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Abstract 13 

For the Tortonian Stage Age of the Miocene epoch Epoch (11.6-7.25 Ma) we present a global 14 

palaeobotanical and palaeoecologically-based vegetation dataset, combined with a best-fit Late 15 

Miocene climate-vegetation model experiment to create an advanced global data-model hybrid 16 

biome reconstruction. This new reconstruction can be used both for the purposes of validating 17 

future palaeoclimate model simulations or as a land cover dataset to initialise palaeoclimate 18 

modelling experiments. Our Tortonian reconstruction shows significant changes in the distribution of 19 

vegetation compared to modern natural vegetation. For example in contrast to the modern scenario 20 

in the Northern Hemisphere, boreal forests reached 80°N and temperate forests were present above 21 

60°N. Warm-temperate forests covered much of Europe, coastal North America and South-East Asia. 22 
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Our reconstruction shows a spread of temperate savanna in central USA, the Middle East and on the 23 

Tibetan Plateau.  Evidence for arid deserts is sparse, with the exception of the Atacama region 24 

(South America). Areas that exhibit arid desert today in the Tortonian were instead covered by 25 

shrublands, grasslands, savannas and woodlands. The extent of tropical forests in South America was 26 

likely reduced but expanded in the Indian sub-continent and East Africa. This pattern of global 27 

vegetation in the Late Miocene suggests a warmer and wetter world, which is supported by the 28 

pattern of climate anomalies predicted by our best-fit palaeoclimate-vegetation model experiment. 29 

Global mean annual temperature may have been as much as 4.5°C higher than present day with 30 

many regions experiencing higher than modern amounts of precipitation over the annual cycle. The 31 

pattern of temperature and precipitation change reconstructed palaeobotanically, and predicted 32 

within our climate model experiment, infers a global forcing agent on Tortonian climate (e.g. such as 33 

elevated concentrations of greenhouse gases) to explain the observed and modelled climate 34 

anomalies. This is in contrast to current proxy records of Tortonian atmospheric CO2 which range 35 

from Last Glacial Maximum to mid-20th Century levels. 36 
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1. Introduction 41 

 42 

1.1 Preamble 43 

As a result of anthropogenic emissions of greenhouse gasses it has been predicted that by the end of 44 

the 21st Century average global surface temperatures will have increased by up 1.8 to 4°C (Meehl et 45 
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al., 2007). These predictions are generated by Global General Circulation Models (GCM) simulating 46 

the present day with projected increases of greenhouse gases from anthropogenic sources. To 47 

assess how well GCMs perform under significantly different climates than the present day, it has 48 

become common to use the geological record as a laboratory (Valdes, 2000; Micheels et al., 2007; 49 

Salzmann et al., 2009). Earth history presents many intervals that were significantly warmer than 50 

present, to be able to successfully simulate these with GCMs it is important to have a reasonable 51 

grasp of the boundary conditions, for each interval. One important boundary condition is the 52 

vegetation. Vegetation affects the global climate in many a number of ways such asincluding; 53 

altering the surface albedo (Bonan et al., 1992; de Noblet et al., 1996; Hoffmann and Jackson, 2000) 54 

and changes in evapotranspiration from the conversion of forests into grasslands leading to reduced 55 

regional precipitation (Shukla et al., 1990). It Vegetation is also strongly affected by the ambient 56 

climate, which principally influences its distribution. This makes vegetation, not only an important 57 

boundary condition, but a method to assess GCM predictions where direct measurements are not 58 

possible. Palaeobotanical remains such as pollen, wood and leaves are a widely utilised proxy for 59 

reconstructing past continental climates, and are used in the assessment of the predictive abilities of 60 

Global Circulation Models (GCMs) (Kohfield and Harrison, 2000; Valdes, 2000; Kageyama et al., 61 

2001). 62 

We present herein a new vegetation reconstruction for the Tortonian Stage Age suitable for use in 63 

both assessing GCM simulations and as a boundary condition for experiments. This reconstruction 64 

uses a novel combination of merging palaeobotanical data and outputs from a state-of-the-art GCM-65 

vegetation model experiment, to produce an advanced global biome distribution map of Tortonian 66 

vegetation. The reconstructed distribution provides insights into Tortonian climate, which will help 67 

inform future modelling studies. Previous global maps of Tortonian vegetation have been generated 68 

using unpublished data sets (François et al., 2006) or vegetation reconstructed from a small (<50) 69 

number of palaeobotanical sites (Micheels, 2003; Micheels et al., 2007). These reconstructions have 70 

also been based on a modern geography, instead of the appropriate Tortonian palaeogeography, 71 
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and have classified Tortonian vegetation into a small (maximum 14) number of biome types. The 72 

reconstruction presented here builds and improves on these by presenting a 240-site 73 

palaeoecological dataset, combined with a state of the art GCM driven vegetation model 74 

experiment, to form a global vegetation reconstruction based on a 27 biome classification scheme. 75 

1.2. An overview of the Tortonian 76 

The Tortonian Stage of the Late Miocene (11.61-7.25 Ma) is a periodan interval generally considered 77 

to have been warmer than today (Wolfe, 1994a; Bruch et al., 2006; Micheels et al., 2007) with 78 

modest changes in continental position and orography. These changes include the presence of a 79 

Central American seaway, a marine encroachment from the south into Argentina, a large extension 80 

of Eurasia into the Arctic Sea to approximately 80°N, the large Pannonian Lake in central Europe and 81 

a wider Indonesian seaway (Markwick, 2007). By 10 Ma ago aspects of ocean circulation were 82 

becoming comparable to the modern (Woodruff and Savin, 1989; Lohmann et al., 2006), though 83 

Miocene circulation was affected by the open Central American seaway which allowed an eastwards 84 

flow of Pacific waters into the Atlantic Ocean, preventing deep water formation in the North Atlantic 85 

(Maier-Reimer et al., 1990; Lohmann et al., 2006; Lunt et al., 2008). The Miocene also represented a 86 

crucial period of uplift and the generation of arid regions (Harrison and Yin, 2004; Kohn and Fremd, 87 

2008). The uplift of the Himalayas from a relatively low Tibetan Plateau (1-3 km) in the Late 88 

Oligocene to an average height of 4-5 km in the Late Miocene (~9 Ma) had effects on global 89 

atmospheric circulation, weathering rates and the Asian Monsoon (Quade et al., 1989; Guo et al., 90 

2002; Spicer et al., 2003; Harrison and Yin, 2004; Sun et al., 2009). The Andes may have been at half 91 

their modern height by 10.7 Ma (~1800 m) and have since been uplifting at 0.2-0.3 mm per year 92 

(Gregory-Wodzicki, 2000). The Rocky Mountains of western North America are a product of several 93 

orogenic events, the most recent of which was the Laramide Orogeny which is dated to the Late 94 

Cretaceous to Palaeocene (English and Johnston, 2004). Subsequent to this major event the 95 

Colorado Plateau has been uplifted by nearly 2 km since the Cretaceous (Spencer, 1996). Estimates 96 
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on the exact timing of the uplift and the rate are still unresolved but recent work focusing on the 97 

Colorado Plateau suggests a change in the dynamic topography of 400-1100 m has occurred in the 98 

last 30 Ma (Flowers et al., 2008; Moucha et al., 2009). The Alps in the Early to Middle Miocene were 99 

merely islands between the Paratethys and Western Tethys Seas being at an estimated height of 100 

<1800 m, then major uplift occurred after 14 Ma until present (Jiménez-Moreno et al., 2008). 101 

Atmospheric Carbon dioxide levels for the Tortonian have been estimated, using boron isotopes 102 

(Pearson and Palmer, 2000), alkenones (Pagani et al., 2005), stomatal indices (Kürschner et al., 1996; 103 

2008), pedogenic carbonate (Ekart et al., 1999) and the GEOCARB mass balance model (Berner and 104 

Kothavala, 2001). All of these techniques estimate Tortonian CO2 to range between Last Glacial 105 

Maximum, pre-industrial (Pearson and Palmer, 2000; Pagani et al., 2005) and mid-20th Century levels 106 

(Kürschner et al., 1996; Ekart et al., 1999 Berner and Kothavala, 2001; Kürschner et al., 2008), 107 

although pedogenic carbonates used to estimate CO2 go as high as 1170 ppmv at 10 Ma (Ekart et al., 108 

1999). It is possible that Miocene climate change was not related to atmospheric CO2 variations 109 

(Shevenell et al., 2004; Pagani et al., 2005; Mosbrugger et al., 2005), though new CO2 estimates, 110 

such as those derived from stomatal indices, are more consistent with the co-evolution of Miocene 111 

climate and CO2 (Kürschner et al., 2008). 112 

 113 

2. Methods 114 

 115 

2.1. Constructing the vegetation database 116 

Using TEVIS (Tertiary Environments Vegetation Information System) (Salzmann et al., 2008), which is 117 

a Microsoft Access and ArcGIS 9 based database, 223 Tortonian vegetation sites (Fig. 1) have been 118 

collected and recorded in an internally consistent manner. Using the author’s interpretation of 119 

palaeobotanical sites, taken from the published literature, the recorded Tortonian sites have been 120 



6 
 

translated into the classification scheme of the BIOME4 mechanistic model of vegetation (Kaplan, 121 

2001). TEVIS not only records the vegetation of the palaeobotanical site but also the latitude and 122 

longitude, sedimentology, method used to date the sample and a quality indicator – to ascertain the 123 

resolution of the chronology. Where available, numerical climatic parameters such as mean annual 124 

temperature and precipitation are also recorded in TEVIS. This facilitates quantitative data-model 125 

comparison. Extracting climatic parameters from fossil assemblages can be achieved by a number of 126 

techniques and the majority of the estimates in the TEVIS database come from either the co-127 

existence approach (Mosbrugger and Utescher, 1997 and the NECLIME working group) or Climate 128 

Leaf Analysis Multivariate Program (CLAMP) (Wolfe, 1979; 1993; Spicer, 2007; Spicer et al., 2009). 129 

The co-existence approach uses the climatic tolerances of a fossil plant’s nearest living relative as a 130 

guide to the climate tolerances of the fossil taxa. When this is done for a whole assemblage a 131 

climatic envelope is generated where all the fossil plants could have co-existed; providing an 132 

estimate of climatic parameters (Mosbrugger and Utescher, 1997). CLAMP uses 31 leaf 133 

physiognomic (structure) characteristics, that have been shown to be related to the environment to 134 

which the leaf architecture is exposed (Spicer, 2007; Spicer et al., 2009), to estimate the climatic 135 

parameters of fossil leaf assemblages (Wolfe, 1993).  136 

It has been possible to confidently assign all literature-based vegetation reconstructions to a 137 

corresponding BIOME4 classification (Fig. 2). However, it should be noted that although the BIOME4 138 

classification represents biomes of the modern world these are not identical, in species composition, 139 

to those of the Tortonian and in some regions the Tortonian biome has no modern analogue. 140 

2.2. Construction of the animal database 141 

To provide additional information on Tortonian vegetation where palaeobotanical information is 142 

absent we have constructed, using the same Microsoft Access and ArcGIS platform successfully 143 

employed for TEVIS, a new database termed MAD (Miocene Animal Database). This database 144 

records palaeo-rotated vertebrate fossil sites and the author’s inferred habitat as well as taxonomic 145 
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data. The author’s inferred habitat is also converted, where possible, into a BIOME4 scheme 146 

vegetation type. However there are limitations in using vertebrate assemblages to infer vegetation, 147 

such as the respective scale of the inferred habitat and the reconstructed biome,  and this will 148 

require further investigation. MAD also records information about the sedimentary facies, age and 149 

dating method, specimen completeness and any taphonomic information provided. The sites 150 

collected in MAD are critical to increase our vegetation data coverage in regions where plant fossils 151 

are not preserved. MAD contains 70 vertebrate locations and has provided 17 additional biome data 152 

points and provided valuable coverage in regions such as the Middle East and Central America (Fig. 153 

3). 154 

2.3. Description of the HadAM3 GCM and BIOME4 models 155 

A suite of Late Miocene atmosphere-only General Circulation Model (AGCM) runs have been carried 156 

out using the Hadley Centre Atmospheric Model Version 3 (HadAM3; Pope et al., 2000) and the 157 

climatologies used to run the mechanistic vegetation model BIOME4 (Kaplan 2001). A brief outline of 158 

the model and boundary conditions used in the simulations can be found below. A fuller description 159 

of the modelling methodology can be found in Lunt et al. (2008). 160 

HadAM3 has a horizontal resolution of 2.5° latitude × 3.75° longitude, this equates to a spatial 161 

resolution of 278 × 417 km at the equator. The model has 19 vertical layers, a time step of 30 162 

minutes and includes the Edwards and Slingo (1996) radiation scheme, the Gregory et al. (1997) 163 

convection scheme, a sea ice model that is largely the same as in HadAM2 (Cattle and Crossley, 164 

1995) and MOSES (Cox et al., 1999) a land surface scheme capable of simulating freezing and melting 165 

of soil moisture (Pope et al., 2000). HadAM3 has been successfully applied to numerous 166 

palaeoclimate intervals of the pre-Quaternary (e.g. Haywood and Valdes, 2006; Lunt et al., 2008).  167 

The Late Miocene palaeogeography, orography and ice sheet extent were derived from Markwick 168 

(2007). Crucially this gives a significant decrease in altitude of the Tibetan Plateau relative to the 169 
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present day, as well as the western cordillera of North and South America. The land surface scheme 170 

was set to globally homogeneous values (in this case shrubland). Shrubland was chosen to initialise 171 

the model as its physical characteristics are least biasing in terms of climate prediction. Atmospheric 172 

CO2 levels were set at 395 ppmv which is at the higher end of available estimates yet it should be 173 

noted that given prescribed sea surface temperatures in this model the exact CO2 value chosen does 174 

not have a large effect on the climate predicted by the model. 175 

In the absence of sufficient proxy sea surface temperatures (SSTs), we derive our Late Miocene SST 176 

distribution from a pre-industrial surface temperature distribution, T*
pre-industrial, in the following way: 177 

 

 178 

Where m is the number of the month (January=1), Φ is the latitude, and A, B, and C are defined in 179 

Lunt et al. (2008; Table 1). T*
pre-industrial  is derived from the means from years 1870–1900 of the 180 

Hadley Centre sea surface temperature (SST) and sea ice climatologies (HadISST, Rayner et al., 2003). 181 

This formulation allows the sensitivity of the global warming, the amount of polar warmth, the 182 

seasonality of the polar warmth, and the form of the latitudinal gradient of warming, to be tested 183 

using just 4 key parameters; A, B, C, and f(Φ).We address the inherent uncertainty associated with 184 

the prescribed boundary conditions by carrying out a suite of seven Late Miocene simulations, with 185 

different values of A, B, C and f (Lunt et al., 2008, table 1). The resulting distributions, from this 186 

calculation, are illustrated in and summarised in Lunt et al. (2008; Fig.2, table 2). The prescribed SSTs 187 

all have a lower equator to pole temperature gradient than the pre-industrial, in agreement with 188 

proxy data (e.g. Williams et al., 2005; Pearson et al., 2007), with a maximum change in Northern 189 

Hemisphere winter. This is also consistent with the idea that the current strength of the 190 

thermohaline circulation developed through the Miocene (e.g. Jakobsson et al., 2007). These seven 191 

distributions are identical to those contemplated by Gladstone et al. (2007) in relation to the 192 
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hydrological budget in the Mediterranean of the Late Miocene. For all simulations, where the value 193 

of SSTLateMiocene is below the freezing point of ocean water, Tfreeze, sea ice is allowed to form. In these 194 

instances, the SST is set to Tfreeze, and the surface temperature is no longer prescribed but is 195 

computed by the sea ice component of HadAM3. Certain coastal SSTs had to be extrapolated due to 196 

the difference between the modern and Late Miocene land–sea masks, but this is a minor effect. 197 

BIOME4 (Kaplan, 2001) is a mechanistic equilibrium vegetation model which predicts global biome 198 

distribution from monthly averages of temperature, precipitation, cloudiness and absolute minimum 199 

temperature. Biomes are predicted based on the bioclimatic tolerances of 12 Plant Functional Types 200 

(PFT) ranging from cushion forbs to tropical evergreen trees. At the core of the model is a coupled 201 

carbon-water flux scheme which maximises Net Primary Productivity (NPP) for any given PFT 202 

through the determination of Leaf Area Index (LAI). This is calculated on a daily simulation of the soil 203 

water balance, canopy conductance, photosynthesis and respiration. The woody PFT that achieves 204 

the highest annual NPP at its maximised LAI for a given grid square is considered dominant. This 205 

however is not the case for grass-tree areas such as savannas; here a weighted NPP is calculated and 206 

inferred fire risks are both used to determine the forest-grassland boundary. The model then orders 207 

all the PFTs that could exist under ambient conditions in a grid cell based on NPP, LAI and mean 208 

annual soil moisture. It then uses semi-empirical rules to decide on which of the 27 biomes should 209 

be plotted in the cell (Kaplan 2001). For the Late Miocene simulations BIOME4 was run in anomaly 210 

mode. This is a standard technique that removes known systematic errors in the climate prediction 211 

of HadAM3 and has been employed in numerous modern and palaeoclimate/palaeoecological 212 

studies (e.g. Haxeltine and Prentice, 1996; Texier et al., 1997; Salzmann et al., 2008). 213 

 214 

2.4. Coupling of the data and model 215 



10 
 

To provide a global vegetation reconstruction it is necessary to fill the regions with limited 216 

palaeoecological data (Fig. 1; Fig. 3) with vegetation. In this study the technique of Salzmann et al. 217 

(2008), using a state-of-the-art model simulation and merging this with the palaeoecological data is 218 

employed. Before the process of merging the data and model into a hybrid reconstruction of global 219 

Tortonian vegetation it was first necessary to determine which Late Miocene HadAM3 experiment 220 

was best suited for this purpose. The original HadAM3 experiments presented in Lunt et al. (2008; 221 

Mioc1-Mioc7) were all used to produce BIOME4 vegetation predictions. Mioc1-Mioc7 represent 222 

seven HadAM3 experiments with different SST gradient profiles, generated with the equation 223 

described in section 2.3. The resulting BIOME4 estimates were compared to the Tortonian data 224 

collected in TEVIS and MAD, using ArcGIS9 software. Before comparison could begin the 225 

palaeoecological data was were first palaeo-rotated to its Tortonian latitude and longitude (using 226 

the palaeo-rotation codes of Paul Markwick ensuring consistency between our data and the 227 

Tortonian palaeogeography used in HadAM3). To aid comparison and selection, Cohen’s Kappa 228 

statistic (Cohen, 1960) was used to highlight the statistically most comparable BIOME4 model 229 

simulation (Table 1). Cohen’s Kappa statistic measures the agreement between two sets of 230 

categorizations while taking into account chance agreements between categories, where 0 means 231 

the agreement is no better than chance and 1 shows a perfect fit (Cohen, 1960; Jenness and Wynne, 232 

2005). BIOME4 simulations Mioc1 – Mioc7 were compared using both the full and mega biome 233 

classification schemes of the BIOME4 model. The use of the broader mega biome scheme, following 234 

Harrison and Prentice (2003) and Salzmann et al. (2009), was necessary due to avoid the Kappa 235 

statistic becoming meaningless due to some categories containing a low number of sample points 236 

for the full biome scheme. Of the experiments, Mioc5 compared most favourably to the 237 

palaeobotanical and palaeoecological data (i.e. achieved the highest Kappa score using the mega 238 

biome scheme) and this experiment was therefore chosen for use in the construction of the data-239 

model hybrid. Mioc5 represents a reduced equator to pole gradient in the Northern Hemisphere, 240 

with SSTs around 9°C warmer at 60°N (compared to the pre-industrial). The equator to pole gradient 241 
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in the Southern Hemisphere is slightly reduced when compared to the pre-industrial gradient but 242 

with SSTs 3 - 4°C higher. Equatorial SSTs are 1°C warmer than in the pre-industrial (Table 1). 243 

The strategy used to join the databased vegetation with model predicted vegetation is summarised 244 

in Fig. 4 and based on the techniques used in Salzmann et al. (2008). The merger was undertaken on 245 

a grid by grid basis; examining each model predicted grid cell and, if necessary, correcting it using 246 

available palaeobotanical data. This is most visible in Fig. 5, which shows the consistency of the data 247 

– model comparison and the degree of correction. Areas with low or no palaeobotanical data are left 248 

unchanged as model predicted vegetation. 249 

 250 

3. Results 251 

 252 

3.1. Global Tortonian vegetation reconstruction 253 

The plotted biomes, based on 240 TEVIS and MAD data points, provide an insight into Late Miocene 254 

vegetation and climate. There is good data coverage in western USA, Europe, India, southeast Asia 255 

and western South America, allowing a confident vegetation reconstruction for these regions. This 256 

allows for a confident robust vegetation-reconstruction for these regions. Data coverage also allows 257 

a confident reconstruction of Alaska, central Africa, parts of Asia and southern Australia. However, 258 

data coverage is not uniform and thus areas lacking adequate coverage rely on modelled vegetation 259 

for the reconstruction. These areas include most of the high latitude Northern Hemisphere including 260 

much of Canada and northeast USA, Greenland, Scandinavia and Russia. Other areas of poor 261 

coverage also include eastern South America, southern Africa and northern Australia. 262 

The Tortonian vegetation reconstruction from both the palaeobotanical data and the BIOME4 model 263 

prediction show a warmer and moister world (Fig.6A). The following section describes and highlights 264 
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regional vegetation patterns from the Tortonian world. Numbers in parentheses refer to 265 

palaeobotanical site location numbers (Fig. 1) and numbers within parentheses with an “M” relate to 266 

mammal site location numbers (Fig. 3). All references for specific sites, and the biome code assigned 267 

to each has been made available as supplementary information (Appendices 1, 2). Climatic data is 268 

are also presented below in the form of Mean Annual Temperature (MAT) in °C and Mean Annual 269 

Precipitation (MAP) in mm per year. The climatic data is also presented in Table 2. 270 

 271 

3.1.1. Polar and boreal regions 272 

During the Tortonian the polar and boreal regions (>60°N, >60°S) were dominated by cold evergreen 273 

coniferous forests and temperate grasslands. In Eurasia and Greenland there is also an extension of 274 

temperate deciduous broadleaved forests from the temperate region. Antarctica is not vegetated in 275 

this reconstruction, which is in agreement with the extinction of tundra from Antarctica during the 276 

Middle Miocene (Lewis et al., 2008). The ANDRILL AND-2A core, drilled in McMurdo Sound, yielded a 277 

palynological assemblage showing the presence of tundra vegetation between 15.7-15.5 Ma. 278 

Following this warm period the content of palynomorphs decreases sharply until they are absent 279 

before the start of the Tortonian (Warny et al., 2009). On Seymour Island and James Ross Island, 280 

Antarctic Peninsula the Hobbs Glacier formation has been dated as Late Miocene (Dingle and 281 

Lavelle, 1998; Marenssi et al., 2010).This marine diamictite is considered to have been deposited 282 

close to a glacier terminus suggesting the West Antarctic Ice Sheet was almost at its present extent 283 

on the Antarctic Peninsula, though with evidence for interglacial events (Smellie et al., 2006; 284 

Marenssi et al., 2010). Previously tundra vegetation had been reported from the Pliocene of the 285 

Transantarctic Mountains (Ashworth and Cantrill, 2004). The dating of these deposits was based on 286 

the assemblage of reworked marine diatoms (Harwood, 1986), more recent work has suggested an 287 

age >5.1 Ma and likely much older (Ackert and Kurz, 2004; Ashworth et al., 2007). The growing body 288 

of evidence from Antarctica suggests that by the Tortonian the continent was largely glaciated. 289 
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The polar and boreal realms are not well constrained in the Tortonian reconstruction. A scarcity of 290 

Tortonian palaeobotanical data in Canada, Scandinavia and northern Russia (Fig. 6A), combined with 291 

an extension of the continent into the modern Arctic Ocean north of Scandinavia and the 292 

Novosibirsk Islands extending to Svalbard in the palaeogeography means much of the high latitude 293 

biomes are model-defined. Likewise Antarctica is defined as having near-modern ice sheet cover in 294 

the model boundary conditions, meaning that the BIOME4 model would not predict vegetation on 295 

the Antarctic continent. There are some locations that provide evidence of vegetation at the high 296 

latitudes during the Tortonian. In Alaska, around the Cook Inlet and Nenana Coal Field (Sites 1-5) 297 

there was a cool mixed forest to 61°N and a mix of cool needleleaf and cold evergreen needleleaf 298 

forest further north. Three of the five sites give a mean annual temperature of 4.5±1.5°C, 4±1°C and 299 

10±10°C (Wolfe, 1994b; White et al., 1997; Reinink-Smith and Leopold, 2005); this is 4-10°C warmer 300 

than present. The palaeobotanical data and model agreed well on the position of the cold evergreen 301 

needleleaf forests but differed on the position of the cool mixed forest. In the BIOME4 model 302 

simulation the area with cool mixed forest palaeobotanical data is reconstructed to have temperate 303 

deciduous broadleaved forest and warm-temperate evergreen and mixed forest biomes. This 304 

discrepancy between the BIOME4 predictions and the palaeobotanical data is related to the SST 305 

profile used in the model boundary conditions. 306 

In the North Atlantic (Sites 72-73), ocean cores provide evidence of terrestrial biomes during the 307 

Tortonian. DSDP 338 provides evidence of a temperate forest dominated by coniferous trees at 67°N 308 

offshore Norway (Koreneva et al., 2005). ODP Leg 151 contains a pollen assemblage showing the 309 

presence of a swampy taiga at 77°N on the Hovgård Ridge (Boulter and Manum, 1997). In Russia 310 

there is evidence of the evergreen taiga forest at 70°N (Site 139) and a temperate evergreen forest 311 

at 59°N (Site 141). The model successfully predicts the presence of the cold evergreen needleleaf 312 

forest at 77°N, but does not predict the presence of the temperate evergreen needleaf forest seen 313 

at DSDP 338. Whether this relates to problems in the model prescribed SSTs or is due to the sample 314 

coming from an oceanic core rather than a terrestrial deposit will need to be explored in future 315 
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work. Khapchan (Site 140) was described by Nikitin (2007) as a northeastern Turgayan Flora (warm-316 

temperate mixed forest) and contains a diverse seed assemblage of 130 taxa containing; Alnus, 317 

Betula, Brasenia, Cyperaceae, Ericaceae Myricaceae, Rosa, Rubus, Tubela, Vitaceae and Weigela, 318 

(Nikitin, 2007). This site represents a Turgayan Flora near the transition period in northeastern Asia, 319 

from the Oligocene-Miocene Turgayan flora to the Pliocene-recent flora (Nikitin, 2007). Nikitin 320 

(2007) classified it as a Turgayan flora despite the absence of Taxodium and the minor amount of 321 

broadleaved taxa. This may mean that in terms of the biome classification of the BIOME4 model the 322 

flora at Khapchan no longer represents a warm-temperate mixed forest, which the Turgayan Flora is 323 

considered to be. This will require future investigations to establish a suitable BIOME4 classification 324 

for a northeastern Turgayan Flora and therefore it is omitted from the present reconstruction. 325 

 326 

As data is are scarce for the boreal and polar realms, these regions rely heavily on the BIOME4 327 

model for the Tortonian reconstruction. Across North America, BIOME4 predicts a direct transition 328 

from boreal taiga to temperate grasslands at 60°N in central Canada and 68°N in western Canada 329 

(Fig. 6A). In northernmost North America, BIOME4 predicts a mixture of temperate grassland, boreal 330 

taiga and temperate xerophytic shrubland. In northeast Russia, the model predicts extensive 331 

temperate grasslands from 66°N to 78°N with temperate deciduous broadleaved forest reaching 332 

78°N between the longitudes of 25°E and 36°E. This then changes to cool needleleaf forest at 78°N, 333 

whereas, for most of the polar boreal region temperate grassland is predicted to change directly into 334 

boreal taiga forest, much as it does in North America (Fig. 6A). There are also minor areas of cool 335 

mixed forest, cool needleleaf forests and temperate xerophytic shrubland within the extensive 336 

temperate grassland region, these same minor biomes are also found on the west coast. At 60°N the 337 

BIOME4 model predicts the presence of warm-temperate forest on the east coast of Eurasia (Fig. 338 

6A). In eastern Russia and the Kamchatka Peninsula the boreal taiga is predicted by BIOME4 to have 339 

had a much lower southern extent at 55°N and changes directly to temperate grassland. BIOME4 340 
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shows the presence of boreal forest mixed with some areas of temperate grassland and in the 341 

northernmost area, a small region of deciduous boreal taiga. Along the southern coast of the 342 

Kamchatka Peninsula, the model predicts a mix of cool mixed and cool needleleaf forest (Fig. 6A). 343 

Currently there are no published palaeobotanical sites for the Tortonian of Greenland. The BIOME4 344 

model predicts a large expanse of temperate grassland in the northwest and central areas with 345 

temperate forests in the south and east. In the far northeast and northwest, small areas of 346 

temperate xerophytic shrubland are predicted to have existed (Fig. 6A). In the boundary conditions 347 

of the GCM experiment, based on the palaeogeography (Markwick, 2007), the east Greenland 348 

highlands are covered by an ice-sheet and thus were not vegetated. Despite the lack of data on 349 

Greenland, good data coverage on Iceland (Sites 68-71) shows a warm-temperate to temperate 350 

climate during the Tortonian. This provides some evidence to support temperate forest on 351 

Greenland at this latitude during the Tortonian. All the areas on Greenland defined by the BIOME4 352 

model are generated from the climate of the best fit GCM experiment and a single data datum point 353 

could confirm or change these regions. There are no model-predicted biomes for Antarctica because 354 

the palaeogeography used in the model boundary conditions have has a modern Antarctic ice sheet. 355 

 356 

3.1.2 Temperate zones 357 

The BIOME4 model predicts a considerable extension of the temperate zone into what is present 358 

boreal and polar regions. Data coverage in the temperate zone (23.5-60°N/°S) is good. Notable areas 359 

of absence are the Appalachians in the eastern USA, north Mexico, Australia and southernmost 360 

South America. Broadly the reconstruction shows a spread of warm-temperate evergreen 361 

broadleaved and mixed forest into Europe, Southeast Asia, eastern USA and areas of western USA 362 

and an expansion of temperate deciduous broadleaved savanna in Eurasia and central USA. 363 



16 
 

On the west of the Rocky Mountains, a mixture of forest, woodland and savanna occured until 38°N, 364 

below this the area was dominated by temperate xerophytic shrubland with some coastal forests. At 365 

55°N on what is now the Queen Charlotte Islands, Canada, there was a warm-temperate evergreen 366 

mixed forest (Site 6). To the south of this there was temperate needleleaf forest (Site 7) near the 367 

coast and temperate deciduous broadleaved forest further inland (Site 8). South of this at between 368 

43°N and 48°N, many locations show the presence of a warm-temperate evergreen and mixed forest 369 

(Sites 9-12, 14 and 19-21). The forest at Musselshell Creek (Baghai and Jorstad, 1995) had a MAT of 370 

12.5±1.5°C and a MAP of 1250 mm (Site 14), this is 7°C warmer than at present and nearly 500 371 

mm/yr wetter. South of this is temperate broadleaved savanna near the coast at Kimble Homestead 372 

(Site 13), which is estimated to have a MAT of 12.5±2.5°C, comparable to the warm-temperate 373 

evergreen and mixed forest but, with a MAP of 900±100 mm (Retallack et al., 2002). Further inland 374 

there was a mix of temperate broadleaved deciduous forest (Site 15) and temperate schlerophyll 375 

woodland and shrubland (Sites 16, 17). The former having a MAT of 14°C and a MAP of 635±180 mm 376 

(Dorf, 1938) and the latter estimated to have a MAT of 13.4±7.8°C and a MAP of 762 mm (Smith, 377 

1941; Beuchler et al., 2007). For this area the climate data provided by the palaeobotanical locations 378 

suggests an increase in MAT of 7-8°C and an increase in MAP of 50-200 mm/yr compared to modern 379 

information. The model disagrees with the palaeobotanical data within this region on the amount of 380 

MAP, causing the model to predict much drier biomes. The Rocky Mountains are shown to have had 381 

some areas of cool mixed forest (Site 18) and areas of temperate needleleaf open woodland (Fig. 6). 382 

South of 38°N, an open area of temperate xerophytic shrubland is predicted by the BIOME4 model 383 

and supported by numerous palaeobotanical locations (Sites 23, 25-27). This open area extended 384 

down to the tropical zone, apart from a coastal forest with a warm-temperate evergreen and mixed 385 

character (Sites 22, 24) at 31-33°N (Fig. 6). This is estimated to have had a MAT of 15±4°C and a MAP 386 

of 679±62.5 mm (Axelrod, 2000); although the level of precipitation seems low to support this type 387 

of forest, Axelrod (2000) compared it to cloud forests of Pacific Islands, suggesting it may have 388 

required extensive summer fogs. The modelled biomes and the palaeobotanical data agree well with 389 
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the distribution and extent of the temperate xerophytic shrubland and the presence of coastal 390 

warm-temperate forest. 391 

East of the open temperate xerophytic shrubland, the BIOME4 model and the palaeoecological data 392 

agree on the presence of a mixture of temperate needleleaf forest and temperate deciduous 393 

broadleaved savanna (Sites 28-31 and M1). Along the Gulf Coast there was a mixture of warm-394 

temperate evergreen and mixed forest (Site 37) and tropical semi-deciduous broadleaved forest 395 

(Site 36). In Florida, mammalian fossils and pollen at the Moss Acres Racetrack site (Lambert, 1994; 396 

Lambert, 1997) show the presence of a temperate to warm-temperate, deciduous broadleaved 397 

savanna (Sites M2-M3). On the east coast of the USA there was a warm-temperate evergreen mixed 398 

forest until 46°N (Sites 32-35). Further inland where the palaeobotanical data is are absent, the 399 

BIOME4 model predicts a mixture of temperate deciduous broadleaved forests, temperate 400 

deciduous broadleaved savanna and temperate grasslands (Fig. 6). The warm-temperate evergreen 401 

and mixed forest on the east coast, this biome at Martha’s Vineyard and preserved in the Legler 402 

Lignite is predicted to have a MAT of between 13.3±5°C and 15±9°C with a MAP of 1270 mm (Greller 403 

and Rachele, 1983; Frederiksen, 1984; Axelrod, 2000). 404 

In Europe the palaeobotanical data indicate a vast swathe of warm-temperate evergreen and mixed 405 

forest with subtropical elements, from 8°W to 51°E and from 38°N to 60°N (Sites 79-99, 103-110, 406 

119). Within this biome, which is considered most comparable to the warm-temperate forests of 407 

southeast China, climate estimates for the Tortonian from the fossil remains are predicted to have 408 

had a MAT of 14.85±0.95°C – 16.8±1.2°C and a MAP of between 988.5±9.5 mm and 1242.5±55.5 mm 409 

(Figueiral et al., 1999; Ivanov et al., 2002; Kvacek et al., 2002; Bruch et al., 2006; Syabryaj et al., 410 

2007; Erdei et al., 2009). This is around 6.3°C warmer than at present (the range of difference is -411 

2.4°C – +8.5°C) and the difference in MAP is between 159 mm to 740 mm when compared to 412 

modern data. Areas of difference to this apparently homogenous biome are the Iberian Peninsula 413 

and the land to the south of the Pannonian Lake in Turkey. In this region, the warm-temperate 414 
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evergreen and mixed forest opened up into a region of temperate deciduous broadleaved savanna 415 

(Site 111; 115-116) and BIOME4 predicted temperate needleleaf forest. Further east the vegetation 416 

returned to warm-temperate evergreen and mixed forest (Sites 117-118). Continuing east from here 417 

there was a region of temperate deciduous broadleaved savanna (Sites M13-M14), and BIOME4 418 

predicted temperate needleleaf forest extending to 62°E (Fig. 6). The model and palaeobotanical 419 

data agrees well for Europe around the Panonnian Lake however, the model makes western Europe 420 

anomalously dry. 421 

The Iberian Peninsula also had drier open vegetation than the rest of Europe. On the south coast 422 

there was a region of tropical xerophytic shrubland (Site 76), and along the west coast there was a 423 

small amount of temperate schlerophyll woodland and shrubland (Site 75). The modern Sahara was 424 

greatly reduced, if not absent altogether (Fig. 6). Temperate schlerophyll woodland and shrubland 425 

(Sites 77-78) and tropical savanna (Site M7) inhabited coastal regions of northwest Africa (Tunisia, 426 

Morocco and Algeria). Further inland there is no vegetation data and the BIOME4 model predicts 427 

tropical xerophytic shrubland and small areas of desert (Fig. 6). The mix of predominantly tropical 428 

xerophytic shrubland and desert continued east across the modern Sahara region until 21°E, from 429 

here until the east coast of the Arabian Peninsula there was extensive tropical xerophytic shrubland 430 

and an absence of desert. The area around the modern Nile delta had tropical savanna along the 431 

coast (Site 112). The BIOME4 model agrees with the palaeobotanical data in that the Iberian 432 

Peninsula has more open vegetation than the rest of Europe. However, there is some disagreement 433 

as to which biome types are present. The BIOME4 model also fails to predict the coastal vegetation 434 

of North Africa; this may be a problem with the model or a question of scale. The palaeobotanical 435 

data may reflect vegetation restricted to the coast whereas the model has predicted the overall 436 

biome for the grid cell; this will require further study. 437 

Along the east coast of the Pannonian Lake, the BIOME4 model predicts a mixture of temperate 438 

xerophytic shrubland and temperate needleleaf forests (Fig. 6A). These temperate needleleaf forests 439 
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are predicted by BIOME4 to continue, in isolated patches, until 81°E. These forest patches are within 440 

an extensive temperate deciduous broadleaved savanna (Sites 137-138, 144, M15) which existed 441 

from 35°N to 58°N in Asia. At the northern extent of the savanna area it is bordered by temperate 442 

deciduous woodland which inhabited some of the boreal realm during the Tortonian (Fig. 6). At its 443 

southern limit, the BIOME4 model predicts the temperate savanna blended into temperate 444 

needleleaf forest and temperate needleleaf parkland. The palaeobotanical data shows that the 445 

model simulation for this region produces a biome pattern with anomalously high levels of forest. 446 

South of the Himalayas on the Indian subcontinent a band of warm-temperate evergreen and mixed 447 

forest ran longitudinally between 28°N and 33°N (Sites 169, 177). Below this there was a mixture of 448 

tropical evergreen broadleaved forest, tropical deciduous forest and tropical savanna (Sites 170-449 

175), and these biome types continued into the tropical zone (Fig. 6). In China and southeast Asia, 450 

the warm-temperate forests continued in the longitudinal band between 23.5°N and 33°N (Sites 451 

182, 185). Fossils from the Xiolongtan coal mine in China are estimated to have lived with a MAT of 452 

17.9±1.2°C with a MAP of 1427±212 mm (Xia et al., 2009), this is nearly modern levels for this region. 453 

As this band of warm-temperate evergreen and mixed forest reached the east coast of Asia it 454 

followed it north, reaching 48°N (Sites 147-148, 156, 158-159, 161). In Japan, many fossil sites 455 

indicate this forest biome also existed there (Sites 162-163, 166-168). Throughout India and 456 

southeast Asia the model compares very well to the palaeobotanical data and only required slight 457 

alterations to create the hybrid reconstruction. 458 

On the Himalayan Plateau and further north a patchwork of temperate xerophytic shrubland (Site 459 

152), temperate deciduous broadleaved savanna (Sites 142, 145-146, 149-151, 153-155, 198, M16), 460 

temperate deciduous broadleaved forest (Site 143) was present during the Tortonian. At the 461 

northern limit of the temperate zone, BIOME4 predicted cool needleleaf forest existed at this time 462 

(Fig. 6). This mixture of biome types continued north until it bordered an extensive temperate 463 

grassland predicted by BIOME4. In north central Asia the transition from temperate biomes to the 464 
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cold evergreen needleleaf forest biome occurred as far south as 55°N (Fig. 6); currently there is no 465 

available data to confirm this transition. This region in the BIOME4 simulation is heavily influenced 466 

by the orography which is the reason for minor differences with the palaeobotanical data. For the 467 

majority of this region the model predicted temperate grassland or temperate deciduous 468 

broadleaved forest, whereas the palaeobotanical data reflected a temperate deciduous broadleaved 469 

savanna. 470 

In South America, the temperate zone contains many sites along the western side and sparse data 471 

along the east. On the east coast BIOME4 predicts a continuation of tropical vegetation into the 472 

temperate zone, this is mainly tropical xerophytic shrubland with some areas of semi-deciduous to 473 

deciduous tropical forest (Fig. 6). At Taubate, Brazil (Site 57) pollen provides evidence of a 474 

subtropical to warm-temperate forest along the coast (Garcia et al., 2008). On the west side of the 475 

South American temperate zone, tropical xerophytic shrubland changed to tropical savanna (Sites 476 

60-61, M5) and a proto-Atacama desert (Site 58) at 24-26°S. South of this, an area of temperate 477 

xerophytic shrubland occupied a narrow band (Site 62) before changing into temperate schlerophyll 478 

woodland and shrubland (Site 63). South of this area there is scarce data, apart from an area of 479 

temperate xerophytic shrubland (Sites 64-66) between 39°S and 46°S. For the rest of southern South 480 

America, BIOME4 predicts a mixture of warm-temperate to cool-temperate forests (Fig. 6). The 481 

palaeoecological data and BIOME4 model compare well for temperate South America. Model-482 

predicted biomes that required altering for the hybrid reconstruction were either too dry or too wet. 483 

This seemingly contradictory statement is probably related to the orography; both within the model 484 

boundary conditions and the orography the palaeoecological data existed at. 485 

The temperate zone of southern Africa is small and poorly-covered by data. The temperate zone is 486 

predicted, by BIOME4, to start with a continuation of the tropical xerophytic shrubland until 28°S to 487 

31°S where tropical semi-deciduous and deciduous forests are predicted to begin. The data points 488 

come below this area, from western South Africa and they show the presence of a temperate 489 
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needleleaf forest (Sites 135-136). For the South African Cape, BIOME4 predicts a warm-temperate 490 

evergreen and mixed forest (Fig. 6). The model-predicted biomes around the South African Cape 491 

were too dry to match the limited palaeobotanical data for the area. This shows there is some 492 

problem in the amount of precipitation generated by the model for this region. 493 

In Australia, the temperate zone was dominated by temperate schlerophyll woodland and shrubland 494 

during the Tortonian (Sites 211-213, 215-216). Location 212 at Lake Tay predicts this biome to have a 495 

MAP of 1375±125 mm (Macphail, 1997), which was an increase of around 1100 mm/yr when 496 

compared to modern data. A small area of temperate grassland was present in southeast Australia 497 

(Site 214) and BIOME4 predicts coastal warm-temperate evergreen and mixed forest and temperate 498 

needleleaf forest along the east coast (Fig. 6). In central Australia, the model also predicts an area of 499 

tropical grassland. On New Zealand, many data points agree with the BIOME 4 prediction of warm-500 

temperate evergreen and mixed forest (Sites 218-220). Overall the palaeobotanical data and model-501 

generated biomes for temperate Australia compare well in places, but broadly the model predicts 502 

biomes that are too dry. 503 

 504 

3.2.3. Tropical zones 505 

The tropical zones (23.5°S – 23.5°N) have good data coverage. Notable exceptions are southern 506 

Africa, Central America, eastern South America and northern Australia. In general there is an 507 

opening up of the tropical forests of South America, an expansion of tropical vegetation into the 508 

Sahara Desert in Africa, extensive tropical forests in India and southeast Asia and open biomes in 509 

Australia. 510 

In Central America, palaeobotanical data show the presence of a warm-temperate evergreen and 511 

mixed forest (Site 38) at Jalapa, Mexico (Graham, 1975) where a warm oak-liquidambar forest 512 

bordered mangroves. Further south, near Gracias, Honduras (Site M4) an assemblage of mammals 513 
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shows that a tropical savanna occupied the region during the Tortonian (Webb and Perrigo, 1984). 514 

Apart from these sites the rest of Central America is predicted by BIOME4 (Fig. 6). In the north, 515 

tropical xerophytic shrubland and temperate schlerophyll woodland and shrubland continued into 516 

the tropical zone from the temperate zone. Below 20°N a patchwork mixture of tropical savanna, 517 

tropical deciduous woodland and tropical semi-evergreen forest is predicted to have existed. At the 518 

Panama Seaway, BIOME4 predicts a tropical evergreen broadleaved forest (Fig. 6). The limited 519 

palaeoecological data for Central America make a comprehensive data-model comparison difficult, 520 

but based on the available evidence the model appears to simulate vegetation here well. 521 

Crossing this seaway into South America, a broad expanse of predominantly tropical evergreen 522 

broadleaved forest (Sites 41, 44, 46-47, 49, 51-52), with some isolated areas of tropical deciduous 523 

woodland (Sites 42-43, 45) and along the edges of this forest BIOME4 predicts tropical semi-524 

evergreen forest and tropical deciduous woodland existed. This forest opened up into tropical 525 

savanna (Sites 50, 53-54) which continued east across South America to between 46°W-38°W where, 526 

in an absence of data, BIOME4 predicts tropical xerophytic shrubland (Fig. 6). Some evidence for 527 

tropical evergreen broadleaved forest along the coast is present on Outeiro Island, Brazil (Site 48). 528 

Near 23.5°S on the east side of South America there is a lack of data and BIOME4 predicts an area of 529 

tropical deciduous woodland within the extensive tropical savanna. In eastern South America, at this 530 

latitude there is evidence for tropical deciduous woodland (Sites 55-56). This eastern tropical 531 

deciduous forest biome is estimated to have a MAT of 19.8±3.7°C – 21.5±2.5°C and a MAP of 532 

550±180 mm at Upper Jakokkota (Gregory-Wodzicki, 2002). This is an increase of 9-10°C when 533 

compared to the modern, but a reduction in MAP of about 570 mm. The BIOME4 model generated 534 

biomes and palaeobotanical data for tropical South America compare very well. The majority of the 535 

palaeobotanical data is are grouped in the west and this shows the extent of the tropical forest 536 

successfully predicted by the model to be. It also clearly indicates the areas with tropical savanna 537 

and tropical deciduous forest predicted by the model and supported by the palaeobotanical data. In 538 

the east of tropical South America there is only a single, coastal, data point. This pollen record 539 
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however shows the model is anomalously dry in this region and the model generated biomes 540 

required modification for the hybrid reconstruction. 541 

The tropical zone of Africa, south of the Sahara was an extensive tropical xerophytic shrubland 542 

during the Tortonian (Fig. 6). This turned into tropical savanna at between 15-20°N (Sites 123, M8), 543 

except on the Arabian Peninsula where xerophytic shrubland is the dominant biome with minor 544 

amounts of tropical grasslands along rivers and the coast (Site 120). In West Africa, tropical forests 545 

began at 16°N (Sites 121-122) but were mainly restricted to coastal grid squares and tropical 546 

savanna is found as far south as 6°N (Site 128). In central Africa, the tropical forests occupied a 547 

region comparable to the modern forests. Data for this comes from the Niger Delta in the west (Sites 548 

129-130) and Kenya in the east (Sites 131-132) with BIOME4 supporting the data and showing the 549 

extent of the forest (Fig. 6). Climatic estimates for the tropical forest in Kenya give a MAT of 550 

21.7±2°C and a MAP of 1045±200 mm (Jacobs and Deino, 1996); this is comparable to modern levels. 551 

Around Ethiopia and Sudan, an area of tropical evergreen forest was present (Site 124) surrounded 552 

by tropical savanna (Site 127) and tropical grassland (Sites 125-126). Apart from the sites mentioned, 553 

there is an absence of other data points for tropical Africa and so the reconstruction relies on 554 

BIOME4. Between 1°S and 6°S, the tropical forests opened up into tropical savanna with isolated 555 

patches of tropical deciduous woodland. At around 19°S this gave way to tropical xerophytic 556 

shrubland and a small Namib Desert. Along the east coast of Africa BIOME4 predicts tropical 557 

xerophytic shrubland (Fig. 6). From the palaeoecological data available for tropical Africa it is clear 558 

that the data and model compare closely. Modifications to the model-predicted biomes was mainly 559 

restricted to the savanna-xerophytic shrubland boundary which mammalian sites showed was too 560 

far south by the distance of a grid cell. 561 

In tropical India, palaeobotanical data is are confined to the south and northeast of the subcontinent 562 

and indicates the presence of a tropical evergreen broadleaved forest (Sites 179-181, 195-197, 199-563 

201). Away from these regions the vegetation is predicted by BIOME4 (Fig. 6). The biomes predicted 564 
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show a mixture of tropical evergreen, semi-evergreen and deciduous forests along the coast and 565 

tropical savanna inland. Moving east, data from Vietnam show the warm-temperate evergreen and 566 

mixed forest as far south as 18°N (Sites 185-191). This forest opened up to tropical savanna (Site 567 

M17) and tropical grassland (Site 194) along the west of the southeast Asian peninsula. On the east 568 

side, a mixture of warm-temperate evergreen and mixed forest (Sites 203-204) and tropical 569 

evergreen broadleaved forest (Site 205) existed. Below 11°N, an absence of data means the 570 

vegetation is predicted by BIOME4. From 11°N to 5°N, the model predicts an area of semi-evergreen 571 

tropical forest with isolated tropical savanna, below 5°N BIOME4 predicts the presence of tropical 572 

evergreen broadleaved forest (Fig. 6). This is supported by a pollen assemblage from Brunei (Site 573 

207). As in the temperate zone, the model predicted tropical zone of India and southeast Asia 574 

compares well to palaeoecological data requiring only minor modifications for the hybrid 575 

reconstruction. 576 

Palaeobotanical sites for the Australian tropical zone are exceedingly sparse. ODP 765 (Site 208), 577 

located immediately off the west coast, suggests the presence of a temperate schlerophyll woodland 578 

with an estimated MAP of 1050±450 mm (Martin and McMinn, 1994; MacPhail, 1997). On the east 579 

coast, there was a coastal temperate needleleaf forest (Site 210), which continued south into the 580 

temperate zone. The rest of tropical Australia is predicted by BIOME4 to be coastal tropical savanna 581 

and tropical xerophytic shrubland until the temperate zone (Fig. 6). Limited data for the tropical 582 

zone of Australia means the hybrid reconstruction relies on the model defined biomes. The available 583 

palaeobotanical data shows that, as with the temperate zone of Australia, the tropical zone is too 584 

dry in places. 585 

 586 

4. Discussion 587 

 588 
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4.1. Tortonian vegetation and climate 589 

The Tortonian palaeoecological data show agreement with the predictions of the BIOME4 model, 590 

with higher than pre-industrial SSTs and atmospheric CO2 levels at 395 ppmv. The reconstruction of 591 

Tortonian biome distribution shows significant differences compared to the present-day potential 592 

natural vegetation, in the high latitudes and temperate realms (Fig. 6B). Differences are also seen in 593 

the tropics but these involve the change in distribution of modern tropical biomes, rather than the 594 

movement of biomes into regions where they do not exist today. Of these significant vegetation 595 

shifts, the northwards shift of boreal taiga, temperate deciduous forest and temperate grasslands 596 

are the most pronounced. Potential natural (i.e. without human influence) present day biome 597 

distribution (Fig. 2) shows the boreal forests (cold evergreen needleleaf and cold deciduous forests 598 

of BIOME4) have a southern limit of ca. 45°N in east Eurasia and a northern limit of ca. 70°N in 599 

northern Russia and Canada (Kaplan, 2001). During the Tortonian, the evergreen boreal forests 600 

reached at least 77°N (Site 72) and in the reconstruction it extends to 80°N. Reconstructing the 601 

southern limit is difficult due to a lack of data from the polar region. In Alaska it is at 61°N (Site 5) 602 

and minimally at 70°N in Russia (Site 139). In the hybrid reconstruction, the BIOME4 model indicates 603 

the lowest occurrence of the boreal taiga forests is in east Eurasia at 55°N. This dramatic shift of the 604 

boreal taiga by up to 10° indicates significant high latitude warming relative to today. Accompanying 605 

this northward shift of the boreal taiga was a loss of tundra biomes (Fig. 6B). The northward shift of 606 

the boreal forests has been shown to be a vegetation–climate positive feedback; with the treeline 607 

moving north altering the surface albedo and carbon budget of the high latitudes (de Noblet et al. 608 

1996; Sturm et al. 2001). Inclusion of this Tortonian vegetation reconstruction, as a boundary 609 

condition in future modelling studies, may help to increase high northern latitude MATs and the 610 

simulation of a reduced pole to equator gradient. In this study the HadAM3-driven BIOME4 611 

vegetation model was able to predict the northward shift of forest biomes but this required a 612 

significant increase in SSTs (Table 1). These high SSTs could also be responsible for making model-613 

predicted biomes for areas of western Europe, western USA, Australia, South Africa and eastern 614 
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South America too dry, when compared to the biomes reconstructed from the palaeoecological 615 

data. Although higher SSTs will create a more active hydrological cycle, the Mioc5 AGCM experiment 616 

has a global MAP increase of only 126.7 mm/year relative to the pre-industrial scenario. From the 617 

number of regions showing model-generated biomes that are too dry compared to palaeobotanical 618 

data, the increase in global precipitation is either not enough or is occurring in the wrong regions. 619 

These discrepancies in regions that current experiments make to dry will form part of future model 620 

simulations. These future simulations will include the Tortonian vegetation reconstruction presented 621 

here as a boundary condition instead of the global shrublands used by Lunt et al. (2008). 622 

Following the cold taiga forests northwards were the temperate forests and temperate grassland 623 

biomes (Fig. 6). The extensive temperate grasslands predicted by BIOME4 are not supported by any 624 

palaeobotanical data points. The data and BIOME4 model predictions agree on the presence of a 625 

warm-temperate evergreen and mixed forest in Europe bordering the Pannonian Lake, however in 626 

western Europe BIOME4 predicts a much more fragmentary biome pattern than indicated by 627 

palaeobotany. In places, the model predicts temperate evergreen needleleaf forests and tropical 628 

xerophytic shrublands. This suggests the model interprets western Europe as too dry, and is most 629 

likely related to the increased MATs from the higher SSTs. This is because there is only a slight 630 

difference in the modelled MAP between the Late Miocene and the pre-industrial model 631 

experiments (Fig. 7). Considering the differences in climate between the Late Miocene model and 632 

those derived from palaeobotanical data for this biome; the model predicts slightly higher MATs 633 

(within the range of the fossil data) and a MAP comparable to that estimated from the data (Table 634 

2). The climatic data suggests the Tortonian MAT in Europe was at least 5-8°C warmer than the pre-635 

industrial age and received around 400 mm/year more precipitation. This warm-wet climate across 636 

Europe during the Tortonian is in agreement with studies using other proxies (Bohme et al., 2008). 637 

The palaeobotanical data and BIOME4 predictions for the western USA differ. In this region, the 638 

model predicts a mixture of temperate grassland, temperate xerophytic shrubland and temperate 639 
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needleleaf forest. The palaeobotanical data also suggests a mixture of biomes; warm-temperate 640 

evergreen and mixed forest, temperate deciduous broadleaved savanna, temperate schlerophyll 641 

woodland and shrubland and temperate deciduous broadleaved forest. The differences between 642 

BIOME4 and the data relates to the orography. It is a common problem for model-data discrepancies 643 

in mountainous regions due to both the model resolution and preservation bias of the fossil record 644 

(Salzmann et al., 2008). In the BIOME4 model, each 2.5° x 3.75° grid cell has its biome calculated 645 

based on the climate generated by the AGCM and the average altitude of the cell. In comparison, the 646 

palaeobotanical data comes from a single locality. This area locality is within an area of deposition, 647 

typically lowland areas such as valley bottoms. This means that the palaeobotanical evidence for 648 

mountain regions is often biased towards valley and low altitude habitats and not the regional 649 

vegetation. This hampers a meaningful data-model comparison within mountainous regions 650 

(Salzmann et al., 2008). 651 

In the reconstruction, there is a relatively small Sahara Desert, mainly based on the BIOME4 652 

reconstruction. The model predicts an expansion of tropical xerophytic shrubland across most of the 653 

modern Sahara and the Arabian Peninsula; desert areas were restricted to the north and northeast 654 

of the modern Sahara region (Fig. 6B). The palaeobotanical and mammalian evidence shows that 655 

along the Mediterranean coast, a mixture of temperate schlerophyll woodland and shrubland and 656 

tropical savanna existed. Tropical grasslands are reconstructed for the east coast of the Arabian 657 

Peninsula and tropical savanna was present along the modern southern margin of the Sahara desert. 658 

Evidence for desert conditions in North Africa comes from sedimentological evidence in Chad. Here 659 

wind-blown sandstones conformably underlie a mammal-bearing horizon dated as 7.4-6 Ma 660 

(Vignaud et al., 2002; Schuster et al., 2006). Across the Sahara region there are however vertebrate 661 

fossil sites that suggest more vegetated conditions. Fossil bushbabies (Galago farafraensis) from 662 

Egypt provide evidence of a habitat with trees and an estimated rainfall of 500-1200 mm/year 663 

(Pickford et al., 2006); crocodiles from Tunisia also indicate more humid conditions (Pickford, 2000; 664 

Agrasar, 2003). 665 
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In South America, southeast Asia and tropical Africa the palaeobotanical data and BIOME4 666 

predictions are consistent (Fig. 5). However in the Amazonian basin and Africa south of the equator, 667 

the absence of palaeobotanical data means the reconstruction relies entirely on BIOME4 (Fig. 5). In 668 

East Africa south of the equator the model predicts tropical xerophytic shrubland, this is the same 669 

biome predicted for this region in the Piacenzian (Salzmann et al., 2008). The difference between 670 

this Tortonian reconstruction and the Piacenzian reconstruction is the presence of palaeobotanical 671 

data in this region during the Piacenzian, allowing the reconstruction of tropical savanna rather than 672 

tropical xerophytic shrubland. The difference for the Piacenzian between the AGCM and 673 

palaeobotanical data was placed on the modelling of rainfall patterns possibly related to the Somali 674 

Jet (Salzmann et al., 2008). If this is a problem in the model then the same error may exist in the 675 

Tortonian simulations, further palaeobotanical exploration in the Horn of Africa and south along the 676 

east side may help to prove or disprove the Tortonian vegetation reconstruction. 677 

Of the available Tortonian AGCM experiments from Lunt et al. (2008), Mioc5 compared most 678 

favourably to the 240 palaeoecological data points. Statistically Mioc4 compared more favourably in 679 

the full biome scheme, but this model predicted a desert in the Amazonian Basin. Mioc5 achieved a 680 

higher Kappa score for the mega biome scheme and did not predict the desert in Amazonian Basin. 681 

Choosing the experiment with the best megabiome score increases our confidence in the statistical 682 

test applied since; having a large number of categories with a low sample in each is less robust than 683 

having fewer categories with more samples in each. A minimum of 50 samples per category should 684 

be used, and 75-100 samples for more than 12 categories (Congalton and Green, 1999; Jenness and 685 

Wynne, 2005). This is difficult for palaeontological studies where sample sizes are restricted by many 686 

factors such as deposition, taphonomy, preservation and limited exposure. This makes the mega 687 

biome Kappa scores more statistically robust than that for the full biome classification. Combining 688 

the palaeoecological data with the Mioc5-driven BIOME4 vegetation model required some model 689 

defined areas to be modified (Fig. 5). These include western USA, western temperate South America, 690 

western Europe, central Asia, South Africa and Australia. All these regions are in the temperate zone 691 
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which may indicate the SST gradient used in the experiment was unsuitable. Some of the regions are 692 

also heavily influenced by orography which, as previously discussed, confounds palaeoecological 693 

data and model comparisons. Areas that compared favourably included eastern and central USA, 694 

tropical South America, central Europe, tropical Africa and southeast Asia. These areas also include 695 

regions in the temperate zone but mainly those in the tropics, showing that the SSTs for the tropical 696 

zone were correctly defined. The limited palaeoecological data available in the polar zone provides 697 

evidence that the prescribed SSTs for this climatic zone were well-defined, perhaps even too warm 698 

around Alaska where the Mioc5 driven BIOME4 model predicts temperate to warm-temperate 699 

biomes. Palaeobotanical data for this region shows the presence of a cool mixed forest, a biome that 700 

is colder than those predicted by the model. Overall, the prescribed SST gradient for the Mioc5 GCM 701 

experiment that generated the model-defined biome distribution best matches the available 702 

palaeoecological data. However, the areas of data-model discrepancy show that further work is 703 

required to correctly simulate the Tortonian climate. 704 

 705 

4.2. A comparison of the vegetation of the Late Miocene and the Pliocene 706 

Examining trends in vegetation patterns of a warmer world, the Tortonian reconstruction presented 707 

here is compared with the vegetation of the Piacenzian (3.6-2.6 Ma), created using the same 708 

methodology (Salzmann et al., 2008). Both reconstructions show boreal forests migrating towards 709 

the poles, followed by temperate forests and grasslands. The spread of warm-temperate evergreen 710 

mixed forests in Europe and southeast Asia are evident in both reconstructions, though this biome 711 

spreads more in North America in the Late Miocene than in the Piacenzian. Both reconstructions 712 

show a reduction in the extent of the Sahara Desert, though more-so in the Late Miocene. Both 713 

reconstructions show an opening up of the tropical forest in South America when compared to 714 

present day potential vegetation. In temperate South America however the reconstructions differ, 715 

with the Late Miocene having drier conditions than those of the Piacenzian. In tropical Africa the 716 
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biome distribution is comparable with slightly more tropical evergreen broadleaved forest in the 717 

Tortonian. Below the equator, the Piacenzian reconstruction benefits from better data coverage and 718 

thus the reconstructed biomes differ. Similar biomes are predicted in both reconstructions for Asia 719 

behind the Himalayan Front. In the Piacenzian a mixture of temperate grasslands, temperate 720 

xerophytic shrubland and temperate forests existed, whilst in the Tortonian temperate savanna 721 

dominates with patches of temperate forests and temperate xerophytic shrublands. South of the 722 

Himalayan Front, both reconstructions show a mixture of warm-temperate forest, tropical forests 723 

and tropical savanna in Southeast Asia. In Australia both reconstructions show much wetter 724 

vegetation than that of the present-day potential vegetation; the main difference is where the 725 

woodland and forest biomes are distributed. In the Piacenzian forests woodland and savanna are 726 

distributed in the east of the continent, whereas in the Tortonian a large area of temperate 727 

schlerophyll woodland and shrubland is present across the south of the continent (Salzmann et al., 728 

2008). 729 

Both reconstructions, despite the difference in age, show similar patterns of biome changes relating 730 

to both being warmer worlds than present. The reconstructions show a spread of boreal forests 731 

polewards followed by temperate biomes. Both show an expansion of warm-temperate forests with 732 

subtropical taxa in the temperate realms of Eurasia and both show a reduction of deserts. Different 733 

continental configuration, orography and ice-sheet extent are most likely to account for differences 734 

between the two reconstructions. These broad patterns are also seen in future GCM simulations 735 

(Salzmann et al., 2009). 736 

 737 

4.3. Comparison to previously published Tortonian vegetation reconstructions 738 

The Tortonian reconstruction presented here, using a 27 biome classification of 240 palaeoecological 739 

sites and a state-of-the-art AGCM shows similarities and differences to previously published 740 
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Tortonian vegetation reconstructions (François et al., 2006; Micheels et al., 2007). Both of these 741 

studies used an AGCM with a resolution of 3.75°x3.75°. In François et al. (2006) a modern 742 

palaeogeography was populated with vegetation based on an unpublished palaeobotanical database 743 

and predicted vegetation from BIOME1 (Prentice et al., 1992). This 14 biome reconstruction shows 744 

the same spread of boreal forests in the high latitudes. However in North America, Iceland, and east 745 

Eurasia, the boreal forests extended southwards into regions with palaeoecological data showing the 746 

presence of other biomes (Fig. 6). In the temperate region both the reconstructions presented here, 747 

and that of François et al. (2006), indicate a spread of warm-temperate evergreen mixed forests 748 

[temperate broadleaved evergreen forest in François et al. (2006)] in Europe and the eastern USA. 749 

For the rest of North America, the Tortonian reconstructions differ, with palaeobotanical evidence 750 

suggesting temperate savanna where François et al., (2006) predicted tropical seasonal forest and 751 

temperate forests (Fig. 6). In Eurasia, both reconstructions predict a patchwork of vegetation on the 752 

Himalayan Plateau, François et al., (2006) predicted grassland, semi-desert and minor savanna 753 

leading directly into boreal forests at ca. 45°N. The reconstruction herein (Fig. 6) shows 754 

predominantly temperate savanna with minor areas of temperate xerophytic shrubland, temperate 755 

deciduous broadleaved forest and temperate evergreen needleleaf forest. This then changed to 756 

temperate grassland at 45°N before a transition to boreal forest at ca. 55°N. In South America, the 757 

reconstruction of François et al. (2006) predicted tropical rain forest extending into the temperate 758 

realm to about 40°S and a tropical seasonal forest occupying the Atacama Desert. The 759 

palaeoecological evidence presented here indicates that the temperate zone of South America was a 760 

mixture of temperate xerophytic shrubland and tropical savanna with a reduced Atacama Desert 761 

(Fig. 6). These discrepancies in South America may relate to differences in geography, because a 762 

seaway was present in much of modern Argentina (Fig. 6). Differences also occurred in tropical 763 

South America where palaeobotanical evidence suggests an opening up of the modern rainforest to 764 

create an area of tropical savanna, whereas François et al. (2006) presented an extensive area of 765 

tropical forest. In Africa, the reconstructions appear comparable except in the Sahara where BIOME4 766 
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predicts small areas of desert and in southern Africa where BIOME4 predicts a mixture of tropical 767 

savanna and tropical xerophytic shrubland. Again the reconstructions compare favourably in 768 

southeast Asia, both predicting tropical forests. On Australia the reconstructions differ again though 769 

this may be more related to different classification schemes; as temperate schlerophyll woodland 770 

and shrubland is not represented in the scheme used by François et al. (2006). Overall, some of the 771 

differences between the reconstruction of François et al. (2006) and the one presented here may be 772 

related to differences in CO2, geography and the use of a smaller number of biomes. 773 

The reconstruction of Micheels et al., (2007) is again on a modern land-sea mask, and was based on 774 

a 36 site proxy dataset (Micheels, 2003) translated into 13 biomes. Comparing the reconstruction 775 

presented here and that of Micheels et al. (2007) there are similarities in the poleward shift of 776 

boreal forests. However in Micheels et al., (2007), the boreal forest consistently changed into cool 777 

conifer forests; in the reconstruction here this is only observed in Alaska (Fig. 6). Continuing into the 778 

temperate realms, the two reconstructions differ significantly in North America. In the west, 779 

palaeobotanical data indicate warm-temperate mixed forests at a slightly higher latitude than 780 

reconstructed in Micheels et al. (2007). At the latitude of the warm mixed forest of Micheels et al. 781 

(2007), palaeobotanical data show the presence of coastal warm-temperate mixed forest but 782 

temperate xerophytic shrubland further inland (Fig. 6); these differences may be related to spatial 783 

resolution. In the central USA, palaeobotany provides evidence of temperate savanna mixed with 784 

BIOME4-predicted temperate needleleaf forests; in Micheels et al. (2007) this region is completely 785 

forested. The eastern coast of the USA compares favourably in both reconstructions. 786 

The Iberian Peninsula in this reconstruction shows a higher vegetational diversity than in Micheels et 787 

al. (2007) (Fig. 6). Moving east across Europe, both reconstructions are comparable, although the 788 

reconstruction presented here has a greater expanse of warm-temperate forest. This forest 789 

occupied significantly less area in southeast Asia; this is comparable to the reconstruction of 790 

Micheels et al. (2007). On the Himalayan Plateau and north of it, the reconstruction herein shows 791 
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more vegetational variation, this is due to using a larger biome scheme. The reconstruction of 792 

Micheels et al. (2007) also presented a polar desert on the Tibetan Plateau, which is not recognised 793 

here. 794 

The most significant difference between the Tortonian reconstruction herein (Fig. 6) and the 795 

reconstruction of Micheels et al. (2007) is in South America and Australia. In South America, the 796 

reconstruction of Micheels et al. (2007) shows latitudinal bands of tropical rain forest, tropical 797 

seasonal forest and warm mixed forest to 23.5°S, whereas palaeobotanical data shows tropical 798 

savanna separating areas of tropical forest (Fig. 6). In temperate South America, the reconstructions 799 

differ mainly in the absence of the Atacama Desert in Micheels et al. (2007), whereas 800 

sedimentological evidence shows that it was present (Alonso et al., 1991; Clarke, 2006). In Australia, 801 

Micheels et al. (2007) interpreted vegetation in longitudinal bands becoming more humid to the 802 

northeast. In the present reconstruction, the palaeobotanical data show a dominance of temperate 803 

schlerophyll woodland and shrubland along the south of the continent and the predictions of 804 

BIOME4 indicate that the vegetation became moister to the southeast (Fig. 6). 805 

In Africa, the present reconstruction and that of Micheels et al. (2007) are comparable. The 806 

vegetation distributions differ mainly in the areas predicted by BIOME4 in the reconstruction 807 

presented herein. Micheels et al. (2007) reconstructed the Tortonian Sahara as a mixture of warm 808 

grassland and savanna. In this reconstruction, BIOME4 predicts most of the Sahara Desert to be 809 

tropical xerophytic shrubland with isolated areas of desert (Fig. 6). BIOME4 also predicts a mixture of 810 

savanna and xerophytic shrubland in southern Africa (Fig.6); in the reconstruction of Micheels et al., 811 

(2007) savanna changed to warm mixed forest towards the Cape. The differences between the 812 

present reconstruction and that of Micheels et al. (2007) could be related to the use of a Tortonian 813 

land-sea mask and a larger palaeoecological data set in the study presented here. 814 

This study has refined previous Tortonian vegetation reconstructions. Previous work used limited 815 

palaeoecological data which was not cited (François et al., 2006; Micheels et al., 2007). Here we 816 
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present a 240 point palaeobotanical and vertebrate-based data set for the Tortonian in a format 817 

which is readily compatible with a state-of-the-art mechanistic vegetation model. This allows it to be 818 

easily used for data-model comparisons, and permits it to be used as a boundary condition in future 819 

modelling studies. The methodology used to generate the global vegetation reconstruction also uses 820 

a novel approach, previously only applied to the Piacenzian (Salzmann et al. 2008). The 240 point 821 

palaeoecological data set has been merged with a “best-fit” Tortonian model generated biome 822 

distribution map. This has meant that areas lacking palaeoecological data have been filled with 823 

vegetation that most closely suits the climate that fits best with regions with a large amount of 824 

palaeoecological data. This is instead of inferring biome distribution or filling gaps with modern 825 

vegetation. Hence an advanced Tortonian biome distribution map has been constructed, which will 826 

be used in future modelling studies. 827 

 828 

4.4 Tortonian vegetation, climate and CO2 levels 829 

The distribution of Tortonian biomes, reconstructed using palaeoecological data and model-830 

predicted vegetation shows evidence for a warmer world than at present (Fig. 6). This is also 831 

supported by estimates of climate from palaeobotanical data presented in Table 2. The AGCM-832 

generated temperature difference with the pre-industrial in Fig. 7A, shows that the warming of the 833 

Tortonian relative to pre-industrial was a global phenomenon. Exceptions to this are due to 834 

differences in the land-sea distribution. This global warming requires a forcing agent that can 835 

operate at all latitudes, an increase in CO2 relative to the pre-industrial would be the most likely 836 

cause. This is not the only study that has shown these changes in the vegetation during the 837 

Tortonian relate to a warmer world (François et al., 2006; Micheels et al., 2007). However estimates 838 

of CO2 levels for the Tortonian are between the Last Glacial Maximum and mid 20th Century 839 

concentrations (Kürschner et al., 1996, 2008; Berner and Kothavala, 2001; Pearson and Palmer, 840 

2004; Pagani et al., 2005; Tripati et al., 2009). This has led to the suggestion that Tortonian climate 841 
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was decoupled from CO2 (Shevenell et al., 2004; Pagani et al., 2005; Mosbrugger et al., 2005). 842 

However recent work by Tripati et al. (2009) has shown that climate is highly sensitive to ρCO2 and 843 

for the last 20 Ma major climatic changes were synchronous with changes in ρCO2. Ruddiman (2010) 844 

recently suggested that one of the possibilities for apparent low CO2 levels over the past 22 Ma, 845 

whilst climate has fluctuated considerably, could be the incorrect calculation of CO2 from proxies. 846 

Recently CO2 estimates for the Pliocene have been recalculated using the alkenone proxy, which 847 

placed atmospheric CO2 levels for 4.5 Ma at between 370-420 ppmv (Pagani et al., 2010). Previous 848 

alkenone estimates for the latest Miocene (5.37Ma) range from 247-340 ppmv (Pagani et al., 2005). 849 

Taking the upper estimates for both alkenone records requires an increase in atmospheric CO2 of 80 850 

ppmv across the Miocene-Pliocene boundary. Whilst using the lower estimates requires an increase 851 

of 123 ppmv over a period of 0.87 Ma, this is not compatible with other estimates of CO2 levels 852 

(Kürschner et al., 1996; Pearson and Palmer, 2000). Although current estimates of CO2 for the 853 

Tortonian do not match the warming relative to pre-industrial seen in the palaeoecological data, it 854 

would appear to be the most likely driving force for a global increase in MAT. 855 

 856 

5. Conclusions 857 

 858 

Our Tortonian vegetation reconstruction created using palaeoecological data and a mechanistic 859 

vegetation model forced by HadAM3 shows that this interval was warmer and wetter than present. 860 

The Tortonian vegetation distribution shows significant differences to the modern. Such as a spread 861 

of boreal forests and temperate biomes too much higher latitudes than today. The expansion of 862 

warm-temperate evergreen mixed forests in Europe, southeast Asia and parts of North America. The 863 

replacement of arid desert regions by shrubland, grasslands, savanna and woodland. An expansion 864 

of temperate savanna in Central USA, the Middle East and on and north of the Himalayan Plateau. 865 
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This comprehensive dataset for the Tortonian will be used both to assess future palaeoclimate 866 

modelling studies and as a land cover mask to initialise future Tortonian experiments. It is hoped this 867 

will be the starting point for a more detailed understanding of the Late Miocene using a combined 868 

data-model methodology. 869 

The level and nature of warming (Δ+4.5°C compared to pre-industrial) reconstructed by our 870 

palaeoecological data and modelling study requires a climatic forcing mechanism operating on a 871 

global scale (i.e. CO2). However, published Tortonian atmospheric CO2 levels from a variety of 872 

proxies range between the Last Glacial Maximum, pre-industrial and mid-20th Century levels. Before 873 

Miocene climate is assumed to be decoupled from atmospheric CO2, it is first necessary to reconcile 874 

this miss-match between terrestrial proxy and climate model evidence with available techniques 875 

used to reconstruct palaeo-atmospheric CO2. 876 
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Appendix S2 Literature used for the Tortonian biome reconstruction 1182 

 1183 

Captions 1184 

 1185 

Figure 1. Distribution of Tortonian palaeobotanical locations. The references for the 223 locations 1186 

are listed in Appendices S1 and S2. 1187 

 1188 

Figure 2. The present day potential natural vegetation simulated by the mechanistic vegetation 1189 

model BIOME4 (Kaplan, 2001). This was simulated using the boundary conditions of the 1190 

Palaeoclimate Modelling Intercomparison Project (PMIP) with present sea surface temperatures and 1191 

a CO2 concentration of 324 ppmv (Bonfils et al., 1998). 1192 

 1193 

Figure 3. Distribution of the Tortonian mammalian fossil sites. The references are listed in 1194 

Appendices S1 and S2. 1195 

 1196 

Figure 4. Flow diagram explaining the data-model comparison approach. Adapted from Salzmann et 1197 

al. (2008). 1198 

 1199 

Figure 5. A map of the Tortonian world illustrating the degree of consistency between the 1200 

HadAM3/BIOME4-predicted vegetation and the palaeoecological data. The map also shows the 1201 

degree to which the model predicted vegetation was corrected by the palaeoecological data. “Small 1202 

change” represents a relatively minor change in biome type (e.g. tropical evergreen broadleaf forest 1203 



51 
 

to tropical semi-evergreen broadleaf forest) and a “Large change” represents a significant change in 1204 

biome type (e.g. tropical xerophytic shrubland to warm-temperate evergreen broadleaf and mixed 1205 

forest). 1206 

 1207 

Figure 6. The vegetation and palaeogeography of the Tortonian. A) The combined palaeobotanical 1208 

and mammalian data sites (circles), translated into the BIOME4 scheme, overlaying the Mioc5 model 1209 

predicted biome distribution. B) The merger of data and model creating the hybrid Tortonian 1210 

vegetation reconstruction. 1211 

 1212 

Figure 7. Climate maps for the Mioc5 AGCM experiment minus the present day, shown on modern 1213 

geography. A) Mean annual temperature (°C), B) Mean annual precipitation (mm/day). Both plots 1214 

show the difference with the pre-industrial. 1215 

 1216 

Table 1. Cohen’s Kappa statistic for the data – model comparison using both the 27 biome scheme 1217 

and 7 megabiome scheme. Also shown are the sea surface temperatures along a latitudinal profile at 1218 

30°W, prescribed to the AGCM from Lunt et al. (2008). 1219 

 1220 

Table 2. Climate data derived from palaeobotanical evidence. Mean annual temperature (°C) and 1221 

mean annual precipitation (mm/year) is presented for various regions of the world subdivided by 1222 

biome type. Mean annual temperature and mean annual precipitation estimates are derived from 1223 

CLAMP (Wolfe, 1979; Spicer, 2007), NLR (Mosbrugger and Utescher, 1997) and other techniques 1224 

described in the source literature. Site numbers refer to Figure 1. References for the sites and the 1225 

climatic data from them can be found in the appendixes S1 and S2. 1226 


