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Abstract: The aim of the work is to present effectiveness of numerical simulations of 

clutch with frictional contacts, elaborated by some of the current articles in the last 

few years. The friction models assumes full developed sliding and the classical 

Coulomb friction law on each element of the contact with general shape and any 

pressure distribution. Then special modification of the integral model of friction force 

and moment are proposed. The approximants based on Padé approximants and their 

generalizations. In the work the clutch dynamics with contacts forces model is 

presented. The system was simplified to friction disk on rotating master disk. Two 

different configurations are investigated: coaxial and non-coaxial arrangement of the 

two disks. For the appropriate rotations speed, the system of non-coaxial arrangement 

can exhibit the ability to self-centering. The models based on generalizations of Padé 

approximants are compared with the simulation results obtained by the use of 

approximants based on Taylor’s expansion and models with exact integral expressions 

for friction force and torque components. 

1. Introduction

There are some ways of examination of systems with resultant contact forces. They identify 

difficulties with correct numerical simulation. Usual integral models are complex. Such situation 

requires a new method i.e. discretization or approximations. 

In 1962, Contensou indicated in his paper [1] the integral model of the resultant friction force. It 

assumes fully developed sliding and the classical Coulomb friction law on each element of the contact 

area. In this integral model, circular area and Hertzian contact pressure distribution were applied. 

Some other authors presented special approximations of expressions for friction force and moment 

based on Padé approximants [2]. For the purpose of numerical simulations, these models were more 

convenient and suitable. In the paper [3], the types of generalizations of these approximants were 

presented. The models were extended with elliptical contact area. Such generalization increased their 

ability to match experimental data or the integral models. The models were applied in simulation of 

the Celtic stone [4]. Other example of applications is given in the work [5], where authors attempted 

to shape the trajectory of billiard ball. 

In 2009, Fidlin and Stamm investigated radial dynamics of systems [6], commonly encountered 

in the clutch and many other applications. Two systems were the objects of their study: pin-on-the-
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disk and disk-on-the-disk. To simplify the expressions of friction force and moment, Taylor’s 

expansion was applied. The model was used to study the stability of equilibriums.  

Authors of the present work compared three models of resultant contact forces: exact integral 

expressions for friction force and torque components, approximations based on generalizations of 

Padé approximants and Taylor’s expansions. Then, the system with friction disk on rotating master 

disk was analyzed and simulated.  

2. Modeling of contact forces 

Let us focused on to the contact pressure distribution. In the Cartesian coordinate system Axyz, 

we consider dimensionless ring contact area F (figure 1). Axes x and y lie in the contact plane. The 

dimensionless length is obtained by dividing actual length by â , which is radius of real contact.  

 

Figure 1.   The ring contact area  

The non-dimensional thickness of the contact ring is elementary small 0d   and its real 

value can be presented as follows: 

ˆ ˆ .d ad    (1) 

The real contact pressure distribution is assumed to be constant and reads [3,4]: 
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In equations (2) there are used the following notations: N̂  - normal component of real resultant 

force loading the contact,
 
ˆ( , )x y  - real contact pressure, F̂ - real contact area. Non-dimensional 

contact pressure distribution is defined as: 
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We assumed a fully developed sliding. The relative motion of the two bodies is considered as a 

plane motion of rigid bodies. It is characterised by the non-dimensional angular and linear velocity, 

respectively: ˆs s s z ω ω e  and ˆ â v vs s sx x sy y  v v e e , where ˆ sv  is the real linear sliding 

velocity in the center A, ˆ sω  is the real angular sliding velocity, and xe , ye , ze  are the unit vectors 

of the corresponding axes. Each element dF is under action of elementary friction force 

 , /d x y dF P P T v v  and moment ˆ ˆˆ( ),d d d a N  M ρ T M  where Pv  stands for 

dimensionless, local velocity of sliding and  is dry friction coefficient. Total values of contact forces 

are equal to: T Ts sx x sy y  T e e  and Ms s z M e , where: 
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It is an integral expression with additional, small parameter t  to avoid singularity. It is related to 

the lack of the relative motion. The real quantities are equal to: ˆ N̂s sT T
 
and ˆ ˆâ Ns sM M . In 

order to apply (4) in the simulation, the change of coordinate system from Cartesian coordinate 

system Axyz to pole coordinate system was essential. It is presented in Figure 2. The following 
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relation was implemented: cosx   , siny    and dF dxdy d d    , leading to the 

following form of integrals: 
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Figure 2.   The ring contact area  

For a fact this expression (3) has a complex integral form where the simulation and the numerical 

solutions are time consuming. It is inconvenient, and can be avoided by implementing approximate 

form of resultant contact forces. Based on special modifications of Padé approximants [3] we get: 
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where 
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The integral (6) are equal to the corresponding integral ones for 0t   and 
2 2

0v v vs sx sy    

or 0s  . Optimization process, with the approximate model being adjusted to the integral 

components or real experimental data, is based on finding appropriate, constant parameters bT, mT, bM 

and mM. For the ringed contact area and the contact pressure distribution (2), the integrals occurring in 

equations (6) read: 

( , ) ( , ) ( , ) ( , )
0,

0,1,1 1,0,1 0,1,0 1,0,0
x y x y x y x y

c c c c   
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x y
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  (8) 

3. Determination of the parameters of the model of the resultant contact forces 

The proposed approximation based on modification of Padè approximants was adjusted to the 

corresponding integral components and Taylor’s expansion from the work [6]. The following change 

variables was introduced in order to reduce the number of variables and simplify the optimization 

process: 

cos ,vs s s 
 

sin ,s s s  
 

cos ,v vsx s s
 

sin ,v vsy s s   (9) 

where 

 

2 2 .vs s s  
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Relations (9) were applied to expressions (4), (6) and Taylor’s expansion, and the optimal 

parameters of bT, mT, bM, mM were found, fitting the corresponding functions on the representative  

integral -π/2 < s  < π/2. 

 

Figure 3.   Friction force sT  in direction x  

 

Figure 4.   Friction force sT  in direction y 
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Figure 5.   Moment Ms  

 

Figure 6.   Comparison of friction force sxT   

 

Figure 7.   Comparison of friction force syT  
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Figure 8.   Comparison of moment Ms  

 

Figures 3, 4 and 5 present resultant contact forces with parameters bT=mT=bM=mM=2 (Ia) and 

optimal parameters (Ib) to fit to Taylor’s expansion (a):  bT=1.47,  mT=3.6, bM=0.68, mM=3.86 and 

integral model (b): bT=1.66, mT=7.57, bM=0.61, mM=7.59. The simulation was performed for s = 1 

rad. Figures 6, 7 and 8 present comparison of all resultant contact forces with (Ib) fitted to the integral 

model . 

4. Simulation of disk-on-the-disk system 

Presented clutch was simplified to disk-on-the-disk system, which can be seen in figure 6. This is a 

friction disk laying on the rotating master disk. The two bodies were coupling on the ring area. 

 

Figure 9.   Disk-on-the-disk system from paper [6] 
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The following notation was used:
 
ˆ
sT – the resultant friction force acting at the contact center A; N̂  

- the normal reaction acting on the disk; ˆ sω  – angular sliding velocity;  ˆ
sM – moment of friction 

forces; v̂s - linear sliding velocity at the point A; R= â   – radius of contact ring; m – mass of the 

friction disk; J – moment of inertia of friction disk; ω  - angular velocity of master disk; Ω – constant 

angular velocity of infinity mass connected to the friction disk by element with damping coefficient b; 

β, c – damping coefficient and stiffness of elasto-damping elements supporting friction disk in 

directions x and y; x0 – position of spring relaxation in the direction x. 

The analyzed system has three degree of freedom and the governing equations reads:  

2 ˆ
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The relations between the corresponding kinematic variables occurring in (10) and models (4) and 

(6) are as follows:  
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Then one can use the integral model (4), taking to account the following relations between real and 

non-dimensional quantities: T̂ T ,Nsx sx
 

T̂ T ,Nsy sy
 

and M̂ Ms.R Ns   The integral 
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components Tsx, Tsy and Ms can be replaced by the corresponding approximants Tsx
(I), Tsy

(I) and Ms
(I) 

(6), or Taylor’s expansions proposed in the work [6]: 
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To simulate the system, the following parameters and initial conditions were used: t = 20 s; R = 1 

m; μN = 0.225 N; J = 1 kg/m3; m = 1 kg; Ω = 1.25 rad/s; β = 0.5 s*N/m; c = 1 N/m; b = 0.015 s*N/m; 

εt = 0.1; x0 = 0.1 m; (0)x  = (0)y  = (0)z  
= (0)x  = (0)y  = (0)z  

= 0. Figure 7 a-b presents three 

diagrams with simulations performed with the use of integral components of resultant contact forces 

and their two approximations: 7 a – approximant (I) fitted to Taylor’s expansions (T) with the 

parameter ω  = 2.5 rad/s, 7 b – approximant (I) fitted to integral model with the parameter ω = 0.8 

rad/s. Figure 7 c-f shows trajectory of friction disk with approximants Tsx
(Ib), Tsy

(Ib), Ms
(Ib) and (0)x  = 

0.0001 m. Figure 7 c-d presents coaxial arrangement of disk (x0 = 0 m) for ω = 0.8 rad/s (see figure 7 

c) and ω = 2.5 rad/s,  (see figure 7 d). Figure 7 e-f presents non-coaxial arrangement of disk 

(x0=0.1m) for ω= 0.8 rad/s (see figure 7 e) and ω = 2.5 rad/s,  (see figure 7 f). The simulation time 

was 700 seconds. 
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Figure 10.   Simulation of disk-on-the-disk system.  
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5. Conclusions 

The work present flexibility of the proposed model of resultant contact forces based on modifications 

of Padè approximant. It can be used to simulate disk-on-the-disk system and to study the stability of 

equilibriums. Such form of the model is more convenient and less time consuming. It gives the 

possibility of longer simulation. The paper presents simulations of disk-on-the-disk system. Its 

dynamics maps the clutch behavior in some aspects. It confirms typical behavior of self-centering of 

the system for low rotation speeds.  
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