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Abstract—In 3G wireless data networks, network operators

would like to balance system throughput while serving users

fairly. This is achieved through the use of fair scheduling.

However, this approach provides non-Pareto optimal band-

width allocation when considering a network as a whole. In

this paper an optimal offline algorithm that is based on the de-

composition result for a double stochastic matrix by Birkhoff

and von Neumann is proposed. A utility max-min fairness

is suggested for the derivation of a double stochastic matrix.

Using a numerical experiment, new approach improves the

fairness objective and is close to the optimal solution.

Keywords—Birkhoff-von Neumann, max-min fairness, statisti-

cal optimization, wireless scheduling.

1. Introduction

Next generation wireless communication is based on a sys-

tem of wireless mobile services that are transportable

across different network backbones. Third generation net-

works such as the CDMA [1], and the Universal Mo-

bile Telecommunications System (UMTS) [2] standardised

by the European Telecommunications Standards Institute

(ETSI) promise heterogeneous services to users that may

be moved across various regions and networks. Recent 3G

releases, often denoted 3.5G and 3.75G, also provide mo-

bile broadband access of several Mbit/s to smartphones and

mobile modems in laptops.

The 3G standard, called the 3G1X Evolution or High Data

Rate (HDR) was designed for bursty packet data applica-

tions. It provides a peak downlink data rate of 2 Mbps

and an average downlink data rate of 600 kbit/s within one

1.25 MHz CDMA carrier. HDR is commercially available,

and HDR downlinks have a much higher peak data rate

(2.4 Mbit/s) than others. Users share the HDR downlink

using time multiplying with time slots of 1.67 ms each.

Data frames can be transmitted to a specified user at any

moment in time, and the data rate is determined by the

user’s channel condition. Users monitor pilot bursts in the

downlink channel to estimate channel conditions in terms

of Signal to Noise Ratio (SNR). Then, the SNR is mapped

into a supported data rate. The data rate request channel in-

formation is transmitted using feedback to the base station.

The duration of transmission to each user is determined by

the downlink scheduling algorithm.

Several wireless scheduling have been proposed. The

scheduling algorithm to satisfy the so-called proportional

fairness was proposed by Jalali et al. [3]. The schedul-

ing algorithm given by Borst et al. [4] provides dynamic

control for fair allocation of HDRs. The 3G standard uses

a scheduling algorithm [5]. Unfortunately, these algorithms

give relative fairness to users rather than guarantee the re-

quired QoS performance.

Currently, some scheduling techniques to be used at the

Medium Access Control (MAC) layer for high data rate

Wireless Personal Area Networks (WPANs) were presented

by Fantacci and Tarchi [6]. An efficient heuristic scheduling

algorithm for MPEG-4 traffic in high data rate WPANs has

been presented by Yang et al. [7]. However, these solutions

have problems, such as computational complexity and rate

granularity limitation.

The main objective of this paper is to introduce a new wire-

less scheduling algorithm that provides predetermined user

throughputs. In addition, the paper will show that proposed

scheduling algorithm is quasi-offline. It allows to remove

the complexity of on-line scheduling. The main idea of

presented scheduling the connection patterns is the Birkhoff

decomposition [8] and von Neumann methodology [9].

In this paper, a statistical approach for Birkhoff-von Neu-

mann methodology is used in which traffic demands are

captured as statistical traffic distribution. For the deriva-

tion of a double stochastic matrix is proposed a utility

max-min fair algorithm. In opposition to the von Neu-

mann algorithm [9], the cumulative distribution functions

that correspond to the given statistical profile is presented.

The remainder of the paper is organized as follows: In Sec-

tion 2, a Birkhoff-von Neumann decomposition is presented

which offers a quasi-offline scheduling strategy. Section 3

provides proposed wireless scheduling algorithm. In Sec-

tion 4, some numerical experiments which were performed

to examine the properties of the proposed algorithm are de-

scribed. Some concluding remarks are given in Section 5.

2. Preliminaries

2.1. Birkhoff-von Neumann Decomposition

To explain the idea of Birkhoff-von Neumann decomposi-

tion, let r = (ri, j) be the rate matrix with ri, j being the rate

allocated to the traffic from input i to output j for N ×N
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permutation matrix. The traffic is admissible if and only if

the following inequalities are satisfied, namely

∑
i=1

ri, j ≤ 1, j = 1,2, . . . ,N (1)

and
N

∑
j=1

ri, j ≤ 1, i = 1,2, . . . ,N . (2)

There exists a set of positive number φk and permutation

matrix Pk, k = 1,2, . . . ,K for some K ≤ N2 − 2N + 2 that

satisfies

r ≤
K

∑
k=1

φk pk (3)

and
K

∑
k=1

φk = 1 . (4)

Generally, the Birkhoff-von Neumann methodology is per-

formed offline. Unfortunately, the computational complex-

ity of the decomposition is O(N4.5).
Several method have been used to decreasing of the com-

putational complexity. Among others, the Weighted Fair

Queueing (WFQ) scheme as on-line algorithm has been

proposed by Demers et al. [10]. Thus, the complexity of

the on-line scheduling algorithm is O(log N) as one needs

to sort the O(N2) virtual finishing times in the WFQ-like

algorithm.

2.2. Max-min Fairness

Maximizing aggregate utility is able to approach max-min

fairness, if the utility function has a particular form. Max-

min fairness an important requirement for wireless net-

works, such as multi-hop WANETs, MANETs, etc. [11].

To explain the idea of max-min fairness, let x be a vector,

x ∈ Rn. Given a non-empty set S ⊆ Rn, a fairness concept

supplies a way of designating some vector as the “best”

one in S. A vector x ∈ S is max-min fair if one cannot

increase one of its components without decreasing another

of its components that is already smaller or equal, while

remaining in S.

In the following, an algorithm to obtain a utility max-min

fairness is presented. In contrast to approaches in which

the utility is defined with respect to service quality param-

eters [12], [13], this utility max-min fair algorithm is used

to the Birkhoff-von Neumann decomposition problem un-

der statistical traffic distribution.

In the proposed algorithm it was assumed that each row

and column as being fixed or free. Initially, all rows and

columns are free. Let ρi be the available capacity on

row i and η j be the available capacity on column j. Both

values are initially equal to 1. The algorithm is repeated

in the loop and at each iteration of the algorithm are con-

sider only free columns and rows. Algorithm 1 shows the

pseudocode of the proposed algorithm to obtain a utility

max-min fairness.

Algorithm 1: A utility max-min fairness

Input: Flow rates specified as N ×N matrix

1 while exists free column or row do

2 for each free flow i, j on row i temporarily do

3 allocate ki j such that

4 ∑ j∈T ki j = ρi, ui j(ki j) = θ ∀ j ∈ T

5 where T is set of all columns

6 end

7 for each free flow i, j on column j temporarily do

8 allocate ki j such that

9 ∑ j∈S ki j = η j, ui j(ki j) = θ ∀i ∈ S

10 where S is set of all rows

11 end

12 find the minimum maximum common utiliy ui j that

13 could be achieved

14 if this minimum θ corresponds to row i

15 then remove row i from S and fix the rate

allocations:

16 S = S−{i}, λi j = ki j;

17 end if;

18 find the minimum maximum common utiliy ui j that

19 could be achieved

20 if this minimum θ corresponds to column j

21 then remove column j from T and fix the rate

22 allocations: T = T −{ j}, λi j = ki j;

23 end if;

24 end

25 update the corresponding row and column capacities

26 that are affected by the fixing of the λi j;

3. Statistical Approach

for Birkhoff-von Neumann

Decomposition

In this section, a statistical approach for Birkhoff-von Neu-

mann decomposition is presented. In this approach traffic

requirements are described as statistical traffic distributions

rather a vector fixed average rates.

The flow rates is specified as N ×N matrix of probability

density functions:

F = ( f0(x)) (5)

where f0(x) is the probability distribution of traffic require-

ments for flow (i, j) and x be the rate allocation.

That long-term average throughput for n, n = 1, . . . ,N, is

given by

Tn =
µn

N
+

σn

N
GN (6)

and

GN = N

∫

1

0

uN−1Q−1(1−u)du , (7)

where µn is the mean, σn is the variance n = 1,2, . . . ,N,

Q(x) = 1√
2π

∫ ∞
x e−t/2dt.
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Note that the Cumulative Distribution Function (CDF) of

a Gaussian random variable depends only on the mean and

the variance, because the average traffic flow does not de-

pend on other traffic flows distribution.

For each fi, j(x) corresponding to the probability distribu-

tion of traffic requirements for flow (i, j), the CDF func-

tion is defined that describes the probability distribution

of a random variable X that represents the actual traffic

requirement. Thus, the CDF function of X is given by

φi, j(x) = Pr[X ≤ x] , (8)

where φi, j is the probability that the rate allocation x is

sufficient to cover the actual traffic requirement.

To maximize the probability φi, j, the CDF functions as util-

ity functions can be used and derive the final rate allocation

matrix.

4. Numerical Example

The traffic distribution is modeled as a Gaussian distribu-

tion. Each probability density function fi, j(x) can be de-

fined with a given mean µi, j and a standard deviation σi, j.

Consider 3× 3 rate matrix with the following means and

standard deviations:

(

µ1,1 µ1,2

µ2,1 µ2,2

)

=

(

0.4 0.4

0.4 0.4

)

(

σ1,1 σ1,2

σ2,2 σ2,2

)

=

(

0.05 0.1

0.1 0.05

) . (9)

The decomposition algorithm originally proposed by von

Neumann [9] is used to a double stochastic rate matrix Λ
with the average traffic requirement matrix {µi, j} as the

starting point. The von Neumann algorithm aims to in-

crease the rate to make all row and column sums equal

to 1, namely

Λ =

(

0.6 0.1

0.1 0.6

)

. (10)

The actual traffic requirement would be
(

99.45% 50%

50% 99.45%

)

. (11)

By using the utility max-min fair algorithm to construct

the doubly stochastic rate matrix Λ = (λi j) with the given

Gaussian distribution function as utility functions, the fol-

lowing matrix can be obtained

Λ =

(

0.5 0.2

0.2 0.5

)

. (12)

Obtained result is better than the 50% probability that

would be achieved by the von Neumann algorithm, namely

Λ =

(

99.64% 99.64%

99.64% 99.64%

)

. (13)

Summing up, the expected traffic can be modeled by the

probability distribution for flow rates of HDR system. The

utility max-min fair allocation algorithm can be used to

construct the double stochastic rate matrix Λ = (λi j) with

the CDF functions as the utility function.

5. Conclusion

It has been provided an algorithm to packet scheduling in

wireless networks and has been formulated the problem

in which traffic demands are captured as statistical traffic

distribution. A utility max-min fair algorithm was used for

the derivation of a double-stochastic matrix. This quasi-

offline scheduling is attractive as it also largely removes the

complexity of online wireless packet scheduling. Finally,

the numerical results demonstrate that proposed solution

achieves the required system performance.
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