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Abstract: The work concerns modelling and numerical simulations of a special kind of 

physical pendulum frictionally driven. The pendulum’s joint is suspended elastically in 

the plane of the motion resulting in the full plane motion of the pendulum and in tree 

degrees of freedom of the analysed mechanical system. The pendulum is driven by 

frictional contact with a disk with a constant angular velocity. Examples of self-excited 

oscillations and bifurcation dynamics of the pendulum are presented. Majority of the 

work focuses on efficient approximate modelling of the resultant friction force and 

moment occurring on the contact surface. 

1. Introduction

There are plenty of examples of mechanical systems, where friction plays a crucial role in their 

dynamical properties and behavior. Friction can be a desirable phenomenon or not, but in both cases its 

appropriate and efficient mathematical modelling is an important part of analysis and synthesis of 

mechanical systems with frictional contacts. The classically understood friction model is a relation 

between single component of friction force and one-dimensional relative displacement of the contacting 

bodies. This relation can possess different levels of complexity, beginning with the classical Coulomb 

friction law and ending with advanced relations, where often additional state variables are defined. 

These kinds of models can be applied directly during mathematical description and analysis of 

dynamical systems with frictional contacts, where at each element of the contact the same relative 

motion of the contacting surfaces occurs. But in real life one can encounter many examples of 

mechanical systems, where the above assumption cannot lead to correct results. One can give such 

examples like dynamics of rolling bearings, billiard balls, different kinds of tops, the wobblestone, 

polishing machine, disk clutches and many others. Exact and correct results can be always obtained by 

detailed physical modelling and space discretization in vicinity of the contact. But this approach leads 

to computation cost increase and is not appropriate in fast numerical simulations. This is the reason of 

the interest of many researchers in looking for simple approximate models of contact forces, which 

would be suitable for fast and realistic simulations of the certain classes of mechanical systems with 

frictional contacts. 
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Contensou [1] noticed that if the product of the normal component of the relative angular velocity 

of the contacting bodies and size of the contact is sufficiently large then one should take into account 

the coupling between the friction force and moment. He proposed an integral model of the resultant 

friction forces under assumption of fully developed sliding and Coulomb friction law valid on each 

element of the circular contact. The results of Contensou were then significantly developed by 

Zhuravlev [2], who presented exact analytical solution to the Contensou’s integral model and also 

proposed the corresponding approximant models based on the Padé expansions. Further developments 

and generalizations of the approximant models of the contact forces, including rolling resistance, 

assuming elliptical contact area, are proposed in the work [3]. Special regularizations of these models 

can be found in [4, 5], which allow to avoid singularities for vanishing relative motion as well as take 

into account the different values of the static and kinetic friction coefficients.  

Stamm and Fidlin [6] proposed a regularized two-dimensional model of friction forces appearing 

on finite plane area based on elasto-visco-plastic theory, but requiring discretization of the contact area. 

They applied their model in modelling and analysis of a disk-on-a-disk system being to certain extent 

a counterpart of a disk clutch, where alternating sliding and sticking solutions can occur [7]. In the work 

[8] there are presented results of analytical studies of the similar system, where the approximations 

based on Taylor’s expansion of the friction force and moment for fully developed sliding are used.  

In the present work the authors apply their earlier developed models of the resultant friction force 

and moment in modelling and numerical simulations of the mechanical system being a certain 

modification of the disk-on-a-disk system analyzed in the works [7, 8]. 

2. Modelling of friction forces 

Let us consider a circular contact area of dimensionless form exhibited in figure 1, where one assumed: 

i) the fully developed sliding; ii) Classical Coulomb friction law valid on each element of the contact; 

iii) constant friction coefficient; iv) that the relative motion of the contacting surfaces is a plane motion 

of rigid bodies. There are also assumed the following relations between real and non-dimensional 

quantities describing the contact: ��� = �����,  �� � = ����	��, 
	��, �� = ��� �	�⁄ �
��, ��, �	� = �	�� and  �� � = ��, where ��� and �� � are the real resultant friction force and moment loading the contact and 

reduced to the center A of the contact F, �� and �� – the corresponding non-dimensional resultant 

friction force and moment, � – friction coefficient, �� – real normal loading of the contact, �	 – 

characteristic dimension of the contact (in this case real radius of the contact F), 
	 and 
 – real and 

dimensionless contact pressure, �	� and �� – relative real and dimensionless relative linear velocity at 

the point A, �� � = �� – relative angular velocity in the plane of the contact. Note that time in all the 

introduced quantities is real. 
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Figure 1.   The contact area. 

Assuming that �� = −����� − �����, �� = −����, �� = ����� + ����� and �� = !���, where �"  is the unit vector along the axis #, one can find the following integral expressions: 

��� = ∬ %��, ��	���� − !��� '�'�	() , 	
��� = ∬ %��, ��	���� +!��� '�'�	() , (1) 

�� = ∬ %��, ��	�!���� + ��� + ���� − ����� '�'�	() , 	
where 

 %��, �� = 	
��, �� *���� − !���� + ���� +!����+,-/�. 

Since the model (1) requires integration over the contact area at each time step, it is not suitable 

tool for fast and reliable numerical simulations. Based on the results presented in the previous works of 

the authors [3] and assuming the constant dimensionless contact pressure distribution on circular 

contact area 
��, �� = 1/0, one can derive the following two sets of approximations of the integral 

model (1) 

����12,2� = 345
6�3457 83497 �:78;:|=4|:> ?: , 

	����12,2� = 349
6�3457 83497 �:78;:|=4|:> ?: ,  (2) 

���12,2� = 7@	;	=4
6�3457 83497 �:78;:|=4|:> ?: . 

and 

363



����1?,?� = �3457 83497 8;=47�345
6�3457 83497 �@:7 8;:|=4|@:> ?:

 , 

	����1?,?� = �3457 83497 8;=47�349
6�3457 83497 �@:7 8;:|=4|@:> ?:

 ,  (3) 

���1?,?� = 7@	;	=4@8?A		=4�3457 83497 �
6�3457 83497 �@:7 8;:|=4|@:> ?:

 . 

The approximations (2-3), after the replacements ��� = ��cosE� and ��� = ��sinE�, fulfil the 

following properties of the integral model (1) 

HIJ�KL?,L7�H34I M34NO = HIJH34IM34NO ,     P = 1,… , %- ,      

HRJ�KL?,L7�H=4R S=4NO = HRJH=4RS=4NO ,     T = 1,… , %� , (4) 

where	U = ���, ���, ��, while m and b are arbitrary constants. Note that the above approximations 

possess the same denominators, which is not necessary in general (see [3]), but allows for application 

of the later presented special form of regularization.  

In order to make easier the comparison of the functions (1-3), one introduces the spherical 

coordinates 

��� = V� cos W� cosE� ,			��� = V� cos W� sinE�,			!� = V� sin W�.	 (5) 

The parameters m and b are optimized by searching for the best fitting of the corresponding functions 

on the representative (in the case of circularly symmetric contact pressure distribution) field W� ∈[0, π/2] and E� = 0. For the functions (2) one found _ =1.744 and ` =0.674, while for the 

approximations (3) one obtained	_ =0.765 and ` =0.452. The corresponding plots are exhibited in 

figure 2. In the further modelling process the approximations (3) will be used. 

In the works [4, 5] a special kind of regularization of the models of the type (2-3) was proposed, 

allowing to avoid singularity for vanishing relative motion of the contacting surfaces, but also to model 

the situation where the static friction coefficient is greater than the kinetic one. Applying that approach 

to the components (3) one gets 
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a)       b)  

c)       d)  

Figure 2.   Comparison of the approximate components ����12,2� (a), ���12,2� (b), ����1?,?� (c), ���1?,?� (d) of 

the friction model (grey lines) with the corresponding full integral components ��� and �� 
(black lines), for E� = 0. 

���a�1?,?� = ����� + ���� + _!������V�;a  , 
	���a�1?,?� = ����� + ���� + _!������V�;a  ,  (6) 

��a�1?,?� = b�c 	_	!�c + -d 		!������ + ���� �e V�;a  , 
where 

 V�;a = -
f6�3457 83497 �@:7 8;:|=4|@:> 7:8ag

+h′�h� aj
k6�3457 83497 �@:7 8;:|=4|@:> 7:8agl

7, 

and where m is a small numerical parameter. The coefficient hn is a function of the parameter h equal 

to the maximum magnitude of the resultant dimensionless friction force (or h = �O/�, where �O is the 
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static friction coefficient). This function can be approximated as h′�h� ≈ −13.607 + 30.893h −22.01h� + 5.878	hc for h ∈ [1, 1.3] and h′�h� ≈ −2.41 + 3.985h − 0.3581h� + 0.0493	hc for h ∈[1.3, 2.7], with the error  |Δh| < 0.001 (see [5]). Figure 3 exhibits exemplary plots of the model (6) 

near zero relative motion, for W� = 0 4⁄ , E� = 0, h = 2 and m = 10,c. 

a)      b)  

Figure 3.   Approximations ���a�1?,?� (a), ��a�1?,?� (b) near zero relative motion - for W� = 0 4⁄  , E� = 0, h′�2� = 4.479 and m = 10,c. 

3. Mathematical model of the pendulum 

In figure 4 there is presented a physical conception of the special mechanical system, being a certain 

modification of the disk-on-a-disk system analyzed in the works [7, 8]. A physical pendulum of mass 

M and moment of inertia B with respect to the mass center C is rotationally connected, by the use of 

the joint A, a light platform. The platform is mounted on the support by the use of elasto-damping 

elements in such a way, that it cannot rotate. The origin O of the introduced coordinate system OXY is 

defined as a position of the point A of the pendulum in its equilibrium position in the case of no friction 

forces acting on the mechanical system. The pendulum is equipped with a flat disk of radius R centered 

in the point A. This disk is in contact with a larger rotating rigid body performing pure rotational motion 

with constant angular velocity !O  about the center S. It assumed a constant contact pressure distribution 

and Coulomb friction law on each element of the circular contact between the bodies. 

The governing equations of the presented mechanical system read 

��yz{ − |Ez sinE − |E} � cosE� + ~�y{ + ��y}{ + ������a�1?,?� = 0 , 

���z{ + |Ez cosE − |E} � sin E� + ~��{ + ���}{ + ������a�1?,?� = 0 , 

�Ez + | *�� + ~�y{ + ��y}{ + ������a�1?,?�+ sin E +  (7) 

-| *~��{ + ���}{ + ������a�1?,?�+ cosE + ��E} + ������a�1?,?� = 0 , 
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where y{ and �{ are the coordinates of the point A; E – angular position of the pendulum; | = �� – 

position of the mass center C; ~� and ~� – stiffness coefficients of the elements supporting the rotational 

joint A; �� and �� – the corresponding damping coefficients; ��	– the coefficient of damping in the 

rotational joint A; � -  kinetic friction coefficient; �� – normal loading of the contact; y� and �� – the 

coordinates of the point S; � – gravitational acceleration. As a model of the resultant friction force and 

moment the relations (6) are applied. 

 

Figure 4.   The physical concept of the mechanical system. 

The kinematic arguments of the functions (6) read 

!� = E} − !O , 

��� = �}�8=2���,����  , (8) 

��� = �}�,=2���,����  . 

4. Numerical simulations 

In all the presented in this section numerical simulations the following parameters are fixed: � =9.81	m/s�, _ = 0.452,	` = 0.765 and	m = 10,c. 
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Figure 5.   Bifurcation diagram with angular frequency !O as a control parameter. 

 

a)  

b)  

Figure 6.   Examples of the system’s behavior corresponding to the bifurcation diagram presented in 

figure 5, for 	!O = 30	rad/s	�a�, 	!O = 40	rad/s (b). 
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In figure 5 there is presented a bifurcation diagram of the system exhibited in figure 4 with the 

angular velocity !O playing a role of a bifurcational parameter. The remaining system parameters read:  � = 1.2	kg, � = 0.01	kg ∙ m�, | = 0.1	m, ~� = ~� = 1000	N/m, 	�� = �� = 0.1N ∙ s/m, 	�� =0.1	N ∙∙ m ∙ s, 	y� = 0	m, 	�� = 0	m,	� = 0.02	m, �� = 25	N, � = 1 and h = 1 (the static friction 

coefficient is equal to the kinetic one). For low angular velocities one observe a stable equilibrium 

position – see figure 6(a), where for 	!O = 30	rad/s		the corresponding time history of the angle E is 

presented. For the greater values of 	!O a stable periodic attractor appears - see figure 6(b). Further 

increase of 	!O leads to rich bifurcational and irregular dynamics, with full rotations of the pendulum – 

see figure 7. 

a)          b)  

c)              d)  

Figure 7.   Trajectory of the system (a-b) and Poincaré section (c-d) corresponding to the bifurcation 

diagram presented in figure 5 for	!O = 61.5	rad/s. 
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a)           b)  

c)              d)  

 

e)            f)  

Figure 8.   Examples of stick-slip oscillations for 	�� = −0.1	m (a, b), 	�� = 0	m (c, d), 	�� = 0.1	m (e, 

f) 
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In figure 8 there are presented examples of periodic stick-slip oscillations of the investigated 

mechanical system, where the following parameters are assumed: � = 1.2	kg, � = 0.01	kg ∙ m�, | =0.1	m, ~� = ~� = 100	N/m, 	�� = �� = 0.1N ∙ s/m, 	�� = 0.1	N ∙∙ m ∙ s, 	y� = 0	m, 	!O = 0.6	rad/s,	� = 0.1	m, � = 6	N, � = 1 and  h = 2.5. The position of the joint S along the axis X is different for 

each of the presented solutions: 	�� = −0.1	m (a, b), 	�� = 0	m (c, d), 	�� = 0.1	m (e, f). 

5. Conclusions 

In the work there have been presented examples of models of the resultant friction force and moment 

based on the previous works of the authors. They are simple functions, which can be an effective 

substitute for the exact integral model, suitable for fast and realistic computer simulations of a certain 

class of mechanical systems with frictional contacts. 

These models in their primary form concern the case of a fully developed sliding on the contact 

area and possess singularity for the case of lack of the relative motion. The applied regularization 

occurred to be an effective method to avoid that problem and take into account different values of static 

and kinetic friction coefficients. The drawbacks are the stiff differential equations and the change of 

physical properties of the system near the stick mode. 

In order to test the developed models of friction forces, a mathematical model of a special 

mechanical system is built, which is some modification of the disk-on-a-disk system analyzed in the 

works [7, 8], being a strongly simplified disk clutch. It is expected that the proposed model can exhibit 

much richer bifurcational dynamics, allowing for testing different aspects of friction models. In should 

be noted that the presented work is in progress and only preliminary results are reported. It is also 

considered the construction of the corresponding experimental rig in the future. 
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