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Abstract: Knowledge of dynamic forces acting on the upper limb is useful, and 

sometimes even necessary, in its treatment and rehabilitation after injuries, during 

prostheses designing, as well as in optimization of the sports training process. In this 

work an attempt to determine the quantity of the inertia forces generated in forward 

fall has been undertaken. For this purpose a simplified mechanical model of the 

human body biokinematic chain has been prepared. Geometric data and mass of each 

element have been taken from anthropometric atlas for the Polish population. 

Kinematic data necessary to perform the analysis was calculated using fundamental 

laws of Mechanics. In this way accelerations of the selected points necessary for the 

determination of inertia forces acting on the individual links of the model were 

yielded. For validation of the obtained results a numerical model was constructed 

using SimMechanic module of the Matlab Simulink software. It made possible to 

compare the results obtained in both simulation methods. To make joints model more 

realistic a values of the viscous friction were assumed. 

1. Introduction

Approximately 90% of all fractures of the distal radius, humeral neck and supracondylar region of the 

elbow are caused by the forward fall onto the outstretched hand [1]. The mechanism of joint 

interaction, the forces distribution within the joint and the contributory effects of elbow joint 

disorders must be fully understood in order to prevent and minimalize those injuries. 

Chiu and Robinovitch [2] applied a two–degrees-of–freedom (2-DOF) lumped-parameter 

mathematical model for simulations of a fall on the outstretched  hand with  full elbow extension. 

Their model analysis suggested that fall from a height greater than 0.6 m carry significant risks of 

wrist fractures. The effect of elbow flexion at the moment of impact was investigated by Chou et al 

[3]. were considered elbow loads for models between elbows full flexion and full extension during 

a forward fall. The results of valgus-varus elbow analysis showed that shear force for the elbow full 

flexion model is 68% lower than in the case of the elbow full extension. Investigations of the ground 

reaction forces during forward fall showed that the first peak force value is reduced during an elbow 

flexion movement, while the impact peak force is postponed to the second peak force. From this 

follows conclusion that the elbow flexion movement may reduce the risk of injury during a forward 

fall. An experimental model for elbow load during a simulated one-armed fall arrest for three 

different forearm axially rotated postures and the relationship between the elbow flexion angle and 

different axially rotated postures were investigated in [4]. The results indicated that a fall on the 
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outstretched hand with externally rotated forearm should be avoided in order to reduce excessive 

valgus-varus shear force on the elbow joint. 

A 2-DOF impact model of bimanual forward fall arrests, basing on in vivo data of experimental 

falls, was constructed [5]. Its validation was confirmed by response simulation with separate 

experimental data. Results of its analysis indicated that the rapid arm movement towards the ground 

alone could be a major risk factor for fall-related injuries and that prolongation of the impact time 

through decreasing relative velocity between hand and ground allows to decrease the ground reaction 

force. In the study [6] authors investigated a stress contribution in the human upper limb during 

forward fall on the outreached hands. The results indicated that less risk of the fracture is supination 

position of the forearm. 

Dynamic models of human movement help researchers identify key forces, movements, and 

movement patterns that should be measured. It was found that the muscle function depends strongly 

on both shoulder and elbow joints position. Using Lagrange’ a method an at-home resistance training 

upper limb exoskeleton was designed with a 3DOF shoulder joint and a 1DOF elbow joint to allow 

both single and multiple joints upper limb movements in different planes [7]. The contribution of 

individual muscles motion of the glenohumeral joint during abduction and the examination of the 

effect of elbow flexion on shoulder muscle function was investigated by Ackland and Pandy [8].  

The fall simulation studies have investigated the biomechanical analysis on elbow extension and 

elbow flexion models. However, there is very little information about dynamical forces acting on the 

upper limb. Thus, the present study performs an numerical investigations to evaluate the torque in 

each joint during forward fall. The numerical results may provide useful insights into potential 

reduced risk of injuries during forward fall. 

2. Methods

Computer modeling is an effective tool to accelerate and improve the design of new mechanical 

system. Matlab and Simulink module are appropriate tools for creating computer model. To 

investigate the velocities and accelerations of the mass center of gravity (CGi) of each parts of the 

proposed simplified model of the human body developed was the mathematical model by.  
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Figure 1.   Mathematical model of human body 

 

Human body was modeled as a three parts system including: torso with legs (link1 - dimension r1), 

arm (link2 - dimension r2) and forearm with hand (link3 - dimension r3). Each part is represented as a 

rigid link with length proportions and mass distribution corresponding to the Polish population. The 

dynamic equations of such a mechanical system were derived using energy method. Lagrangian L of 

this system is defined as:  

( , ) ( , ) ( )L q q T q q V q   (1) 

where T is the total kinetic energy and V is the total potential energy of the system, q  and q are the 

generalized coordinates and generalized velocities of the system, respectively. The equation of motion 

is given by: 

d L L

dt q q q

   
   

   
 (2) 

where ),( qq   is the dissipation function. 

A three links system has three degrees of freedom (3-DOF), and hence three generalized coordinates 

are needed to describe it in arbitrary configuration. The generalized coordinates are θn, where 

n=1,2,3.  
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In formulation of the dynamic equations the following designations were used: 

ri - length of ith body part, where i = 1,2,3,

CGi – locations of the center of gravity of ith link, where i = 1,2,3, 

a – distance from joint 1 to CG2, 

b - distance from joint 2 to CG2, 

c - distance from joint 3 to CG3, 

mi – mass of ith body part, where i = 1,2,3,

Ii – moment of inertia of ith link about CGi, where i = 1,2,3,

ki - friction factor of ith link, where i = 1,2,3.

The position vectors for the center of mass for parts 1, 2 and 3 with respect to the fixed coordinate 

system are as follows: 

 torso with legs

1 1 1cos sinCGr a i a j    , (3) 

 arm

2 1 1 2 2 1 2( cos cos ) ( sin sin )CGr r b i r b j       , (4) 

 forearm with hand

3 1 1 2 2 3

2 1 2 2 3

( cos cos cos )

( sin sin sin )

CGr r r c i

r r c j

  

  

   

  
. (5) 

Differentiation of the equations (3), (4), (5) gives the velocities of the CGi: 

 torso with legs

. .

1 1 1 1 1(sin ) (cos )CGr a i a j      , (6) 

 arm

. . .

2 2 1 2 2 2 1 1 2 2 2( sin sin ) ( cos cos )CGr r b i r b j            , (7) 

 forearm with hand:

. . .

3 1 32 1 2 1 2 3

. . .

1 2 31 1 2 2 3

( sin sin sin )

( cos sin sin )

CGr r r c i

r r c j

     

     

    

  

(8) 

The total kinetic energy of the whole system is given by: 

. . . .
2 2 2

1 2 31 1 2 2 3 3 1 2 3

1
( , ) ( ) )

2
T q q m v m v m v I I I        (9) 
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Where v1, v2, v3 are the absolute velocities of CG1, CG2 and CG3, respectively. They was 

found by solving the equations (4), (5), (6). After simplification we have: 

2.
2

11v a   (10) 

2 2. . . .
2 2

1 2 1 2 2 12 1 12 cos( )v r b rb          (11) 

2

2

2 2 2. . . . .
2 2 2

1 2 3 1 2 2 13 1 1 2

2. . . .

1 3 1 3 2 3 2 31

2 cos( )

2 cos( ) 2 cos( )

v r r c r r

r c r c

      

       

     

   

 (12) 

 

Substituting equations (10), (11), (12) into equation (9) we get following equation for the total 

kinetic energy of the system: 

2 2 2. . . .1 1 12 2 2 2 2 2( , ) ( ) ( ) ( )1 2 31 2 1 3 1 1 2 3 2 2 3 32 2 2

. .
( )cos( )2 1 2 31 2 3 2

. . . .
cos( ) cos( )1 3 1 3 2 3 2 33 1 3 2

T q q m a m r m r I m b m r I m c I

r m b m r

m r c m r c

  

   

       

         

   

   

 (13) 

Potential energy of the system is expressed by the following formula: 

1 1 2 2 3 3( ) CG CG CGV q m gh m gh m gh   , (14) 

where 3,2,1, ihCGi is the height of center of gravity of ith link.  The respective values are as 

follows: 

1 1sinCGh a   (15) 

2 1 1 2sin sinCGh r b    (16) 

3 1 1 2 2 3sin sin sinCGh r r c      (17) 

Substituting equations (15), (16), (17) into equation (14), we obtained the total potential energy 

of the system as: 

)sinsin)(sin)()( 332232113121  gcmgrmbmgrmrmamqV   (18) 

The Lagrangian of the system has the form: 

. .

( , ) ( , ) ( )L q q T q q V q   (19) 
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Substituting equations (13) and (18) into equation (19) we get 

2. . .1 12 2 2 2 22( , ) ( ) ( ) 21 2 1 3 3 1 2 3 2 212 2

. . .1 2 2( ) ( )cos( )2 1 2 33 3 1 2 3 232

. . . .
cos( ) cos( )1 3 1 3 2 3 2 33 1 3 2

( ) sin ( ) sin sin )
1 2 1 3 1 1 2 3 2 2 3 3

L q q m a m r m r I m b m r I

m c I r m b m r

m r c m r c

m a m r m r g m b m r g m gc

         

           

           

        

(20) 

To find the dynamic equations of the system we have to compute partial derivatives of the 

Lagrangian (20): 

. .
( )sin( ) 1 21 2 3 2 2 1

1

. .
sin( ) ( ) cos1 33 1 1 3 1 2 1 3 1 1

L
r m b m r

m r c m a m r m r g

   


    


   



    

(21) 

. .

1 21 2 3 2 2 1

2

. .

2 33 2 2 3 2 3 2 2

( )sin( )

sin( ) ( ) cos

L
r m b m r

m r c m b m r g

   


    


    



   

(22) 

. . . .

1 3 2 33 1 1 3 3 2 2 3 3 3

3

sin( ) sin( ) cos
L

m rc m r c m gc        



     


(23) 

.
2 2 2

11 2 1 3 1 1.

1

. .

2 31 2 3 2 2 1 3 1 1 2

( )

( )cos( ) cos( )

L
m a m r m r I

r m b m r m rc





     


    



    

(24) 

. .
2 2

2 22 3 2 2 1 2 3 2 2 1.

2

.

33 1 2 3

( ) ( )cos( )

cos( )

L
m b m r I r m b m r

m rc

   



  


      



 

(25) 

. . .
2

3 1 23 3 3 1 1 3 3 2 2 3.

3

( ) cos( ) cos( )
L

m c I m r c m r c      




     



(26) 

2 2 2

1 2 1 3 1 1 1 1 2 3 2 2 1 2

1

. . .

2 1 21 2 3 2 2 1 3 1 1 3 3

. .

1 33 1 1 3 3

( ) ( )cos( )

( )sin( )( ) cos( )

sin( )( )

d L
m a m r m r I r m b m r

dt

r m b m r m r

m rc

   


       

    

 
       

 

     

  

(27) 
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2

2 3 2 2 1 1 2 3 2 2 1 2

2

. . .

2 1 11 2 3 2 2 1 3 2 2 3 3

. .

2 33 2 2 3 3

( ) ( )cos( )

( )sin( )( ) cos( )

sin( )( )

d L
m b m r I r m b m r

dt

r m b m r m r

m r c

   


       

    

 
      

 

     

  

 (28) 

2

3 3 3 3 1 1 3 1

3

. . .

1 3 13 1 1 3 3 2 2 3 3

. .

2 33 2 2 3 2

( ) cos( )

sin( )( ) cos( )

sin( )( )

d L
m c I m rc

dt

m rc m r c

m r c

   


       

    

 
    

 

    

  

 (29) 

Assuming that the dissipation of the system comes from friction in the joints, we get the 

following relation: 

2 2 2 2 2

1 1 2 2 1 3 3 2

1
( ) [ ( ) ( )]

2
q k k k           (30) 

Partial differentiation of the equation (30) yields: 

1 2 1 2 2

1

( )k k k 



  


 (31) 

2 3 2 2 1 3 3

2

( )k k k k  



   


 (32) 

3 3 2

3

( )k  



 


 (33) 

Substituting equations (21)-(33) into equation (2), one gets the following dynamic equations of 

three parts human body model: 

22121113121

2

33113

212232133113

212232111

2

13

2

12

2

1

)(cos)()sin(

)sin()()cos(

)cos()()(













kkkgrmrmamcrm

rmbmrcrm

rmbmrIrmrmam







 (34) 

 

33122322232

2

3322333223

1122321

112232122

2

23

2

2

)(cos)(

)sin()cos(

)sin()(

)cos()()(

















kkkkgrmbm

crmcrm

rmbmr

rmbmrIrmbm









 (35) 

 

)(cos)sin(

)cos()sin(

)cos()(

23333

2

23223

23223

2

1

.

3113

1311333

2

3



















kgcmcrm

crmcrm

crmIcm

 (36) 
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Figure 2 presents the Simulink diagram used to solve the equations (34), (35) and (36). The 

results obtained in this way was validated using Simmechanic module of Matlab (Figure 3). 

Figure 2.   Simulink diagram used to simulate the dynamical system. 

Figure 3.   Simmechanic diagram used to simulate the dynamical system. 
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3. Results 

A sine function has been used as an input for calculation of the angular position of each link at the 

time. The sine input function is presented in Figure 4. Each joint is actuated individually with the sine 

function as an angular displacement about rotational axis zi, where i=1,2,3. Continuous line (y1) 

represents angular position of link 1 (torso with legs), dotted-dashed line (y2) denotes angular 

position of link 2 (arm), and fine dashed line (y3) shows angular position of link 3 (forearm with 

hand).  

 

Figure 4.   Angular input function. 

 

The figure above shows the simulated movement of the torso with legs, where ankle, shoulder 

and elbow joints are actuated. The functions were chosen in order to reflect the movement of the 

human body during the forward fall. The simulation time corresponds to the movement of the body 

without external forces, only under the action of the force of gravity. 
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Table 1. Model parameters of the simulated system. 

Body parts 

Torso with legs Arm Forearm with hands 

P
ar

am
et

er
s 

ri [m] 1.80 0.3 0.4 

a [m] 0.861 - - 

b [m] - 0.15 - 

c [m] - - 0.2 

mi [kg] 66 2.4 1.9 

Ii [kg m2] 21.564 0.015 0.017 

ki 0.01 0.01 0.01 
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Figure 5.   Accelerations of the links’ centers of gravity: a) torso with legs, b) shoulder, c) forearm with 

hands. 
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Figure 6.   Torques applied to the links: a) torso with legs, b) shoulder, c) forearm with hands. 

The diagrams on the figures 5 and 6 present accelerations and torques, respectively. Figures 5a 

and 6a refer to CG1 of torso with legs body part, figures 5b and 6b to CG2 of arm, figures 5c and 6c to 

CG3 of forearm. The subscripts m and s occurring in diagrams’ description denote values obtained 

using Simulink and Simmechanic programs, respectively. 

4. Conclusions

Modelling of the upper limb is important for better understanding of the relationship between 

different kinds of motion parameters and generated internal forces. The proposed model, although 

very simplified, gives some insight on the possible human dynamic behavior under the influence of 
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various forces acting on a man, during his locomotion, for example. The model discussed in this study 

was built to identify the problems arising from modelling in general and the issues concerning the 

forward dynamics simulation. In the results of the forward model, it could be seen that the initial 

conditions are of extreme importance. The aim of this research was to develop a dynamic model of 

the human upper limb and to evaluate this model by adopting an appropriate motion analysis system 

to verify hypotheses of the established motion during forward fall and to determine the torque in each 

joint of the upper limb for further verification studies. 

Comparison of the results of the motion simulation during forward fall, obtained using both Simulink 

and Simmechanic methods, showed good consistency. The little discrepancies in the results may be 

due to minor differences in the geometric model built in Simmechanic and its mathematical 

description. 
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