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Abstract: The purpose of this study is to create a new mathematical model of pennate 

striated skeletal muscle. This new model describes behaviour of isolated flat pennate 

muscle in two dimensions (2D) by taking into account that rheological properties of 

muscle fibres depend on their planar arrangement. A new mathematical model is 

implemented in two types: 1) numerical model of unipennate muscle (unipennate 

model); 2) numerical model of bipennate muscle (bipennate model). Applying similar 

boundary conditions and similar load, proposed numerical models had been tested. 

Obtained results were compared with results of numerical researches by applying a 

Hill-Zajac muscle model (this is a Hill type muscle model, in which the angle of 

pennation is taken into consideration) and a fusiform muscle model (a muscle is 

treated as a structure composed of serially linked different mechanical properties 

parts). 

1. Introduction

The human movement system consists of striated skeletal muscles that have different architectures. 

Among these muscles are fusiform muscles and pennate muscles (unipennate muscles, bipennate 

muscles and multipennate muscles) [7]. The fusiform muscle fibers run generally parallel to the 

muscle axis (it is line connecting the origin tendon and the insertion tendon).  The unipennate muscle 

fibers run parallel to each other but at the pennation angle to the muscle axis [6]. The bipennate 

muscle consists of two unipennate muscles that run in two distinct directions (i.e. different pennation 

angles). The multipennate muscle is composed of a few bundles of fibers that run in distinct 

directions.   

From the physiology point of view the unipennate muscle consists of three parts: the muscle 

insertion (‘muscle – insertion tendon’ connection), the belly (muscle fibers), and the muscle origin 

(‘muscle – origin tendon’ connection). It is assumed that during contraction the belly maintains the 

isovolume, each tendon moves only along its axis and muscle fibers become more pennated (the 

pennation angle is increased) [12]. 

The spatial arrangement of pennate muscle fibres determines the muscle fibres length, the lengths 

of tendons and mechanical properties of muscle. That is why the contractile characteristic (i.e. force-

generating capacity) depends on the pennation angle [6]. Moreover, one should take into 

consideration that a real pennate muscle is a non-homogenous structure:  the distal muscle fascicles 

595

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lodz University of Technology Repository

https://core.ac.uk/display/53097109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tend to contract more (i.e. they act at greater pennation angles) than the more proximal muscle 

fascicles. 

Applying an imaging techniques, such as nuclear magnetic resonance (MRI) and ultrasonography 

(US), with a motion analysis techniques, one might perform in vivo non-invasive measurements to 

estimate volumes of muscles, muscle fibres lengths and pennation angles [6]. However, one should 

perform invasive measurements to obtain [1]: 1) mechanical properties values (by applying tensile 

tests and sonomicrometry); 2) muscle morphology and architecture evaluated at the microscopic level 

(by using a muscle biopsy); 3) muscle static characteristic (length-force dependence); 4) muscle 

dynamic characteristic (velocity-force dependence); 5) muscle-tendon parameters used in the Hill-

type muscle model. That is why a very limited amount of data describing mechanical properties of 

pennation muscles can be found in literature.    

To model behaviour of pennate muscle one should take into consideration that spatial 

arrangement of muscle fibers influence mechanical properties and contractile properties of this 

muscle. Nowadays, to describe pennate muscle function in muscle biomechanics there are applied 

rheological models: Hill-type muscle models and Hill-Zajac muscle models [4,12]. However, 

application of these models is very limited due to problems related to the obtainment of model 

parameters.   

The purpose of this study is to create a new mathematical model of pennate striated skeletal 

muscle that describes behaviour of isolated flat pennate muscle in two dimensions (2D) by taking into 

account that rheological properties of muscle fibres depend on their planar arrangement. A new 

mathematical model is implemented in two types: 1) numerical model of unipennate muscle 

(unipennate model); 2) numerical model of bipennate muscle (bipennate model).  

2. Pennate muscle modelling

2.1 Principles of modelling

The mathematical models of unipennate muscle and bipennate muscle were created on the base of a 

deformation schema of unipennate muscle shown in the Figure 1. According to this deformation 

schema, the muscle contraction occurs in the plane (two-dimension space) along muscle fibers 

directed at the pennation angle p towards the line connecting the muscle insertion (it is a movable 

part with one degree of freedom) and the muscle origin (it is a non-movable part). It is assumed that 

during muscle contraction the muscle width tt is constant (according to [5]) and muscle fibers 

generate a contractile muscle force  Fm, which causes the displacement of muscle insertion x and 

counterbalances an external force Fext: 

pmext cosFF  .                                                                                                                          (1) 
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During contraction the muscle fibers are shortening and the muscle insertion is translated from the 

point B to the point B’ (the distance BB’ is equal to x). It causes the change of pennation angle: the 

initial value of pennation angle po (at the length of muscle equals AB), is changed to the value p (at 

the length of muscle equals AB’). Analyzing the deformation schema of unipennate muscle, the 

following relation can be derived: 

ppo cos'ABcosABtt   .                                                                                                     (2) 

 
A) 

 
B) 

Figure 1. Deformation schema of unipennate muscle:  

A) directions of acting of external force Fext  and  contractile muscle force Fm towards the 

muscle insertion displacement x; B) schema of deformation of unipennate muscle (AB – the 

initial length of muscle (before contraction); AB’ – the finish length of muscle (after 

contraction); Fmo – initial contractile muscle force at the length of muscle equals AB; Fm – finish 

contractile muscle  force at the length of muscle equals AB’; po – the pennation angle before 

contraction (at the length of muscle equals AB); p – the pennation angle after contraction (at 

the length of muscle equals  AB’); xm –  change of muscle length that is equal to the difference 

of the length AB  and the length AB’). 

 

 Taking into consideration a deformation schema of unipennate muscle, five rheological models 

were created:  

1) Unipennate muscle model WW (the author is Wiktoria Wojnicz) (part 2.2);   

2) Unipennate muscle model BZ (the author is Batłomiej Zagrodny) (part 2.3);  

3) Hill-Zajac unipennate muscle model (part 2.4);  

4) The bipennate muscle model WW (the author is Wiktoria Wojnicz) (part 2.5);  

5) The bipennate muscle model BZ (the author is Batłomiej Zagrodny) (part 2.6). 

 Assuming that the time variable is t, proposed models can be applied to solve the dynamics task 

formulated in three following problems: 

1) Input variables are the insertion displacement  x(t)  and the external force Fext(t); output variables 

are the internal force  tPw  (this force is generated by the contractile elements of muscle model 

and it causes an appearing of contractile muscle force Fm(t)), the pennation angle p(t) and 

deformations of muscle model parts (for chosen muscle models); 
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2) Input variables are the insertion displacement  x(t) and the internal force  tPw ; output variables

are the external force Fext(t), the pennation angle p(t) and deformations of muscle model parts

(for chosen muscle models);

3) Input variables are the external force Fext(t) and the internal force  tPw ;  output variables are the

insertion displacement x(t), the pennation angle p(t) and deformations of muscle model parts (for

chosen muscle models).

2.2.    Unipennate muscle model WW 

The unipennate muscle model WW describes behaviour of unipennate muscle with the pennation 

angle equals p (Figure 2). This muscle behaviour is described by the rheological model created on 

the base of the rheological model of fusiform muscle published in [10,11]. The rheological model of 

unipennate muscle model WW is composed of serially linked three fragments (two passive (non-

contractile) fragments and one active (contractile) fragment) that describe different mechanical 

properties of muscle parts. Each fragment is composed of mass element, elastic element and viscous 

element. Active fragment has additionally a contractile element that models an ability of muscle to 

contract. Two lateral fragments model the passive muscle parts (muscle-tendon connections of the 

muscle insertion and the muscle origin). One middle fragment models the active muscle part (i.e. 

muscle belly).  This model has three degrees of freedom. According to this model: 1) the difference of 

displacements (x0 – x1) describes the change of upper passive muscle fragment; 2) the difference of 

displacements (x1 – x2) describes the change of middle active muscle fragment; 3) the displacement x2 

describes the change of lower passive muscle fragment. 

Figure 2. Unipennate muscle model WW (rheological model). 

The mathematical model of the unipennate muscle model WW is described by the system of 

three differential equations: 
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and following geometrical relations: 
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where: mj  – mass of the j-th element; Kj  – stiffness coefficient of the  j-th elastic element; Lj – 

damping coefficient of the j-th viscous element;  tPw
1 – internal force of the contractile element; l0 – 

initial length of muscle model; po – initial pennation angle when the length of muscle model is 

equals to  l0. 

 

2.3.   Unipennate muscle model BZ    

The unipennate muscle model BZ describes behaviour of unipennate muscle with the pennation angle 

equals p (Figure 3). This model is similar to the unipennate muscle model WW (part 2.2). The 

unipennate muscle model BZ takes into consideration that stiffness and dumping characteristics of 

skeletal muscle is described by a nonlinear relationship according to [2,9]: 

1) 
2

jjj xkK  , j = w, z, 1,2, where kj is a correction factor of stiffness; 

2) 
2

jjj xcC  , j = w, z, 1, 2, where cj is a correction factor of damping. 

 Applying the geometrical relations (4A – 4D), the mathematical model of unipennate muscle 

model BZ is described by the system of two following equations:  
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where: pw cosxx 1 ; xw – displacement of mass mw;  xz – displacement of mass mz.   
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Figure 3. Unipennate muscle model BZ. 

2.4.      Hill-Zajac unipennate muscle model 

The Hill-Zajac unipennate muscle model describes behaviour of unnipennate muscle by using the 

Hill-type muscle model and Zajac muscle model (this is a Hill type muscle model, in which the angle 

of pennation p is taken into consideration). There are a lot of modifications of these models [4,12]. 

In this paper it was assumed that Hill-Zajac unipennate muscle model has a rheological structure 

shown in the Figure 4. In this model the muscle length is the sum of belly length Lm/cos(p)  and 

tendon length Lt. Mechanical properties of muscle are described by using a mass element M (this is a 

muscle mass reduced to a point) and parallel linking of three elements: a contractile element that 

generates a force FCE (it depends on the actual muscle length l, velocity of muscle fibers contraction 

and activation Act that originate from a nervous system), a parallel elastic element described by a 

stiffness coefficient equals KPE and a viscous element described by a damping coefficient equals L. 

Tendon behaviour is modelled by using an elastic element and its force depends on the tendon 

stiffness coefficient Kt and the tendon elongation described by a difference of displacements (xt – x).  

Figure 4. Hill-Zajac unipennate muscle model (rheological model). 
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The mathematical model of Hill-Zajaca unipennate muscle model is described by the system of 

two equations: 

 
  pmtt

ttext

cosFxxKxM

xxKF







0
,                                                                                                 (6) 

where the contractile muscle force is equals to: 

00 xLxKFF PECEm  .                                                                                                       (7) 

It was assumed that force of contractile element CEF  depends on the muscle activation Act, the 

muscle length l and difference between the active component of static muscle characteristic act
mF  and 

the passive component of static muscle characteristic pas
mF :  

    lFlFActF pas
m

act
mCE  .                                                                                                    (8) 

To implement the Hill-Zajac unipennate muscle model there were used: 1) a static muscle 

characteristic (length-force relationship) proposed in [5]; 2) a static tendon characteristic (elongation-

force relationship) proposed in [12]; 3) a dynamic muscle characteristic (velocity-force relationship) 

published in [12]; 4) data described musculotendon properties (the maximum isometric muscle force, 

the optimal muscle fiber length, the tendon slack length) according with [5]. 

 

2.5.    Bipennate muscle model WW 

The bipennate muscle model WW described behaviour of bipennate muscle composed of two parts 

directed at the pennation angle p1 (left part with a constant muscle width tt1)  and the pennation angle 

p2 (right part with a constant muscle width tt2) towards the muscle insertion (it is movable part) and 

muscle origins (there are non-movable parts) (Figure 5). Each muscle part behaviour is modelled as a 

rheological model of the unipennate muscle WW described in the part 2.2 (i.e. each muscle part is 

composed of two passive fragments and one active fragment). The bipennate muscle model WW has 

six degrees of freedom. According to this model: 1) difference of displacements (x01 – x11) describes 

the length change of upper passive fragment of muscle left part; 2) difference of displacements               

(x11 – x21) describes the length change of middle active fragment of muscle left part; 3) displacement 

x21 describes the length change of lower passive fragment of muscle left part; 4) difference of 

displacements (x02 – x12) describes the length change of upper passive fragment of muscle right part; 

5) difference of displacements (x12 – x22) describes the length change of middle active fragment of 

muscle right part; 6) displacement x22 describes the length change of lower passive fragment of 

muscle right part. 
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Figure 5. Bipennate muscle model WW (rheological model). 

The mathematical model of bipennate muscle model WW is described by the system of five 

differential equations: 
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and following geometrical relations: 
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where: mji  – mass of the j-th element of i-th muscle part; m  – mass of the element m01 and the 

element m02; Kji  – stiffness coefficient of the  j-th elastic element of i-th muscle part; Lji – damping 

coefficient of the j-th viscous element of i-th muscle part;  tPw
1 – internal force of the contractile 

element of left muscle part;  tPw
2 – internal force of the contractile element of right muscle part; l01 – 

initial length of left part of muscle model; l02 – initial length of right part of muscle model; po1 – 

initial pennation angle when the length of left part of muscle model is equal to l01; po2 – initial 

pennation angle when the length of right part of muscle model is equal to l02. 

 

2.6.    Bipennate muscle model BZ 

The bipennate muscle model BZ described behaviour of bipennate muscle directed at the pennation 

angle  (left part) and the pennation angle  (right part) towards the muscle insertion (it is movable 

part) and muscle origins (there are non-movable parts) (Figure 6).  

 

 

Figure 6. Bipennate muscle model BZ. 

603



The bipennate muscle model BZ is similar to the bipennate muscle model WW (part 2.5) but it takes 

into consideration that stiffness and dumping characteristics of skeletal muscle are nonlinear (part. 

2.3). Applying the geometrical relationships (10A – 10D), the mathematical model of bipennate 

muscle model BZ is described by the system of four following equations: 
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where:  cosxcosxx  31 2 .

3. Numerical simulation results

Numerical models of unipennate muscle and bipennate muscle were created on the base of proposed 

mathematical models. To perform numerical researches there were used data describing a lateral head 

of triceps brachii published in [5]. Applying similar boundary conditions and similar load, proposed 

numerical models had been tested. Numerical model of unipennate muscle model WW (described in 

part 2.2) was applied to solve three problems of the dynamics task described in part 2.1. Chosen 

results obtained from numerical solving of the third problem are shown at the Figure 7. 

A) B) 

Figure 7. Numerical simulation results of the unipennate muscle model WW: A) displacement of 

muscle points; B) stiffness of muscle.  

Numerical model of Hill-Zajac unipennate muscle model (described in part 2.4) was applied to 

solve a dynamics task formulated in the following problem: input variables are the insertion 

displacement  x(t), the pennation angle p(t) and the external force Fext(t); output variables are the 

force of contractile element CEF  and muscle activation Act. Chosen results obtained from numerical 

solving of this problem are shown at the Figure 8. 
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Figure 8. Numerical simulation results of the Hill-Zajac unipennate muscle model: contractile muscle 

force Fm and force of contractile element FCE. 

 

Numerical model of bipennate muscle model WW (described in part 2.5) was applied to solve 

the third problem of the dynamics task (described in part 2.1). Chosen results obtained from 

numerical solving of the third problem are shown in the Figure 9. 

 
A) 

 
B) 

Figure 9. Numerical simulation results of the bipennate muscle model WW: A) displacement of left 

muscle part points; B) stiffness of muscle left and right part. 

 

Numerical model of unipennate muscle model BZ (described in part 2.3) and bipennate muscle 

model BZ (described in part 2.6) were applied to solve the third problem of the dynamics task 

(described in part 2.1). Chosen results obtained from numerical solving of the third problem are 

shown in the Figure 10. 

 
A) 

 
B) 

Figure 10. Numerical simulation results of: A) the unipennate muscle model BZ (displacement of 

the tendon xz and muscle fiber xw; B) the bipennate muscle model BZ (displacement of the tendon xz 

and muscle fibers x2 = x3 in the case of  = ). 
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To compare the influence of planar arrangement of muscle fibers  the numerical model of 

fusiform muscle model published in [11] was applied to solve the third problem of the dynamics task 

(chosen results are shown in the Figure 11).  

A) B) 

Figure 11. Numerical simulation results of the fusiform muscle model: A) displacement of muscle 

points; B) stiffness of muscle.  

4. Method of verification

To prove models proposed in this paper a method of verification was elaborated. According to this 

method, a first step consists in applying a non-invasive image analysis and a second step consists in 

performing experiments by using the prototype of pennate muscle. An image analysis (US or MRI) 

allows us to perform static image analysis (for a single image) and dynamical image analysis (for a 

multiple images or a single movie). It is worth noticing that an image analysis requires that an image 

has high resolution to precisely distinguish muscle fibers [3,8]. Single image of muscle section allows 

to measure a pennation angle αp, a muscle diameter and a muscle length (Figure 12).  

Figure 12. Muscle geometrical parameters in visual analysis: pennation angle αp, 

muscle diameter d and muscle length l. 

The prototype of pennate muscle is composed of four artificial pneumatic muscles (Figure 13). 

Each artificial muscle is a linear McKibben actuator. This prototype allows us to form four initial 

pennation angles: 9o, 14o, 18o and 24o. Chosen experiments results and numerical simulation results 

are shown in the Figure 14. Analysing these results, we may conclude that greater pennation angle 

causes the drop of force measured along a long axis of the muscle (each pneumatic actuator produces 

the same maximal force, which is independent of the pennation angle).  
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Figure 13.  A prototype of pennate 

muscle (a prototype is composed of                                             

four artificial pneumatic muscles) 

 
Figure 14. Normalized force as a function of 

pennation angle. 

 

 

 

 

5.     Conclusions  

The aim of this study was to create mathematical models of unipennate striated skeletal muscle and 

bipennate striated skeletal muscle. New models were created in the form of rheological models by 

taking into consideration that muscle contraction occurs in two-dimension space and the arrangement 

of muscle fibers influence mechanical properties and contractile properties of this muscle. Moreover, 

at this stage of modelling we assumed that slow and fast muscle tissues have identical mechanical 

properties.  

 Analysing results of numerical simulations we concluded that:  

1) efficiency of fusiform muscle (it is a quotient the external force to the contractile muscle force) is 

more than the efficiency of unipennate muscle (because a unipennate muscle works in a plane and 

a part of its contractile force is devoted to spatial arrangement of muscle fibers);  

2) the efficiency of bipennate muscle is more that the efficiency of unipennate muscle;  

3) to model a behaviour of pennate muscle one should precisely describe the geometrical relations 

occurring between pennate muscle fibers (i.e. geometrical constrains) and the force-length 

relations depended on the time variable (i.e. dynamics equations of motion).   
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