (0, T ), then problem (31) has a unique solution.

Proof: The proof is based on arguments used in [23] and thus we skip the details. The
main steps of the proof are the following.

a) Under the assumptions H(A), H(B) and H(C), the operators A, B and C defined
by (27), (28) and (29) satisfy hypotheses H(A), H(B) and H(C), respectively.

b) Let j : ΓC × (0, T )× Rd → R be the function defined by

j(x, t, ξ) = jν(x, t, ξν) + jτ (x, t, ξτ ) a.e. (x, t) ∈ ΓC × (0, T ), all ξ ∈ Rd.
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It can be shown that, under the hypotheses H(jν) and H(jτ ), the function j satisfies H(j)
with c̃ = max{cν , cτ} and m̃2 = mν +mτ .
c) The assumptions H(f) and H(0) combined with (30) imply that (H0) holds. It is

clear that (H1) also is satisfied.
The steps above allow us to apply Corollary 5.1 to obtain the existence of a solution

to the hemivariational inequality (31). It can be easily observed that the regularity
hypotheses on jν , jτ or −jν , −jτ imply the regularity of j or −j, respectively. In this case
by Corollary 5.1, we deduce the uniqueness of a solution to (31).
The result of Theorem 6.1 extends a result of Theorem 5.1 of [25].
Finally, we consider the identification problem for the hemivariational inequality (31).

We suppose that the operators H(A), H(B) and H(C) depend on a parameter p ∈ P , P
being a subset of a metric space, and we consider the following direct problem:

find u ∈ V , u′ ∈ W and〈
u′′(t) + A(p, t, u′(t)) +B(p, t, u(t)) +

∫ t

0

C(p, t− s)u(s)ds, v

〉
+

+

∫
ΓC

(
j0ν(x, t, u

′
ν(x, t); vν(x)) + j0τ (x, t, u

′
τ (x, t); vτ (x))

)
dΓ

≥ 〈f(t), v〉 for all v ∈ V and a.e. t ∈ (0, T )

u(0) = u0, u′(0) = v0.

(33)

The identification problem for the mechanical problem (31) is formulated as follows:
find the solution p∗ ∈ P of the problem

F(p∗) = min
p∈P

F(p), (34)

where the cost functional is defined by (4) and the dynamics is described by (33).
We need the following hypotheses on the data of problem (33).

H(A)1 : The family of operators {A(p, ·, ·, ·), p ∈ P} satisfy H(A) uniformly in p ∈ P

and the mapping p 7→ A(p, t, x, ε) is continuous in the sense that

A(pn, x, t, ε) → A(p, x, t, ε) in Sd for a.e. (x, t) ∈ Q, all ε ∈ Sd

whenever pn → p in P .

H(B)1 : The family of operators {B(p, ·, ·, ·), p ∈ P} satisfy H(B) uniformly in p ∈ P and

the mapping p 7→ B(p, t, x, ε) is continuous in the sense that

B(pn, x, t, ε) → B(p, x, t, ε) in Sd for a.e. (x, t) ∈ Q, all ε ∈ Sd

whenever pn → p in P .

H(C)1 : The family of operators {C(p, ·, ·, ·), p ∈ P} satisfy H(C) uniformly in p ∈ P , and

if c(pn, ·, ·), c(p, ·, ·) are the corresponding coefficients, then

c(pn, ·, ·) → c(p, ·, ·) in L2(0, T ;L∞(Ω))

whenever pn → p in P .

Directly from Corollary 5.2 and Theorem 6.1, we deduce the solvability of the prob-
lem (34).

Corollary 6.1. Let the hypotheses H(P ), H(A)1, H(B)1, H(C)1, H(jν), H(jτ ), H(f),
H(0), H(l) and H(L) hold, c2 > 2

√
3c0c

2
e‖γ‖2 and m1 > (mν + mτ )c

2
e‖γ‖2. Then the

identification problem (34) admits a solution.
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[6] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Appli-

cations, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, 2003.
[7] A. D. Drozdov, Finite Elasticity and Viscoelasticity, A Course in the Nonlinear Mechanics of Solids,

World Scientific, Singapore, 1996.
[8] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Amer-

ican Mathematical Society/International Press, Providence, RI, 2002.
[9] Z. Jiang, A new method for a class of inverse variational inequalities, ICIC Express Letters, vol.4,

no.1, pp.255-261, 2010.
[10] A. Kulig, Nonlinear Evolution Inclusions and Hemivariational Inequalities for Nonsmooth Problems

in Contact Mechanics, Ph.D. Thesis, Jagiellonian University, Krakow, Poland, 2010.
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