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Abstract We consider a semilinear Neumann problem with a reaction which is resonant
at both zero and ±∞. Using a combination of methods from critical point theory, together
with truncation techniques, the use of upper–lower solutions and of the Morse theory (critical
groups), we show that the problem has at least five nontrivial smooth solutions, four of which
have constant sign (two positive and two negative).
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study the

following semilinear Neumann problem:

{−�u(z) = f (z, u(z)) in �,
∂u
∂n = 0 on ∂�.

(1.1)
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Here, f (z, ζ ) is a measurable function which is C1 in the ζ -variable. The aim of this work is
to prove a multiplicity theorem when resonance occurs at both zero and ±∞. Such problems
have been studied extensively in the context of Dirichlet equations. In this direction, we
mention the works of Costa and Silva [8], Hirano and Nishimura [14], Landesman et al. [20],
Liang and Su [22], Liu [24], Li and Su [25], Li and Zou [26], Su and Tang [34], Zou [37],
and Zou and Liu [38]. For the corresponding Neumann problem, the bibliography is not that
rich. There have been some existence and multiplicity results for resonant semilinear Neu-
mann problems. We mention the works of Filippakis and Papageorgiou [10], Iannacci and
Nkashama [15,16], Kuo [19], Li [21], Li and Li [23], Mawhin [27], Mawhin et al. [28], Qian
[33], and Tang and Wu [35]. Iannacci and Nkashama [15] and Kuo [19] use variants of the
well-known Landesman–Lazer condition. Iannacci and Nkashama [16] use a sign condition,
while Mawhin [27] and Mawhin et al. [28] use a monotonicity condition on the function
ζ �−→ f (z, ζ ). All the aforementioned works prove existence theorems, but do not address
the question of multiplicity of the nontrivial solutions. Multiplicity results can be found in
the works of Filippakis and Papageorgiou [10], Li [21], Li and Li [23], Qian [33], and Tang
and Wu [35]. In Li [21], Li and Li [23], and Qian [33], the authors deal with equations of the
form

{−�u(z)+ au(z) = f (z, u(z)) in �,
∂u
∂n = 0 on ∂�.

(1.2)

In (1.2), the presence in the left-hand side of the term au (with a > 0) facilitates the anal-
ysis of the equation, since in this case the differential operator in (1.2) is coercive. When
a = 0, this is no longer true (recall that the Poincaré inequality fails in the Sobolev space
H1(�)). Li [21] and Li and Li [23] produce an infinity of nodal (i.e., sign changing) solu-
tions, by assuming an oscillatory behavior for the reaction f (z, ·). Their approach uses
critical point theory, Leray–Schauder degree on order intervals, and Morse theory. Qian
[33] deals with equations which are superlinear at ±∞, using the so-called Jeanjean condi-
tion. He produces a sequence of nodal solutions assuming a symmetry condition on f (z, ·)
(namely that f (z, ·) is odd). His arguments are based on the critical point theory. Finally,
Filippakis and Papageorgiou [10] and Tang and Wu [35] assume that a = 0. Filippakis
and Papageorgiou [10] permit the resonance at zero to be only with respect to the princi-
pal eigenvalue λ0 = 0, impose a global sign condition on f (z, ·), and produce only three
nontrivial smooth solutions. Tang and Wu [35] employ an anticoercivity condition on the
potential

F(z, ζ ) =
ζ∫

0

f (z, s) ds

and using the local linking theorem (see e.g., [12, p. 665]), they establish the existence of
two nontrivial solutions.

In this paper, using a combination of variational methods based on the critical point the-
ory, with Morse theory (critical groups), we establish the existence of at least five nontrivial
smooth solutions for problem (1.1), four of which have constant sign (two positive and two
negative).

In the next section, for the convenience of the reader, we recall some of the main mathe-
matical tools that we will use in the analysis of problem (1.1).
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Neumann problems resonant at zero and infinity 397

2 Mathematical background

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the Cerami condition
if the following is true:

“Every sequence {xn}n�1 ⊆ X , such that

|ϕ(xn)| � M1 and (1 + ‖xn‖)ϕ′(xn) −→ 0 in X∗,

for some M1 > 0, admits a strongly convergent subsequence.”

Using this compactness type condition, we can have the following minimax characteriza-
tion of certain critical values of a C1-functional. The result is known in the literature as the
“mountain pass theorem”.

Theorem 2.1 If X is a Banach space, ϕ ∈ C1(X) satisfies the Cerami condition, u0, u1 ∈ X
are such that ‖u0 − u1‖ > r > 0,

max {ϕ(u0), ϕ(u1)} < inf {ϕ(u) : ‖u − u0‖ = r} = ηr ,

c = inf
γ∈
 max

0�t�1
ϕ (γ (t)) ,

where


 = {γ ∈ C ([0, 1]; X) : γ (0) = u0, γ (1) = u1} ,
then c � ηr and c is a critical value of ϕ.

Throughout this work, we will use the following notation. Let ϕ ∈ C1(X) and let c ∈ R. We
set

ϕc = {u ∈ X : ϕ(u) � c} ,
Kϕ = {

u ∈ X : ϕ′(u) = 0
}
,

K c
ϕ = {

u ∈ Kϕ : ϕ(u) = c
}
.

Let (Y1, Y2) be a topological pair and Y1 ⊆ Y2 ⊆ X . For every k � 0, by Hk(Y2, Y1), we
denote the kth relative singular homology group with integer coefficients for the pair (Y1, Y2).
Recall that for all integers k < 0, we have Hk(Y2, Y1) = 0. The critical groups of ϕ at an
isolated critical point u ∈ K c

ϕ are defined by

Ck(ϕ, u) = Hk
(
ϕc ∩ U, ϕc ∩ U\{u}) ∀k � 0,

where U is a neighborhood of x , such that

Kϕ ∩ ϕc ∩ U = {u}
(see [7,29]). The excision property of singular homology theory implies that the above defi-
nition of critical groups is independent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the Cerami condition and inf ϕ(Kϕ) > −∞. Choose
c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕ
c) ∀k � 0
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398 L. Gasiński, N. S. Papageorgiou

(see [5]). The deformation theorem (see e.g., [12, p. 636]) implies that the above definition
is independent of the choice of the particular level c < inf ϕ(Kϕ). If Kϕ is finite, then we set

M(t, u) =
∑
k�0

rankCk(ϕ, u)tk ∀t ∈ R, u ∈ Kϕ,

P(t,∞) =
∑
k�0

rankCk(ϕ,∞)tk ∀t ∈ R.

Using these quantities, we have the Morse relation∑
u∈Kϕ

M(t, u) = P(t,∞)+ (1 + t)Q(t), (2.1)

where

Q(t) =
∑
k�0

βk tk

is a formal series in t ∈ R with nonnegative integer coefficients (see [7,29]).
Let X = H be a Hilbert space, u ∈ H,U a neighborhood of u in H , and ϕ ∈ C2(U ).

If u ∈ Kϕ , then the Morse index of u is defined to be the supremum of the dimensions
of the vector subspaces of H on which ϕ′′(u) is negative definite. We say that u ∈ Kϕ is
nondegenerate, if ϕ′′(u) is invertible. Suppose that u ∈ Kϕ is a nondegenerate critical point
with Morse index m. Then

Ck(ϕ, u) = δk,m Z ∀k � 0,

where

δk,m =
{

1 if k = m,
0 if k �= m.

In the analysis of problem (1.1), we will use the following two “natural” spaces:

C1
n (�) =

{
u ∈ C1(�) : ∂u

∂n
(z) = 0 on ∂�

}

(where n(·) denotes the outward unit normal on ∂�) and

H1
n (�) = C1

n(�)
‖·‖
,

where ‖ · ‖ denotes the usual Sobolev norm of H1(�), i.e.,

‖u‖2 = ‖u‖2
2 + ‖∇u‖2

2 ∀u ∈ H1(�).

The space C1
n(�) is an ordered Banach space, with positive cone

C+ = {u ∈ C1
n (�) : u(z) � 0 for all z ∈ �} .

This cone has a nonempty interior, given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ �} .
For a large class of C1-functionals, we can identify the C1

n(�) and H1
n (�) local minimizers.

More precisely, let g0 : �× R −→ R be a Carathéodory function, such that

|g0(z, ζ )| � a0(z)+ c0|ζ |r−1 for almost all z ∈ �, all ζ ∈ R,
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Neumann problems resonant at zero and infinity 399

with a0 ∈ L∞(�)+, c0 > 0 and

1 < r < 2∗ =
{ 2N

N−2 if N � 3,
+∞ if N = 1, 2

(subcritical growth for g0(z, ·)). We set

G0(z, ζ ) =
ζ∫

0

g0(z, s) ds

and consider the C1-functional ψ0 : H1
n (�) −→ R, defined by

ψ0(u) = 1

2
‖∇u‖2

2 −
∫
�

G0 (z, u(z)) dz ∀u ∈ H1
n (�).

Proposition 2.2 If u0 ∈ H1
n (�) is a local C1

n (�)-minimizer of ψ0, i.e., there exists r0 > 0,
such that

ψ0(u0) � ψ0(u0 + h) ∀h ∈ C1
n (�), ‖h‖C1

n (�)
� r0,

then u0 ∈ C1
n (�) and it is a local H1

n (�)-minimizer of ψ0, i.e., there exists r1 > 0, such that

ψ0(u0) � ψ0(u0 + h) ∀h ∈ H1
n (�), ‖h‖ � r1.

Remark 2.3 For the “Dirichlet” space H1
0 (�), this result was first proved by Brezis and

Nirenberg [6] and was extended to the spaces W 1,p
0 (�) (with 1 < p < +∞) by Garcia

Azorero et al. [11] (see also [13]). For the “Neumann” spaces W 1,p
n (�) (1 < p < +∞), the

result can be found in Motreanu et al. [30] (for smooth functionals ψ0) and in Iannizzotto
and Papageorgiou [17] (for nonsmooth functionals ψ0). A simplified proof of the result for
more general operators than the p-Laplacian can be found in the recent work of Motreanu
and Papageorgiou [31].

Next, we recall some basic facts about the spectrum of the negative Neumann Laplacian.
So, let m ∈ L∞(�)+,m �= 0 (a weight function), and consider the following weighted linear
eigenvalue problem: {−�u(z) = λ̂m(z)u(z) in �,

∂u
∂n = 0 on ∂�.

(2.2)

Evidently a necessary condition for λ̂ ∈ R to be an eigenvalue is that λ̂ � 0. Moreover,
λ̂0 = λ̂0(m) = 0 is an eigenvalue of (2.2) with corresponding eigenspace R (the space of
constant functions). Using the spectral theorem for compact operators, we can show that
problem (2.2) has a sequence

{̂
λk(m)

}
k�0 of distinct eigenvalues, such that λ̂k(m) −→ +∞

as k → +∞. If m ≡ 1, we write λ̂k(1) = λ̂k for all k � 0.
For every integer k � 0, by E

(̂
λk(m)

)
, we denote the eigenspace corresponding to the

eigenvalue λ̂k(m). The regularity theory (see e.g., [12]) implies that E
(̂
λk(m)

) ⊆ C1(�).
Moreover, we know that each E

(̂
λk(m)

)
has the “unique continuation property”, namely if

u ∈ E
(̂
λk(m)

)
vanishes on a set of positive measure, then u(z) = 0 for all z ∈ �. We set

Hi =
i⊕

k=0

E
(̂
λk(m)

)
and Ĥi = H

⊥
i =

⊕
k�i+1

E
(̂
λk(m)

)
.
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400 L. Gasiński, N. S. Papageorgiou

We have the following variational characterization for the eigenvalues λ̂k(m):

0 = λ̂0(m) = min

{
‖∇u‖2

2∫
�

mu2 dz
: u ∈ H1

n (�), u �= 0

}
(2.3)

and for k � 1, we have

λ̂k(m) = max

{
‖∇u‖2

2∫
�

mu2 dz
: u ∈ Hk, u �= 0

}

= min

{
‖∇û‖2

2∫
�

mû2 dz
: û ∈ Ĥk, û �= 0

}
. (2.4)

In (2.3), the minimum is attained on E
(̂
λk(m)

) = R, while in (2.4) the maximum and
minimum are realized on E

(̂
λk(m)

)
, k � 1.

As a consequence of these variational characterizations and of the unique continuation
property, we have the following useful facts (see e.g., [10]).

Proposition 2.4 If m, m̂ ∈ L∞(�)+\{0},m(z) � m̂(z) for almost all z ∈ � and m �= m̂,
then

λ̂k(m̂) < λ̂k(m) ∀k � 0.

Proposition 2.5 (a) If k � −1 is an integer, η ∈ L∞(�)+, η(z) � λ̂k+1 for almost all
z ∈ � and η �= λ̂k+1, then there exists ξ0 > 0, such that

‖∇û‖2
2 −

∫
�

ηû2 dz � ξ0‖û‖2 ∀û ∈ Ĥk .

(b) If k � 0 is an integer, η ∈ L∞(�)+, η(z) � λ̂k for almost all z ∈ � and η �= λ̂k , then
there exists ξ1 > 0, such that

‖∇u‖2
2 −

∫
�

ηu2 dz � −ξ1‖u‖2 ∀u ∈ Hk .

From the eigenvalues
{̂
λk(m)

}
k�0 only the first one λ̂0(m) = 0 has constant sign

eigenfunction. All the other eigenvalues have nodal (i.e., sign changing) eigenfunctions. In
what follows û0 denotes the L2-normalized, positive principal eigenfunction, i.e., û0 = 1

|�|
1
2
N

(hereafter, by | · |N we denote the Lebesgue measure on R
N ).

The next result, due to Liang and Su [22] (see also [18] for an extension to Banach spaces),
is helpful in computing critical groups. It is a generalization of an earlier result of Perera and
Schechter [32].

Proposition 2.6 If H is a Hilbert space, {ht }t∈[0,1] ⊆ C1(H) is a family of functionals, such
that (ht )

′ and ∂t ht are both locally Lipschitz, h0 and h1 satisfy the Cerami condition and
there exist a ∈ R and δ > 0, such that

ht (u) � a �⇒ (
(1 + ‖u‖) ∥∥h′

t (u)
∥∥∗ � δ for all t ∈ [0, 1]) , (2.5)

then

Ck(h0,∞) = Ck(h1,∞) ∀k � 0.
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Neumann problems resonant at zero and infinity 401

Remark 2.7 Note that, if there exists R > 0, such that

inf
{
(1 + ‖u‖) ∥∥h′

t (u)
∥∥∗ : t ∈ [0, 1], ‖u‖ > R

}
> 0

and

inf {ht (u) : t ∈ [0, 1], ‖u‖ � R} > −∞,

then (2.5) holds.

In the sequel, we will use the notation r± = max{±r, 0} for all r ∈ R. Also, by ‖ · ‖ we
denote the norm of the Sobolev space H1(�) and by | · |N the Lebesgue measure on R

N .
Finally by ‖ · ‖p (1 < p < ∞), we denote the norm of L p(�) of L p(�; R) and p′ > 1 is
the conjugate exponent of p > 1, i.e., 1

p + 1
p′ = 1.

3 The Cerami condition

The hypotheses on the reaction term f are the following:
H f : f : �× R −→ R is a measurable function, such that for almost all z ∈ �, we have

f (z, 0) = 0, f (z, ·) ∈ C1(R) and

(i)
∣∣ f ′
ζ (z, ζ )

∣∣ � a(z)+ c|ζ |r−2 for almost all z ∈ �, all ζ ∈ R with a ∈ L∞(�)+, c > 0
and 2 � r � 2∗;

(ii) there exist integer i � 1, α ∈ (0, 1), and η∞ ∈ L∞(�) with η∞(z) � 0 for almost all
z ∈ �, η∞ �= 0, such that

lim|ζ |→+∞
f (z, ζ )

ζ
= λ̂i

uniformly for almost all z ∈ � and, if f∞(z, ζ ) = f (z, ζ )− λ̂iζ , then

lim|ζ |→+∞
f∞(z, ζ )

|ζ |α = 0 and lim sup
|ζ |→+∞

f∞(z, ζ )ζ
|ζ |2α � η∞(z)

uniformly for almost all z ∈ �;
(iii) there exist integer m � 1,m �= i, β > 1, and η0 ∈ L∞(�) with η0(z) � 0 for almost

all z ∈ �, η0 �= 0, such that

f ′
ζ (z, 0) = lim

ζ→0

f (z, ζ )

ζ
= λ̂m

uniformly for almost all z ∈ � and if f0(z, ζ ) = f (z, ζ )− λ̂mζ , then

lim
ζ→0

f0(z, ζ )

|ζ |β = 0 and lim sup
ζ→0

f0(z, ζ )ζ

|ζ |2β � η0(z)

uniformly for almost all z ∈ �;
(iv) there exist numbers a− < 0 < a+, such that

f (z, a+) � 0 � f (z, a−) for almost all z ∈ �
and f (·, a−) �= 0, f (·, a+) �= 0.
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Remark 3.1 Hypothesis H f (ii) implies that the problem is resonant at infinity, while hypoth-
esis H f (iii) implies that the problem is resonant at zero. So, we have a kind of “double
resonance”.

Example 3.2 The following function f satisfies hypotheses H f (for the sake of simplicity
we drop the z-dependence):

f (ζ ) =
{
λ̂mζ − ξ |ζ |r−2ζ if |ζ | � 1,
λ̂iζ − ξ̂ |ζ |q−2ζ if |ζ | > 1,

with 1 < q < 2 < r < +∞, ξ > λ̂m and ξ̂ = ξ + λ̂i − λ̂m > 0. For this example, we take
α ∈ (q − 1, q

2

)
, β ∈ ( r

2 , r − 1
)
, a− = −1, and a+ = 1.

Let ϕ : H1
n (�) −→ R be the energy functional for problem (1.1), defined by

ϕ(u) = 1

2
‖∇u‖2

2 −
∫
�

F (z, u(z)) dz ∀u ∈ H1
n (�).

We know that ϕ ∈ C2
(
H1

n (�)
)
. Moreover

ϕ′(u) = A(u)− N f (u) ∀u ∈ H1
n (�),

where A ∈ L (H1
n (�), H1

n (�)
∗) is defined by

〈A(u), y〉 =
∫
�

(∇u,∇ y)
RN dz ∀u, y ∈ H1

n (�)

and N f (y)(·) = f (·, y(·)) for all y ∈ H1
n (�). Also

〈
ϕ′′(u)y, v

〉 =
∫
�

(∇ y, ∇v)
RN dz −

∫
�

f ′
ζ (z, u(z)) yv dz ∀u, y, v ∈ H1

n (�).

Note that ϕ′′(u) ∈ L (H1
n (�), H1

n (�)
∗) is a Fredholm operator.

Using the eigenvalue λ̂i > 0, we can have the following orthogonal direct sum decompo-
sition of the Sobolev space H1

n (�):

H1
n (�) = Hi−1 ⊕ E (̂λi )⊕ Ĥi+1,

where

Hi−1 =
i−1⊕
k=0

E (̂λk) and Ĥi+1 =
⊕

k�i+1

E (̂λk).

Then for every u ∈ H1
n (�), we have

u = u + u0 + û,

with u ∈ Hi−1, u0 ∈ E (̂λi ), û ∈ Ĥi+1. This decomposition is unique.

Proposition 3.3 If {un}n�1 ⊆ H1
n (�) is a sequence, such that

‖un‖ −→ +∞ and
ûn + un

‖un‖ −→ 0 in H1
n (�),
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Neumann problems resonant at zero and infinity 403

then

lim sup
n→+∞

∫
�

f∞(z, un)un

‖un‖2α dz < 0.

Proof From Bartolo et al. [3], we know that for a given ε > 0, we can find m1(ε) > 0 small
enough and m2(ε) > 0 large enough, such that

∣∣{z ∈ � : ∣∣u0(z)
∣∣ < m1‖u0‖}∣∣N < ε ∀u0 ∈ E (̂λi ) (3.1)

and

|{z ∈ � : |̂u(z)+ u(z)| > m2‖û + u‖}|N

< m
2α

1−α
1 ε

1
1−α � ε ∀û ∈ Ĥi+1, u ∈ Hi−1. (3.2)

For every n � 1, we introduce the following sets

D1n = {
z ∈ � : ∣∣u0(z)

∣∣ � m1‖u0‖} ,
D2n = {z ∈ � : |̂u(z)+ u(z)| � m2‖û + u‖} .

From (3.1) and (3.2), it follows that

|�\D1n |N < ε, |�\D2n |N < ε

and

|D1n ∩ D2n |N � |�1|N − |�\D2n |N � |�|N − 2ε. (3.3)

Choosing ε ∈ (0, 1
2 |�|N

)
, we see that

|D1n ∩ D2n | > 0

and so D1n ∩ D2n �= ∅. Let z ∈ D1n ∩ D2n . Then

|un(z)|
‖un‖ = |u0

n(z)+ ûn(z)+ un(z)|
‖un‖ �

|u0
n(z)|

‖un‖ − |̂un(z)+ un(z)|
‖un‖

�
m1‖u0

n‖
‖un‖ − m2‖ûn + un‖

‖un‖ . (3.4)

Next let z ∈ D2n\D1n . Then

|un(z)|
‖un‖ = |u0

n(z)+ ûn(z)+ un(z)|
‖un‖ �

|u0
n(z)|

‖un‖ − |̂un(z)+ un(z)|
‖un‖

<
m1‖u0

n‖
‖un‖ − m2‖ûn + un‖

‖un‖ . (3.5)

By virtue of hypotheses H f (i) and (i i), we can find c1 = c1(ε) > 0, such that

f∞(z, ζ )ζ �
(
η∞(z)+ m2α

1 ε
) |ζ |2α + c1 for almost all z ∈ �, all ζ ∈ R. (3.6)
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404 L. Gasiński, N. S. Papageorgiou

Then, using (3.6), we have

∫
D1n∩D2n

f∞(z, un)un

‖un‖2α dz

�
∫

D1n∩D2n

(η∞(z)+ ε)

( |un |
‖un‖

)2α

dz + c1

‖un‖2α |�|N

� m2α
1

(‖u0
n‖

‖un‖
)2α ∫

D1n∩D2n

η∞(z) dz

−m2α
2

(‖ûn + un‖
‖un‖

)2α ∫
D1n∩D2n

η∞(z) dz

+ε
∫

D1n∩D2n

( |un |
‖un‖

)2α

dz + c1

‖un‖2α |�|N (3.7)

(since η∞ � 0; see H f (i i)). Also, hypotheses H f (i) and (i i), imply that

| f∞(z, ζ )ζ | � c2
(|ζ |2α + 1

)
for almost all z ∈ �, all ζ ∈ R, (3.8)

with c2 > 0. Hence, using (3.8), we have

∫
D2n\D1n

f∞(z, un)un

‖un‖2α dz

� c2

∫
D2n\D1n

( |un |
‖un‖

)2α

dz + c2

‖un‖2α |�|N

� c2m2α
1

(‖u0
n‖

‖un‖
)2α

ε + c2m2α
2

(‖ûn + un‖
‖un‖

)2α

|�|N + c2

‖un‖2α |�|N (3.9)

(see (3.5) and (3.3)). Moreover, we have

∫
�\D2n

f∞(z, un)un

‖un‖2α dz � c2

∫
�\D2n

( |un |
‖un‖

)2α

dz + c2

‖un‖2α |�|N

(see (3.8)). Note that
(

un(·)‖un‖
)2α ∈ L

1
α (�). So, by virtue of Hölder inequality and (3.3), we

have

∫
�\D2n

( |un |
‖un‖

)2α

dz =
∫
�

χ
�\D2n

( |un |
‖un‖

)2α

dz

�
(‖un‖2

‖un‖
)2α

|�\D2n |1−α
N � m2α

1 ε. (3.10)
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therefore, finally we have∫
�

f∞(z, un)un

‖un‖2α dz

=
∫

D1n∩D2n

f∞(z, un)un

‖un‖2α dz +
∫

D2n\D1n

f∞(z, un)un

‖un‖2α dz

+
∫

�\D2n

f∞(z, un)un

‖un‖2α dz

� m2α
1

(‖u0
n‖

‖un‖
)2α ∫

D1n∩D2n

η∞(z) dz + m2α
2

(‖ûn + un‖
‖un‖

)2α

‖η∞‖1

+m2α
1 ε

∫
D1n∩D2n

( |un |
‖un‖

)2α

dz + c1

‖un‖2α |�|N

+c2m2α
1

(‖u0
n‖

‖un‖
)2α

ε + c2m2α
2

(‖ûn + un‖
‖un‖

)2α

|�|N

+ c2

‖un‖2α |�|N + m2α
1 ε (3.11)

(see (3.7), (3.9) and (3.10)). Note that

χD1n∩D2n
(z) −→ χ�(z) = 1 almost everywhere on � as ε ↘ 0

(see (3.3)). So, if in (3.11) we pass to the limit as n → +∞, we have∫
�

f∞(z, un)un

‖un‖2α dz

� m2α
1

(‖u0
n‖

‖un‖
)2α ∫

�

η∞(z) dz + m2α
2

(‖un + ûn‖
‖un‖

)2α

‖η∞‖1

+ c1

‖un‖2α |�|N + c2m2α
2

(‖ûn + un‖
‖un‖

)2α

|�|N + c2

‖un‖2α |�|N ,

so

lim sup
n→+∞

∫
�

f∞(z, un)un

‖un‖2α dz � m2α
1

⎛
⎝∫
�

η∞(z) dz + ε(̂c + 1)

⎞
⎠

for some ĉ > 0. (recall that ûn+un‖un‖ −→ 0 in H1
n (�)). Let us choose ε < − 1

ĉ+1

∫
�
η∞(z) dz

to finish the proof. ��
For R > 0 and ϑ ∈ (0, 1), we introduce the set

C∞(R, ϑ, α) = {u ∈ H1
n (�) : ‖u‖ � R, ‖û + u‖ � ϑ‖u‖α} .

Proposition 3.4 If hypotheses H f (i) and (ii) hold, then there exist R > 0, ϑ ∈ (0, 1) and
δ̂ > 0, such that 〈

ϕ′(u0), u0〉 � δ̂ ∀u ∈ C∞(R, ϑ, α).
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Proof We argue indirectly. So, suppose that the proposition is not true. Then for any ϑ =
δ̂ = 1

n , n � 1, we can find un ∈ H1
n (�), such that

‖un‖ � n, ‖ûn + un‖ �
1

n
‖un‖α and

〈
ϕ′(un), u0

n

〉
<

1

n
∀n � 1. (3.12)

From (3.12), we see that

‖un‖ −→ +∞,
‖ûn + un‖

‖un‖α −→ 0 (3.13)

and

〈
ϕ′(un), u0

n

〉 = −
∫
�

f∞(z, un)u
0
n dz <

1

n
(3.14)

(since ‖∇u0
n‖2

2 = λ̂i‖u0
n‖2

2 for all n � 1). From (3.14), it follows that

lim inf
n�+∞

∫
�

f∞(z, un)u0
n

‖un‖2α dz � 0. (3.15)

On the other hand, by virtue of hypotheses H f (i) and (i i), for a given ε > 0, we can find
c3 = c3(ε) > 0, such that

| f∞(z, ζ )| � ε|ζ |α + c3 for almost all z ∈ �, all ζ ∈ R. (3.16)

Then, using (3.16), we have∣∣∣∣∣∣
∫
�

f∞(z, un)(̂un + un)

‖un‖2α dz

∣∣∣∣∣∣
�
∫
�

(ε|un |α + c3)|̂un + un |
‖un‖2α dz

� ε

∫
�

( |un |
‖un‖

)α |̂u + u|
‖un‖α dz + c4

‖ûn + un‖
‖un‖2α ∀n � 1, (3.17)

for some c4 > 0. Note that
(

un(·)
‖un‖

)α
∈ L

2
α (�) and

(
2

α

)′
= 2

2 − α
� 2∗ = 2N

N − 2
if N � 3.

Hence, ûn + un ∈ L
2

2−α (�) and we can apply Hölder inequality and obtain
∫
�

( |un |
‖un‖

)α |̂un + un |
‖un‖α dz � c5

‖ûn + un‖
‖un‖α ∀n � 1, (3.18)

for some c5 > 0. Using (3.18) in (3.17), we have∣∣∣∣∣∣
∫
�

f∞(z, un)(̂un + un)

‖un‖2α dz

∣∣∣∣∣∣ � c6
‖ûn + un‖

‖un‖α ∀n � n0,
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for some n0 � 1 and c6 > 0, so

lim
n→+∞

∫
�

f∞(z, un)(̂un + un)

‖un‖2α dz = 0 (3.19)

(see (3.13)). Therefore

lim sup
n→+∞

∫
�

f∞(z, un)u0
n

‖un‖2α dz

= lim sup
n→+∞

⎛
⎝∫
�

f∞(z, un)un

‖un‖2α dz −
∫
�

f∞(z, un)(̂un + un)

‖un‖2α dz

⎞
⎠

� lim sup
n→+∞

∫
�

f∞(z, un)un

‖un‖2α dz < 0 (3.20)

(see (3.19) and Proposition 3.3). Comparing (3.15) and (3.26), we reach a contradiction. This
proves the proposition. ��

Using this proposition, we can now establish the Cerami condition for the energy func-
tional ϕ.

Proposition 3.5 If hypotheses H f (i) and (ii) hold, then ϕ satisfies the Cerami condition.

Proof Let {un}n�1 ⊆ H1
n (�) be a sequence, such that {ϕ(un)}n�1 ⊆ R is bounded and

(1 + ‖un‖)ϕ′(un) −→ 0 in H1
n (�)

∗. (3.21)

We show that the sequence {un}n�1 ⊆ H1
n (�) is bounded. We argue indirectly. So, suppose

that by passing to a suitable subsequence if necessary, we have ‖un‖ → +∞. Note that
(3.21) implies

∣∣〈ϕ′(un), h
〉∣∣ �

εn‖h‖
1 + ‖un‖ ∀h ∈ H1

n (�), (3.22)

with εn ↘ 0. In (3.22), we choose h = ûn ∈ H1
n (�) and exploiting the orthogonality of the

component spaces, we have

〈
ϕ′(un), ûn

〉 = ‖∇ûn‖2
2 − λ̂i‖ûn‖2

2 −
∫
�

f∞(z, un )̂un dz � εn,

so

ξ0‖ûn‖2 � εn +
∫
�

f∞(z, un )̂un dz

� εn +
∫
�

(
ε|un |α + c3

) |̂un | dz ∀n � 1 (3.23)

(see Proposition 2.5(a) and (3.16)). Since

|un |α ∈ L
2
α (�) and

(
2

α

)′
= 2

2 − α
� 2∗,
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then from (3.23) and Hölder inequality, we have

ξ0‖ûn‖2 � εn + c7
(
ε‖un‖α + 1

) ‖ûn‖ ∀n � 1,

for some c7 > 0, so

ξ0

( ‖ûn‖
‖un‖α

)2

�
εn

‖un‖2α + c7

(
ε

‖ûn‖
‖un‖α + ‖ûn‖

‖un‖2α

)
∀n � 1. (3.24)

We claim that the sequence
{
μn = ‖ûn‖

‖un‖α
}

n�1
is bounded. Indeed, if μn → +∞ (at least

for a subsequence), then dividing (3.24) with μ2
n , we obtain

ξ0 � ε′n + ε
c7

μn
+ c7

1

μn
,

with ε′n ↘ 0. Passing to the limit as n → +∞, we obtain ξ0 � 0, a contradiction. Hence,
the sequence {μn}n�1 is bounded and we may assume that μn −→ μ � 0. Passing to the
limit as n → +∞ in (3.24), we obtain

ξ0μ
2 � εc7μ

so

ξ0μ � εc7.

Since ε > 0 was arbitrary, we let ε ↘ 0, to conclude that μ = 0. Therefore,

ûn

‖un‖α −→ 0 in H1
n (�). (3.25)

Next in (3.22), we choose h = −un ∈ Hi−1. Then reasoning as above, we obtain

− 〈ϕ′(un), un
〉 = −‖∇un‖2

2 + λ̂i‖un‖2
2 +

∫
�

f∞(z, un)un dz � εn,

so using Proposition 2.5(b), we have

ξ1‖un‖2 � εn +
∫
�

| f∞(z, un)| |un | dz ∀n � 1.

Using also (3.16) and (3.24), we have

ξ

( ‖un‖
‖un‖α

)2

�
εn

‖un‖2α + c7

(
ε

‖un‖
‖un‖α + ‖un‖

‖un‖2α

)
∀n � 1

and so

un

‖un‖α −→ 0 in H1
n (�) (3.26)

(as before). Let R > 0, ϑ ∈ (0, 1) and δ̂ > 0 be as postulated in Proposition 3.4. Then from
(3.25), (3.26) and since ‖un‖ −→ +∞, we have that un ∈ C∞(R, ϑ, α) for all n � n0 and
so 〈

ϕ′(un), u0
n

〉
� δ̂ ∀n � n0 (3.27)
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(see Proposition 3.4). If in (3.22), we choose h = u0
n ∈ E (̂λi ), then

〈
ϕ′(un), u0

n

〉
� εn, (3.28)

with εn ↘ 0. Comparing (3.27) and (3.28), we reach a contradiction. This proves that the
sequence {un}n�1 ⊆ H1

n (�) is bounded. So, we may assume that

un
w−→ u in H1

n (�) (3.29)

un −→ u in L2(�). (3.30)

In (3.22), we choose h = un − u ∈ H1
n (�). We have

∣∣∣∣ 〈A(un), un − u〉 −
∫
�

f (z, un)(un − u) dz

∣∣∣∣ �
εn‖un − u‖
1 + ‖un‖ ,

so

lim
r→+∞ 〈A(un), un − u〉 = 0

(see (3.29)), so

‖∇un‖2
2 −→ ‖∇u‖2

2

(since A(un)
w−→ A(u) in H1

n (�)
∗; see (3.29)). From the Kadec–Klee property of Hilbert

spaces, we have

∇un −→ ∇u in L2(�; R
N ),

so

un −→ u in H1
n (�)

(see (3.29)). Therefore, ϕ satisfies the Cerami condition. ��

4 Critical groups

Using the eigenvalue λ̂m > 0 from hypothesis H f (i i i), we can have the following orthogonal
direct sum decomposition of H1

n (�):

H1
n (�) = Hm−1 ⊕ E (̂λm)⊕ Ĥm+1,

where

Hm−1 =
m−1⊕
k=0

E (̂λk) and Ĥm+1 =
⊕

k�m+1

E (̂λk).

Then for every u ∈ H1
n (�), we have

u = u + u0 + û,

with u ∈ Hm−1, u0 ∈ E (̂λm), û ∈ Ĥm+1 and the decomposition is unique. Using hypothesis
H f (i i i), we can have a result analogous to Proposition 3.3.

123



410 L. Gasiński, N. S. Papageorgiou

Proposition 4.1 If {un}n�1 ⊆ H1
n (�) is a sequence, such that

‖un‖ −→ 0 and
ûn + un

‖un‖ −→ 0 in H1
n (�),

then

lim sup
n→+∞

∫
�

f0(z, un)un

‖un‖2β dz < 0.

Proof It is clear from hypothesis H f (iii) that we can take β > 1 small, such that 2∗ > 2β.
As in the proof of Proposition 3.3, from Bartolo et al. [3], we know that for a given ε > 0,
we can find m1(ε) > 0 small enough and m2(ε) > 0 large enough, such that∣∣{z ∈ � : ∣∣u0(z)

∣∣ < m1‖u0‖}∣∣N < ε ∀u0 ∈ E (̂λm) (4.1)

and

|{z ∈ � : |̂u(z)+ u(z)| > m2‖û + u‖}|N

< m
2∗

2∗−2β 2β

1 ε � ε ∀û ∈ Ĥm+1, u ∈ Hm−1. (4.2)

For every n � 1, we introduce the following sets:

�1n = {
z ∈ � : ∣∣u0

n(z)
∣∣ � m1‖u0

n‖} ,
�2n = {z ∈ � : |̂un(z)+ un(z)| � m2‖ûn + un‖} .

From (4.1) and (4.2), we have

|�\�1n |N < ε, |�\�2n |N < ε (4.3)

and

|�1n ∩�1n |N � |�1n |N − |�\�2n |N � |�|N − 2ε. (4.4)

Choosing ε ∈ (0, 1
2 |�|N ), we see that |�1n ∩ �2n | > 0, hence �1n ∩ �2n �= 0. Let

z ∈ �1n ∩�2n . Then

|un(z)|
‖un‖ = |u0

n(z)+ ûn(z)+ un(z)|
‖un‖ �

|u0
n(z)|

‖un‖ − |̂un(z)− un(z)|
‖un‖

� m1
‖u0

n‖
‖un‖ − m2

‖ûn + un‖
‖un‖ . (4.5)

Next, let z ∈ �2n\�1n . Then

|un(z)|
‖un‖ = |u0

n(z)+ ûn(z)+ un(z)|
‖un‖ �

|u0
n(z)|

‖un‖ + |̂un(z)+ un(z)|
‖un‖

< m1
‖u0

n‖
‖un‖ + m2

‖ûn + un‖
‖un‖ . (4.6)

Hypothesis H f (i i i) implies that we can find δ = δ(ε) > 0, such that

f0(z, ζ )ζ �
(
η0(z)+ m2β

1 ε
)

|ζ |2β for almost all z ∈ �, all |ζ | � δ. (4.7)

On the other hand, by virtue of hypothesis H f (i), we have

f0(z, ζ )ζ � c8|ζ |μ for almost all z ∈ �, all |ζ | > δ (4.8)
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and some c8 > 0, μ > 2β. Combining (4.7) and (4.8), we infer that

f0(z, ζ )ζ �
(
η0(z)+ m2β

1 ε
)

|ζ |2β + c9|ζ |μ for almost all z ∈ �, all ζ ∈ R, (4.9)

for some c9 > 0. It is clear from hypothesis H f (i i i) that we can take β > 1 small enough,
so that 2β < 2∗. Then, we can choose μ ∈ (max{2β, r}, 2∗).

Using (4.9) and recalling that η0 � 0, we have∫
�1n∩�2n

f0(z, un)un

‖un‖2β dz

�
∫

�1n∩�2n

(
(η0(z)+ ε)|un |2β

‖un‖2β + c9
|un |μ

‖un‖2β

)
dz

�
(

m1
‖u0

n‖
‖un‖ − m2

‖ûn + un‖
‖un‖

)2β ∫
�1n∩�2n

η0(z) dz

+ε
∫

�1n∩�2n

( |un |
‖un‖

)2β

dz

+c9

∫
�1n∩�2n

( |un |
‖un‖

)2β

|un |μ−2β dz. (4.10)

Note that ( |un |
‖un‖

)2β

⊆ L
μ
2β (�) and |un |μ−2β ∈ L

μ
μ−2β (�).

Moreover, we have

2β

μ
+ μ− 2β

μ
= 1.

So, applying Hölder inequality, we have
∫

�1n∩�2n

( |un |
‖un‖

)2β

|un |μ−2β dz � c10‖χ�1n∩�2n
un‖μ−2β

μ ∀n � 1, (4.11)

for some c10 > 0. In addition, we have
(

m1
‖u0

n‖
‖un‖ − m2

‖ûn + un‖
‖un‖

)2β

�
m2β

1

4β

(‖u0
n‖

‖un‖
)2β

− m2β
2

‖ûn + un‖2β

‖un‖2β . (4.12)

We return to (4.10) and use (4.11), (4.12), to obtain∫
�1n∩�2n

f0(z, un)un

‖un‖2β dz

�
m2β

1

4β

(‖u0
n‖

‖un‖
)2β ∫

�1n∩�2n

η0(z) dz + m2β
2

(‖ûn + un‖
‖un‖

)2β

‖η0‖1

+m2β
1 εc11 + c10‖χ�1n∩�2n

un‖μ−2β
μ ∀n ≥ 1, (4.13)
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for some c11 > 0 (recall that
∫
�1n∩�2n

η0 dz � 0). Hypotheses H f (i) and (i i i) imply that

f0(z, ζ )ζ � c12
(|ζ |2β + |ζ |μ) for almost all z ∈ �, all ζ ∈ R (4.14)

and some c12 > 0. Hence, we have∫
�2n\�1n

f0(z, un)un

‖un‖2β dz

� c12

∫
�2n\�1n

( |un |
‖un‖

)2β (
1 + |un |μ−2β) dz

� c12

(
m1

‖u0
n‖

‖un‖ + m2
‖ûn + un‖

‖un‖
)2β ∫

�2n\�1n

(
1 + |un |μ−2β) dz

� 4βc12

(
m2β

1

(‖u0
n‖

‖un‖
)2β

+ m2β
2

(‖ûn + un

‖un‖
)2β

) ∫
�2n\�1n

(
1 + |un |μ−2β) dz

� c13

(
m2β

1

(‖u0
n‖

‖un‖
)2β

+ m2β
2

(‖ûn + un

‖un‖
)2β

)
|�2n\�1n |

2β
μ

N

� ε
2β
μ c13

(
m2β

1

(‖u0
n‖

‖un‖
)2β

+ m2β
2

(‖ûn + un‖
‖un‖

)2β
)

∀n � 1. (4.15)

for some c13 > 0 (see (4.6) and (4.3)). Similarly, we have∫
�\�2n

f0(z, un)un

‖un‖ dz

� c12

∫
�\�2n

( |un |
‖un‖

)2β

dz + c12

∫
�\�2n

( |un |
‖un‖

)2β

|un |μ−2β dz

� c14|�\�2n |
2∗−2β

2∗
N � c15m2β

1 ε, (4.16)

for some c14, c15 > 0 (see and (4.2) (4.14)). From (4.13), (4.15), and (4.16), we have∫
�

f0(z, un)un

‖un‖2β dz

�
m2β

1

4β

(‖u0
n‖

‖un‖
)2β ∫

�1n∩�2n

η0(z) dz + m2β
2

(‖ûn + un‖
‖un‖

)2β

‖η0‖1

+c10‖χ�1n∩�2n
un‖μ−2β

μ

+ε 2β
μ c13

(
m2β

1

(‖u0
n‖

‖un‖
)2β

+ m2β
2

(‖ûn + un‖
‖un‖

)2β
)

+m2β
1 ε (c11 + c15) . (4.17)

Note that for all n � 1, we have

χ�1n∩�2n
(z) −→ χ�(z) = 1 almost everywhere on � as ε ↘ 0
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(see (4.3)). So, if in (4.17) we pass to the limit as n → +∞, then

lim sup
n→+∞

∫
�

f0(z, un)un

‖un‖2β dz � m2β
1

⎛
⎝ 1

4β

∫
�

η0(z) dz + ε (c11 + c15 + c13)

⎞
⎠

Choosing ε ∈ (0, 1) small enough, we have

lim sup
n→+∞

∫
�

f0(z, un)un

‖un‖2β dz < 0.

��
This proposition leads to the introduction of a certain set similar to the set C∞(R, ϑ, α).

So, for � > 0 and ϑ ∈ (0, 1), we introduce the set C0(�, ϑ, β), defined by

C0(�, ϑ, β) = {u ∈ H1
n (�) : ‖u‖ � �, ‖û + u‖ � ϑ‖u‖β} .

For this set, we prove a result analogous to Proposition 3.4.

Proposition 4.2 If hypotheses H f (i) and (iii) hold, then there exist � > 0 and ϑ ∈ (0, 1)
such that 〈

ϕ′(u), u0〉 � 0 ∀u ∈ C0(�, ϑ, β).

Proof We proceed by contradiction. So, suppose that for every � = ϑ = 1
n , n � 1, we can

find un ∈ H1
n (�), such that

‖un‖ �
1

n
, ‖ûn + un‖ �

1

n
‖un‖β and

〈
ϕ′(un), u0

n

〉
< 0 ∀n � 1 (4.18)

From (4.18), we have

‖un‖ −→ 0 and
‖ûn + un‖

‖un‖β −→ 0. (4.19)

From the last inequality in (4.18), we have

〈
ϕ′(un), u0

n

〉 = 〈
A(un), u0

n

〉−
∫
�

(̂
λmun + f (z, un)

)
u0

n dz

= ‖∇u0
n‖2

2 − λ̂m‖u0
n‖2

2 −
∫
�

f0(z, un)u
0
n dz

= −
∫
�

f0(z, un)u
0
n dz < 0 ∀n � 1 (4.20)

(recall that u0
n ∈ E (̂λm)), so

lim inf
n→+∞

∫
�

f0(z, un)u0
n

‖un‖2β dz � 0.

Hypotheses H f (i) and (i i i) imply that we can find c16 = c16(ε) > 0, such that

| f0(z, ζ )| � ε|ζ |β + c16|ζ |τ for almost all z ∈ �, all ζ ∈ R, (4.21)

with τ ∈ (1, 2∗ −1). As before (see the proof of Proposition 4.1), we may assume that β > 1
is small enough, so that 2β < 2∗ and β � τ . Then
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∣∣∣∣∣∣
∫
�

f0(z, un)(̂un + un)

‖un‖2β dz

∣∣∣∣∣∣
�
∫
�

ε|un |β |̂un + un |
‖un‖2β dz + c16

∫
�

|un |τ |̂un + un |
‖un‖2β dz (4.22)

(see (4.21)). Note that

|un |β ∈ L
2∗
β (�) and

(
2∗

β

)′
= 2∗

2∗ − β
< 2∗,

hence |̂un + u| ∈ L
2∗

2∗−β (�). So, using Hölder inequality, we have

∫
�

|un |β |̂un + un | dz �

⎛
⎝∫
�

|un |2∗
dz

⎞
⎠

β

2∗ ⎛
⎝∫
�

|̂un + un | 2∗
2∗−β dz

⎞
⎠

2∗−β
2∗

� c17‖un‖β‖ûn + un‖ ∀n � 1, (4.23)

for some c17 > 0. Also

|un |τ ∈ L
2∗
τ (�) and

(
2∗

τ

)′
= 2∗

2∗ − τ
< 2∗

(since τ = r − 1 < 2∗ − 1). Hence,∫
�

|un |τ |̂un + un | dz � c18‖un‖τ‖ûn + un‖ ∀n � 1, (4.24)

for some c18 > 0. Returning to (4.22) and using (4.23) and (4.24), we obtain∣∣∣∣∣∣
∫
�

f0(z, un)(̂un + un)

‖un‖2β dz

∣∣∣∣∣∣
� εc17

‖ûn + un‖
‖un‖β + c18‖un‖τ−β ‖ûn + un‖

‖un‖β ∀n � 1. (4.25)

Passing to the limit as n → +∞ in (4.25) and recalling that τ � β and that ε > 0 is arbitrary,
we conclude that

lim
n→+∞

∫
�

f0(z, un)(̂un + un)

‖un‖2β dz = 0. (4.26)

Therefore, finally we have

lim inf
n→+∞

∫
�

f0(z, un)un

‖un‖2β dz

= lim inf
n→+∞

⎛
⎝∫
�

f0(z, un)u0
n

‖un‖2β dz +
∫
�

f0(z, un)(̂un + un)

‖un‖2β dz

⎞
⎠ � 0

(see (4.20)) and (4.26). But this contradicts Proposition 4.1. ��
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Using this proposition, we can compute the critical groups of ϕ at the origin.

Proposition 4.3 If hypotheses H f (i) and (iii) hold, then

Ck(ϕ, 0) = δk,dm Z ∀k � 0 and dm = dim Hm−1.

Proof Let λ ∈ (0, λ̂m − λ̂m−1) (recall that m � 1) and consider the homotopy

ht (u) = ϕ(u)+ t
λ

2
‖u0‖2 ∀t ∈ [0, 1].

Claim 1 There exists �0 > 0 small enough, such that u = 0 is the only critical point of ht

in B�0 = {u ∈ H1
n (�) : ‖u‖ � �0

}
for all t ∈ [0, 1].

Suppose that the Claim is not true. Then, we can find two sequences {tn}n�1 ⊆ [0, 1] and
{un}n�1 ⊆ H1

n (�), such that

tn −→ t ∈ [0, 1], ‖un‖ −→ 0 and (htn )
′(un) = 0 ∀n � 1. (4.27)

From the equation in (4.27), we have

ϕ′(un) = −tnλu0
n, (4.28)

so 〈
ϕ′(un), u0

n

〉 = −tnλ‖u0
n‖2

2. (4.29)

Suppose that u0
n = 0 for all n � n0. Then from (4.28), we have

ϕ′(un) = 0 ∀n � n0,

so

A(un) = N f (un) ∀n � n0. (4.30)

Let yn = un‖un‖ for n � 1. Then ‖yn‖ = 1 for all n � 1 and so we may assume that

yn
w−→ y in H1

n (�), (4.31)

yn −→ y in L2(�). (4.32)

From (4.30), we have

A(yn) = N f (un)

‖un‖ ∀n � n0. (4.33)

Evidently the sequence
{

N f (un)

‖un‖
}

⊆ Lr ′
(�) is bounded and so we may assume that

N f (un)

‖un‖
w−→ h in Lr ′

(�). (4.34)

Moreover, using hypothesis H f (i i i), as in Aizicovici et al. [1] (see the proof of Proposi-
tion 31), we can show that

h = λ̂m y. (4.35)

So, if in (4.33) we pass to the limit as n → +∞, then from (4.31), (4.34), (4.35), we have

A(y) = λ̂m y,
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so {−�u(z) = λ̂m y(z) in �,
∂u
∂n = 0 on ∂�

and thus y ∈ E (̂λm). Also, if on (4.33) we act with yn − y ∈ H1
n (�) and pass to the limit as

n → +∞, then

lim
n→+∞ 〈A(yn), yn − y〉 = 0,

so

yn −→ y in H1
n (�)

(see the end of the proof of Proposition 3.5). Thus, y ∈ E (̂λm)\{0} since ‖y‖ = 1 and so
y = y0 �= 0.

Then

u0
n

‖u0
n‖ = y0

n −→ y0 = y �= 0 in H1
n (�),

contradicting our standing hypothesis that u0
n = 0 for all n � n0. So, by passing to a suitable

subsequence if necessary, we may assume that u0
n �= 0 for all n � 1.

Let � > 0 and ϑ ∈ (0, 1) be as postulated by Proposition 4.2 and suppose that
un ∈ C0(�, ϑ, β) for all n � n̂0 � 1. Then by virtue of Proposition 4.2, we have〈

ϕ′(un), u0
n

〉
� 0 ∀n � n̂0,

which contradicts (4.29) (recall that u0
n �= 0 for all n � 1). So, at least for a subsequence, we

have un �∈ C0(�, ϑ, β) for all n � 1, hence

‖ûn + un‖ > ϑ‖un‖β ∀n � 1. (4.36)

Exploiting the orthogonality of the component spaces and (4.27), we have

0 = 〈
(htn )

′(un), ûn − un
〉 = 〈ϕ′(un), ûn − un

〉
= ‖∇ûn‖2

2 − λ̂m‖ûn‖2
2 − ‖∇un‖2

2 + λ̂m‖un‖2
2

−
∫
�

f0(z, un)|̂un − un | dz. (4.37)

As in the proof of Proposition 4.2, using (4.14), we obtain

−
∫
�

f0(z, un)(̂un − un) dz

� −εc19‖un‖β‖ûn + un‖ − c19‖un‖τ‖ûn + un‖ ∀n � 1, (4.38)

for some c19 > 0 and with τ ∈ [β, 2∗ −1) (see the proof of Proposition 4.2) and in particular
(4.23) and (4.24) and note that by virtue of the orthogonality of the component spaces, we
have ‖ûn − un‖ = ‖ûn + un‖ for all n � 1. Using (4.38) in (4.37), we obtain

0 � c20‖ûn + un‖2 − εc19‖un‖β‖ûn + un‖ − c19‖un‖τ‖ûn + un‖
= ‖ûn + un‖2

(
c20 − εc19

‖un‖β
‖ûn + un‖ − c19‖un‖τ−β ‖un‖β

‖ûn + un‖
)

� ‖ûn + un‖2
(

c20 − εc19
1

ϑ
− c19‖un‖τ−β 1

ϑ

)
∀n � 1 (4.39)
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for some c20 > 0 (see Proposition 2.5 and (4.36)). Recall that ‖un‖ −→ 0 (see (4.27)). So, for
n � n0, we will have ‖un‖τ−β < ε. Choosing ε > 0 small enough, we have c20 > 2εc19

1
ϑ

,
which in conjunction with (4.39) leads to a contradiction. This proves the Claim.

Since 〈
(ht )

′(u), û
〉 = 〈ϕ′(u), û

〉 ∀u ∈ H1
n (�), t ∈ [0, 1]

and 〈
(ht )

′(u), u
〉 = 〈ϕ′(u), u

〉 ∀u ∈ H1
n (�), t ∈ [0, 1]

(a consequence of the orthogonality of the component spaces), as in the proof of Proposi-
tion 3.5, we check that for all t ∈ [0, 1], ht (·) satisfies the Cerami condition. This fact together
with the Claim permits the use of the homotopy invariance property of critical groups (see
e.g., [7, p. 332]). So, we have

Ck(h0, 0) = Ck(h1, 0) ∀k � 0,

so

Ck(ϕ, 0) = Ck(h1, 0) ∀k � 0. (4.40)

Note that

h1(u) = ϕ(u)+ λ

2
‖u0‖2 ∀u ∈ H1

n (�).

Evidently, u = 0 is a critical point of h1 ∈ C2(H1
n (�)). We claim that u = 0 is a nondegen-

erate critical point of h1. Indeed, let y ∈ ker h′′
1(0). Then

h′′
1(0)y = 0,

so

ϕ′′(0)y + λy = 0

and thus

A(y)− λ̂m y − ( f0)
′
ζ (·, 0)y + λy = 0. (4.41)

Note that f0(z, 0) = 0 for almost all z ∈ � and

f0(z, ζ )

ζ
= f (z, ζ )

ζ
− λ̂m,

so

lim
ζ→0

f0(z, ζ )

ζ
= ( f0)

′
ζ (z, 0) = 0 uniformly for almost all z ∈ �

(see hypothesis H f (i i i)). Hence (4.41) becomes

A(y) = (̂λm − λ)y,

so {−�y(z) = (̂λm − λ)y(z) in �,
∂y
∂n = 0 on ∂�.

(4.42)
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Note that

λ̂m−1 < λ̂m − λ < λ̂m,

so

λ̂m−1(̂λm − λ) < λ̂m−1(̂λm−1) = 1 and λ̂m (̂λm) = 1 < λ̂m (̂λm − λ)

(see Proposition 2.4). Then from (4.42), it follows that y = 0 and so ker h′′
1(0) = {0}, which

implies that u = 0 is a nondegenerate critical point of h1. Also the Morse index of u = 0 is
dm = dim Hm−1 (see Proposition 2.5). Therefore, it follows that

Ck(h1, 0) = δk,dm Z ∀k � 0,

so

Ck(ϕ, 0) = δk,dm Z ∀k � 0

(see (4.40)). ��
Next using Proposition 2.6, we will compute the critical groups of ϕ at infinity.

Proposition 4.4 If hypotheses H f (i) and (ii) hold, then

Ck(ϕ,∞) = δk,dl Z ∀k � 0,

where di = dim Hi−1.

Proof We consider the homotopy ht , defined by

ht (u) = ϕ(u)+ t

2
‖u0‖2 ∀u ∈ H1

n (�), t ∈ [0, 1].

Evidently ht ∈ C2(H1
n (�)) and (ht )

′ and ∂t ht are both locally Lipschitz for all t ∈ [0, 1].
Claim 2 There exists a ∈ R and δ > 0, such that

ht (u) � a �⇒ (1 + ‖u‖) ∥∥(ht )
′(u)
∥∥∗ � δ ∀t ∈ [0, 1].

Suppose that the Claim is not true. Since h maps bounded sets to bounded ones, we can find
two sequences {tn} ⊆ [0, 1] and {un} ⊆ H1

n (�), such that

tn −→ t ∈ [0, 1], ‖un‖ −→ +∞, , htn (un) −→ −∞ (4.43)

and

(1 + ‖un‖) ∥∥(htn )
′(un)

∥∥∗ −→ 0 in H1
n (�)

∗ (4.44)

From (4.44), we have
∣∣〈(htn )

′(un), v
〉∣∣ �

εn

1 + ‖un‖‖v‖ ∀v ∈ H1
n (�),

with εn ↘ 0, so∣∣∣∣∣∣〈A(un), v〉 −
∫
�

f (z, un)v dz + tn

∫
�

u0
nv dz

∣∣∣∣∣∣ �
εn

1 + ‖un‖‖v‖ ∀n � 1. (4.45)
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Let

yn = un

‖un‖ ∀n � 1.

Then ‖yn‖ = 1 for all n � 1 and so we may assume that

yn
w−→ y in H1

n (�) (4.46)

yn −→ y in L2(�). (4.47)

From (4.45), we have∣∣∣∣∣∣〈A(yn), v〉 −
∫
�

f (z, un)

‖un‖ v dz + tn

∫
�

y0
nv dz

∣∣∣∣∣∣ �
εn

1 + ‖un‖‖v‖ ∀n � 1. (4.48)

By virtue of hypothesis H f (i i), we have

f (·, un(·))
‖un‖

w−→ λ̂i y in L2(�). (4.49)

(see e.g., the proof of Proposition 22 of [1]). So, if in (4.48) we pass to the limit as n → +∞
and due (4.46) and (4.49), we obtain

〈A(y), v〉 = λ̂i

∫
�

yv dz − t
∫
�

y0v dz ∀v ∈ H1
n (�). (4.50)

If in (4.48) we choose v = yn − y ∈ H1
n (�), pass to the limit as n → +∞ and use (4.46)

and (4.49), we have

lim
n→+∞ 〈A(yn), yn − y〉 = 0,

so

yn −→ y in H1
n (�)

(see the proof of Proposition 3.5), hence

‖y‖ = 1. (4.51)

In (4.50) we choose v = ŷ ∈ Ĥi+1. Then

‖∇ ŷ‖2
2 = λ̂i‖ŷ‖2

2,

so

ŷ = 0 (4.52)

(since ŷ ∈ Ĥi+1). Similarly, if in (4.50) we choose v = y ∈ Hi−1, then

‖∇ y‖2
2 = λ̂i‖y‖2

2,

so

y = 0 (4.53)

(since y ∈ Hi−1). From (4.51), (4.52) and (4.53), it follows that y = y0 ∈ E (̂λi )\{0}. From
(4.50), we have

A(y) = (̂λi − t)y,

123
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so

‖∇ y‖2
2 = λ̂i‖y‖2

2 − t‖y‖2
2,

so

t‖y‖2
2 = 0

(since y = y0 ∈ E (̂λi )\{0}) and thus t = 0.
Reasoning as in the proof of Proposition 3.5, we show that

ûn

‖un‖α −→ 0 and
un

‖un‖α −→ 0 in H1
n (�)

(see (3.25) and (3.26)), so

ûn + un

‖un‖α −→ 0 in H1
n (�).

Hence, if R > 0, ϑ ∈ (0, 1] and δ̂ > 0 are as postulated in Proposition 3.4, then

un ∈ C∞(R, ϑ, α) ∀n � n0

(see (4.37)), so
〈
ϕ′(un), u0

n

〉
� δ̂ > 0 ∀n � n0

(see Proposition 2.5) and so

〈
(htn )

′(un), u0
n

〉
�

δ̂

2
> 0 ∀n � n1 � n0

(recall that tn → 0 and so (htn )
′ → ϕ′). Combining this estimate with (4.43), we reach a

contradiction. This proves the Claim.

From Proposition 3.5, we know that ϕ = h0 satisfies the Cerami condition. In a similar
way, exploiting the orthogonality of the component spaces, we can check that h1 also satisfies
the Cerami condition. So, we can apply Proposition 2.6 and infer that

Ck(ϕ,∞) = Ck(h1,∞) ∀k � 0. (4.54)

Invoking Theorem 2.3 of Li and Zou [26], we have

Ck(h1,∞) = δk,di Z ∀k � 0,

with di = dim Hi−1. ��

Now we are ready to produce the nontrivial smooth solutions of problem (1.1). We start
with the solutions of constant sign.

5 Solutions of constant sign

First using truncations and the direct method, we produce two constant sign smooth solutions
for problem (1.1) (one positive and the other negative).
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Proposition 5.1 If hypotheses H f (i), (iii), and (iv) hold, then problem (1.1) has two non-
trivial smooth solutions of constant sign

u0 ∈ int C+, v0 ∈ −int C+, a− < v0(z) < 0 < u0(z) < a− ∀z ∈ �
and both u0, v0 are local minimizers of ϕ.

Proof We introduce the following truncation-perturbation of f (z, ζ ):

g+(z, ζ ) =
⎧⎨
⎩

0 if ζ < 0,
f (z, ζ )+ ζ if 0 � ζ � a+,
f (z, a+)+ a+ if a+ < ζ.

(5.1)

Here, a+ > 0 is as in hypothesis H f (iv). Let

G+(z, ζ ) =
ζ∫

0

g+(z, s) ds

and let ψ+ : H1
n (�) −→ R be the C1-functional, defined by

ψ+(u) = 1

2
‖∇u‖2

2 + 1

2
‖u‖2

2 −
∫
�

G+ (z, u(z)) dz ∀u ∈ H1
n (�).

It is clear from (5.1) thatψ+ is coercive. Also, it is sequentially weakly lower semicontinuous.
Invoking the Weierstrass theorem, we can find u0 ∈ H1

n (�), such that

ψ+(u0) = inf
u∈H1

n (�)
ψ+(u) = m+. (5.2)

Hypothesis H f (i i i) implies that for a given ε > 0, we can find δ = δ(ε) ∈ (0, a+), such that

f (z, ζ ) � (̂λm − ε)ζ for almost all z ∈ �, ζ ∈ [0, δ],
so

F(z, ζ ) �
1

2
(̂λm − ε)ζ 2 for almost all z ∈ �, ζ ∈ [0, δ]. (5.3)

Let ξ ∈ (0, δ]. Then

ψ+(ξ) = −
∫
�

F(z, ζ ) dz � −1

2
(̂λm − ε)ξ2|�|N < 0

by choosing ε ∈ (0, λ̂m) (see (5.1), (5.3) and recall that m � 1). So

ψ+(u0) = m+ < 0 = ψ+(0)

(see (5.2)) and thus u0 �= 0. From (5.2), we have

ψ ′+(u0) = 0,

so

A(u0)+ u0 = Ng+(u0), (5.4)

where

Ng+(u)(·) = g+ (·, u(·)) ∀u ∈ H1
n (�)
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and thus {−�u0(z)+ u0(z) = g+ (z, u(z)) in �,
∂u0
∂n = 0 on ∂�.

(5.5)

Regularity theory implies that u0 ∈ C1
n (�)\{0}. On (5.4), we act with (u0 −a+)+ ∈ H1

n (�).
Then

〈
A(u0), (u0 − a+)+

〉+
∫
�

u0(u0 − a+)+ dz =
∫
�

g+(z, u0)(u0 − a+)+ dz

=
∫
�

( f (z, a+)+ a+) (u0 + a+)+ dz

(see (5.1)), so

〈
A(u0)− A(a+), (u0 − a+)+

〉+
∫
�

(u0 − a+)(u0 + a+)+ dz � 0

(see hypothesis H f (iv)) and thus

|{u0 > a+}|N = 0,

i.e., u0 � a+. Also, on (5.4), we act with −u−
0 ∈ H1

n (�) and obtain

‖∇u−
0 ‖2

2 + ‖u−
0 ‖2

2 = 0

(see (5.1)), so u0 ∈ C+\{0}. Then, (5.5) becomes{−�u0(z) = f (z, u0(z)) in �,
∂u0
∂n = 0 on ∂�.

By the mean value theorem, we can find μ0 > 0, such that for almost all z ∈ �, the function
ζ �−→ f (z, ζ )+ μ0ζ is nondecreasing on [a−, a+]. Hence,

−�u0(z)+ μ0u0(z) � 0 almost everywhere in �,

so

�u0(z) � μ0u0(z) almost everywhere in �

and thus

u0 ∈ int C+ (5.6)

(see Vázquez [36]). Also, we have

−�a+ + μ0a+ = μ0a+ � f (z, a+)+ μ0a+ almost everywhere in �

(see H f (iv)) and

�u0(z)− μ0u0(z) = − f (z, u0(z))− μ0u0(z) almost everywhere in �.

Adding, we obtain

−�(a+ − u0)(z)+ μ0(a+ − u0)(z) � 0 almost everywhere in �,

so

�(a+ − u0)(z) � μ0(a+ − u0)(z) almost everywhere in �,
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and thus

a+ − u0 ∈ int C+ (5.7)

(see Vázquez [36]).
So, if

[0, a+] = {u ∈ H1
n (�) : 0 � u(z) � a+ almost everywhere in �

}
,

then from (5.6) and (5.7), it follows that u0 ∈ int C1
n (�)

[0, a+]. Since ϕ|[0,a+] = ψ |[0,a+] (see

(5.1)), it follows that u0 is a local C1
n (�)-minimizer of ϕ and so Proposition 2.2 implies that

u0 is a local H1
n (�)-minimizer of ϕ.

Similarly, truncating the function ζ �−→ f (z, ζ )+ ζ at {a−, 0} and working as above, we
obtain another constant sign smooth solution of (1.1):

v0 ∈ −int C+, a− < v0(z) < 0 ∀z ∈ �
(i.e., v0 ∈ int C1

n (�)
[a−, 0]), which is a local minimizer of ϕ. ��

Let us recall the notions of upper and lower solutions for problem (1.1).

Definition 5.2 (a) We say that u ∈ H1(�) is an “upper solution” for (5.2), if∫
�

(∇u,∇h)
RN dz �

∫
�

f (z, u)h dz ∀h ∈ H1(�), h � 0.

(b) We say that u ∈ H1(�) is a “lower solution” for (5.2), if∫
�

(∇u,∇h)
RN dz �

∫
�

f (z, u)h dz ∀h ∈ H1(�), h � 0.

The next lemma is taken from Aizicovici et al. [2], where it was proved in the more general
context of equations driven by the Neumann p-Laplacian.

Lemma 5.3 (a) If u1, u2 ∈ H1(�) are two lower solutions for problem (5.2), then
u = max{u1, u2} ∈ H1(�) is a lower solution too.

(b) If u1, u2 ∈ H1(�) are two upper solutions for problem (5.2), then u = min{u1, u2} ∈
H1(�) is an upper solution too.

Using this lemma, we can produce the biggest solution of (1.1) in the order interval [0, a+]
and the smallest solution of (1.1) in the order interval [a−, 0].
Proposition 5.4 If hypotheses Hh(i), (iii), and (iv) hold, then problem rm (1.1) has a biggest
solution u∗ ∈ int C+ in the order interval [0, a+] and a smallest solution v∗ ∈ −int C+ in
the order interval [a−, 0].
Proof We introduce the set

D+ = {u ∈ H1
n (�) : u is a nontrivial solution of (1.1), u ∈ [0, a+]} .

From Proposition 5.1, we have that D+ �= ∅ and D+ ⊆ int C+. We show that D+ is upward
directed, i.e., if u1, u2 ∈ D+, then we can find u ∈ D+, such that max{u1, u2} � u. To
this end, let u1, u2 ∈ D+ and let us set u = max{u1, u2} ∈ H1

n (�). Lemma 5.3(a) implies
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that u is a lower solution for problem (1.1). On the other hand, hypothesis H f (iv) implies
that u ≡ a+ is an upper solution for problem (1.1). Truncation f (z, ·) at

{
u(z), a+

}
and

reasoning as in Aizicovici et al. [2] (see the proof of Proposition 8), via the direct method,
we produce û0 ∈ [u, u ≡ a+] ∩ int C+, a solution of (1.1). Then, u1, u2 � û0, û0 ∈ D+,
and so we conclude that D+ is upward directed.

Next we show that D+ has a maximal element for the usual pointwise ordering. So, let
C ⊆ D+ be a chain (i.e., a totally ordered subset of D+). From Dunford and Schwartz [9,
p. 336], we know that we can find a sequence {un}n�1 ⊆ C , such that

sup C = sup
n�1

un .

We have

A(un) = N f (un) ∀n � 1, (5.8)

so

‖∇un‖2
2 � c21 ∀n � 1,

for some c21 > 0 (recall that un ∈ [0, a+]) and thus the sequence {un}n�1 ⊆ H1
n (�) is

bounded.
So, we may assume that

un
w−→ u in H1

n (�) (5.9)

un −→ u in L2(�). (5.10)

If in (5.8) we pass to the limit as n → +∞ and we use (5.9), then

A(u) = N f (u),

so u ∈ D+ and u = sup C .
Hence invoking the Kuratowski-Zorn lemma, we infer that the set D+ has a maximal ele-

ment u∗ ∈ D+. We show that this is the desired biggest solution of (1.1) in [0, a+]. Indeed,
let u ∈ D+, since D+ is upward directed, we can find û ∈ D+, such that u, u∗ � û and
the maximality of u∗ implies that û = u∗, hence u � u∗. Since u ∈ D+ was arbitrary, we
conclude that u∗ is the biggest solution of (1.1) in [0, a+].

Similarly, if we introduce the set

D− = {v ∈ H1
n (�) : v is a nontrivial solution of (1.1), v ∈ [a−, 0]} ,

then working as above and using this time Lemma 5.3(b), we obtain v∗ ∈ −int C+, a smallest
solution of (1.1) in [a−, 0]. ��

In the next section, using Proposition 5.4 together with truncation techniques, combined
with critical point theory and Morse theory (critical groups), we prove the complete multi-
plicity theorem for problem (1.1).

6 Multiplicity theorem

For the complete multiplicity theorem, we use the full set of hypotheses H f .
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Theorem 6.1 If hypotheses H f hold, then problem (1.1) has at least five nontrivial smooth
solutions:

u0, û ∈ int C+, û − u0 ∈ int C+, u0(z) < a+ ∀z ∈ �,
v0, v̂ ∈ int C+, v0 − v̂ ∈ int C+, a− < v0(z) ∀z ∈ �

and

y0 ∈ C1
n (�)\{0}.

Proof From Proposition 5.1 we already have two nontrivial smooth solutions of constant
sign

u0 ∈ int C+, v0 ∈ −int C+, a− < v0(z) < 0 < u0(z) < a− ∀z ∈ �. (6.1)

By virtue of Proposition 5.4, we may assume that u0 ∈ int C+ is the biggest solution of
(1.1) in the interval [0, a+] and v0 ∈ −int C+ is the smallest solution of (1.1) in the interval
[a−, 0]. We consider the following truncation-perturbation of f (z, ·):

h+(z, ζ ) =
{

f (z, u0(z))+ u0(z) if ζ � u0(z),
f (z, ζ )+ ζ if u0(z) < ζ.

(6.2)

We set

H+(z, ζ ) =
ζ∫

0

h+(z, s) ds

and consider the C1-functional ψ̃+ : H1
n (�) −→ R, defined by

ψ̃+(u) = 1

2
‖∇u‖2

2 + 1

2
‖u‖2

2 −
∫
�

H+ (z, u(z)) dz ∀u ∈ H1
n (�).

Reasoning as in the proof of Proposition 3.5, we show that ψ̃+ satisfies the Cerami condition.

Claim 3 u0 ∈ int C+ is a local minimizer of ψ̃+.
To show the Claim, we consider the following truncation of H+(z, ·):

ĥ+(z, ζ ) =
{

h+(z, ζ ) if ζ < a+,
h+(z, a+) if a+ � ζ.

(6.3)

We set

Ĥ+(z, ζ ) =
ζ∫

0

ĥ+(z, s) ds

and consider the C1-functional ψ̂+ : H1
n (�) −→ R, defined by

ψ̂+(u) = 1

2
‖∇u‖2

2 + 1

2
‖u‖2

2 −
∫
�

Ĥ+ (z, u(z)) dz ∀u ∈ H1
n (�).

By virtue of (6.3), ψ̂+ is coercive, and of course, it is sequentially weakly lower semicontin-
uous. So, we can find û0 ∈ H1

0 (�), such that

ψ̂+(̂u0) = inf
u∈ H1

n (�)
ψ̂+(u) = m̂+,
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so ψ̂ ′+(̂u0) = 0 and thus

A(̂u0)+ û0 = Nĥ+ (̂u0), (6.4)

where

Nĥ+(u)(·) = ĥ+ (·, u(·)) ∀u ∈ H1
n (�).

On (6.4), we act with (u0 − û0)
+ ∈ H1

n (�). Then∫
{u0>û0}

(∇û0, ∇u0 − ∇û0)RN dz +
∫

{u0>û0}
û0(u0 − û0) dz

=
∫

{u0>û0}
f (z, u0)(u0 − û0) dz +

∫
{u0>û0}

u0(u0 − û0) dz

=
∫

{u0>û0}
(∇u0, ∇u0 − ∇û0) dz +

∫
{u0>û0}

u0(u0 − û0) dz,

so ∥∥(u0 − û0)
+∥∥2 = 0

and thus

u0 � û0. (6.5)

Also, acting on (6.4) with (̂u0 − a+)+ ∈ H1
n (�), we obtain∫

{̂u0>a+}
‖∇û0‖2 dz +

∫
{̂u0>a+}

û0 (̂u0 − a+) dz

=
∫

{̂u0>a+}
( f (z, a+)+ a+) (̂u0 − a+) dz

(see (6.2) and (6.3)), so ∥∥(u0 − a+)+
∥∥2 = 0

and thus

u0 � a+. (6.6)

From (6.5) and (6.6), it follows that û0 ∈ [u0, a+] and (6.4) becomes

A(̂u0) = N f (̂u0)

(see (6.2) and (6.3)), so {−�û0(z) = f (z, û0(z)) in �,
∂ û0
∂n = 0 on ∂�

and thus û0 ∈ int C+ (regularity theory) solves (1.1) and u0 ∈ [u0, a+].
But recall that u0 ∈ int C+ is the biggest solution of (1.1) in [0, a+]. Hence, û0 = u0.
Since ψ̃+|[0,a+] = ψ̂+|[0,a+] (see (6.2) and (6.3)) and u0 ∈ int C1

n (�)
[0, a+] (see (6.1)), it

follows that u0 = û0 is a local C1
n(�)-minimizer of ψ̃+; hence by Proposition 2.2, it is also

a local H1
n (�)-minimizer of ψ̃+. This proves the Claim.
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We may assume that u0 is an isolated critical point of ψ̃+. To see this, suppose that we
can find {un}n�1 ⊆ H1

n (�), such that

un −→ u0 in H1
n (�) and ψ̃ ′+(un) = 0 ∀n � 1.

Then as above, we show that un � u0 for all n � 1 and {un}n�1 ⊆ int C+ (regularity theory).
From (6.2), it follows that {un}n�1 is a whole sequence of distinct positive smooth solutions
of (1.1) and so we are done. So, assuming that u0 is an isolated critical point of ψ̃+ and
reasoning as in Aizicovici et al. [1] (see the proof of Proposition 29), we can find �̃ > 0
small, such that

ψ̃+(u0) < inf
{
ψ̃+(u) : ‖u − u0‖ = �̃

} = m̃+. (6.7)

Let ξ > ‖u0‖∞. Then

ψ̃+(ξ) � c22 −
∫
�

F(z, ξ) dz, (6.8)

for some c22 > 0 (see (6.2)). By virtue of hypothesis H f (i i), for a given ε ∈ (0, λ̂i ), we can
find M > 0, such that

F(z, ζ ) �
λ̂i − ε

2
ζ 2 for almost all z ∈ �, all |ζ | � M,

so

F(z, ζ ) −→ +∞ uniformly for almost all z ∈ � as ζ → +∞
and thus

ψ̃+(ξ) −→ −∞ as ξ → +∞ (6.9)

(see (6.8)). From (6.7), (6.9) and since ψ̃+ satisfies the Cerami condition, we see that we can
apply the mountain pass theorem (see Theorem 2.1) and produce û ∈ H1

n (�), such that

ψ̃+(u0) < m̃+ � ψ̃+(̂u) (6.10)

(see (6.7)) and so

ψ̃ ′+(u0) = 0. (6.11)

From (6.10), we have û �= u0. From (6.11), we have

A(̂u)+ û = Nh+ (̂u), (6.12)

where

Nh+(u)(·) = h+ (·, u(·)) ∀u ∈ H1
n (�).

Acting on (6.12) with (u0 − û)+ ∈ H1
n (�) and reasoning as before, we show that u0 � û

and û ∈ int C+ solves (1.1) (see (6.2)). Let μ̂ > 0 be such that for almost all z ∈ �, the
function ζ �−→ f (z, ζ ) + μ̂ζ is nondecreasing on [−‖û‖∞, ‖û‖∞] (it exists by the mean
value theorem and hypothesis H f (i)). Then

−�(̂u − u0)(z)+ μ̂(̂u − u0)(z) � 0 almost everywhere on�,

so

�(̂u − u0)(z) � μ̂(̂u − u0)(z) almost everywhere on �,
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and thus û − u0 ∈ int C+ (see Vázquez [36]).
Similarly, if we use the negative smooth solution v0 ∈ −int C+ and by considering the

truncation-perturbation of f (z, ·), defined by

h−(z, ζ ) =
{

f (z, ζ )+ ζ if ζ < v0(z),
f (z, v0(z))+ v0(z) if v0(z) � ζ,

then working as above, we produce a second negative smooth solution v̂ ∈ −int C+, such
that v0 − v̂ ∈ int C+.

Since u0, v0 are local minimizers of ϕ, then

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,0Z ∀k � 0. (6.13)

From the previous considerations, we know that û ∈ int C+ is a critical point of mountain
pass type for the functional ψ̃+. Note that

ψ̃+(̂u) = 1

2
‖∇û‖2

2 −
∫
�

F(z, û) dz +
∫
�

(F(z, u0)− f (z, u0)u0) dz

(see (6.2)), so

ψ̃+(̂u) = ϕ(̂u)+ c23,

with c23 = ∫
� (F(z, u0)− f (z, u0)u0) dz. Thus

Ck(ψ̃+, û) = Ck(ϕ, û) ∀k � 0. (6.14)

Since û is a critical point of mountain pass type for ψ̃+, it follows that

C1(ψ̃+, û) �= 0

(see e.g., [7, p. 69]). So

C1(ϕ, û) �= 0 (6.15)

(see (6.14)).
Recall that ϕ ∈ C2(H1

n (�)) and ϕ′′(̂u) is a Fredholm operator. Moreover, if σ(ϕ′′(̂u)) ⊆
[0,+∞), then ker ϕ′′(̂u) = {0} if 0 �∈ σ(ϕ′′(̂u)) and dim ker ϕ′′(̂u) = 1 if 0 ∈ σ(ϕ′′(̂u)) (see
Sect. 2). This fact together with (6.15) permits the use of Proposition 2.5 of Bartsch [4] and
so we have

Ck(ϕ, û) = δk,1Z ∀k � 0. (6.16)

Similarly, we show that

Ck(ϕ, v̂) = δk,1Z ∀k � 0. (6.17)

From Proposition 4.3, we know that

Ck(ϕ, 0) = δk,dm Z ∀k � 0. (6.18)

From Proposition 4.4, we know that

Ck(ϕ,∞) = δk,di Z ∀k � 0.

This implies that there exists y0 ∈ Kϕ , such that Cdi (ϕ, y0) �= 0 (see (2.1)). Since i � 1
(see hypothesis H f (i i)), it follows that di � 2 and di �= dm since i �= m (see H f (i i)).
So, from this fact and (6.13), (6.16)–(6.18), we conclude that y0 �∈ {0, u0, v0, û, v̂}. Hence,
y0 ∈ C1

n (�)\{0} (regularity theory) is a fifth nontrivial smooth solution of (1.1). ��
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