
From academic project to production
software based on Java web-tier CMS

application

J. WOJCIECHOWSKI
COMPUTER CENTER - LODZ UNIVERSITY OF TECHNOLOGY, POLAND

Abstract. Main target of this article is to show what is important in tierd
applications from point of view of production ready software on example of
custom techniques functional solutions like multi hierarchy, multi-domain
operability in app and performance gain practices applied in web-tier CMS
application of Lodz University of Technology (TUL) at www.p.lodz.pl working in
years 2007-2015 at the beginning as academic project.

Keywords. web system, web-tier application, functional solutions, performance
practices, J2EE, Java , Lodz University of Technology (TUL)

Introduction

The Content Management System (CMS) described in this article is a content
management system based on Java and HTML technology, and is tailor designed for
requirements of Lodz University of Technology (TUL) dealing with heavy load as a
production software, content creation, editorial workflow and publishing for TUL. First
version of the system was designed in 2005-2006 at doctoral studies and later on the
author had to treat it as legacy Struts application and continue improvement to obtain
measurable performance effects not using state-of-the-art Java adds on.

Web CMS system consists of frontend and backend. The front is what we see and
the backend is hidden within its architecture and logic to obtain functional and
performance purposes. This article shows a little behind the curtain of authors original
CMS project which emerged within 2005-2013. This CMS is multi-tierd application
based on web tier of Java Enterprise Edition (JEE) platform with Model View
Controller (MVC) framework, Java Server Pages (JSP), Java Standard Tag Library
(JSTL), ExpressionLanguage (EL), Struts 1.2, Object Relational Mapping (ORM)
Hibernate and MySql.

As far as the design rationale is concerned author has choosen this solution
because in 2005 it was hardly to find open source mature CMS solution which would
fulfil requirement of all Steakholdes. Author concentrates on functional solutions of
multi hierarchy, multi-domain operability in app, etc. and examples of performance
gain practices applied in web-tier CMS application of TUL changing the academic
project into production web aplication.

Some technical solutions cases are shown as examples to explain ways on how the
web app was improved from academic project to production software, scaled based on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lodz University of Technology Repository

https://core.ac.uk/display/53097043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J.Wojciechowski / From academic project to production software based on Java web-tier CMS application

own experiences on the research [1][2][3][4][5][6][7][8][9][10][11][12][13] and
engineering projects, and making at the same time practice, science and algorithms.

This web system was custom designed for demands of administation of Lodz
University of Technology and was refactored to service the emerging increasing
quantity of incoming http traffic year by year becoming production software. In year
2006 the CMS introduced decentralization of responsibility for the information which
was put to the web by administrative departments of Lodz University of Technology.
Each administrative department started operating its web content. There were multi
hierarchy, multi-domain operability, multi lang versions features of the system
implemented in one application context.

In 2010 quantity of visitors increased significantly and improvement of
performance was demanded. In on – peak traffic periods the http sessions were from 1k
to 10k per day. Rewriting code for decend performance and ability for scalability took
consistently till 2013. The refresh of front end was done simultaneously (front end was
delivered by other vendor) and in may 2013 the new production and scalability ready
web app was deployed at www.p.lodz.pl. The system is ready for operation of 1 to 2k
http session at the same time with one server. Nowadays the monthly traffic for
p.lodz.pl domain in peak season is 300k http sessions per month what gives circa 1M
clics on the web per month.

1. Functional solutions

Functional solutions like multi hierarchy, multi-domain operability in app was
implemented because of the requirements of organization. For the first stage the
development of CMS project, the aspect of functionality was first priority. Thus the
author concentrated on functionality required to operate the administration of Lodz
Univeristy of Technology. The so important aspect of performance was an add-on code
refactor later on in time.

1.1. To be smarter than infrastructure - multi-domain operability in app

Web-programming model for enterprises called the Java 2 Enterprise Edition (J2EE)
extened with architectural framework allowed to build multitierd, here 3-tierd e-
business applications.

Fig. 2. MVC design pattern

Figure 1. Struts MVC flow of control schema.

Thin

client

JSP view

DBMS

Client tier Application Database

ActionForm

Bean
 …

…

struts-config.xml
Reads action
mappings

URL

Action

Class

Action
Servlet

controller

One instance per one web-
application

https://www.researchgate.net/publication/266743269_WEB-BASED_DISTRIBUTED_PHYSICS-BASED_SIMULATION_SYSTEM_OF_SEMICONDUCTOR_DIODE_STRUCTURE?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==

J. Wojciechowski / From academic project to production software based on Java web-tier CMS application 3

Author used one of the MVC frameworks called Struts to operate http request [18].
HTTP requests from thin client are view events, fig. 1, a logic operates the HTTP

request and responses through ActionClass and a controller , here ActionServlet directs
control to proper views (JSP pages). Detailed analisys of J2EE architecture and code
generation from model are described in authors doctoral dissertation [18].

Struts 1.x which is used in mentioned CMS do not support multi-domain
operability that might operate many domains in one web context. Usually one instance
per one web-application.

Author implemented own logic for multi-domain operability in one web context by
adding additional flag “main_context” based on url decomposition in ActionServlet
container of Struts framework. The code listed below shows the idea.

if(request.getAttribute("main_context")==null){

 //--------------- next domain

 String domena=request.getServerName();
…

if((domena.endsWith("www.studyinlodz.edu.pl") ||

 domena.endsWith("studyinlodz.edu.pl"))){
 …//data context

 Menu m=impl.getDefaultLeafForDomainName(domena);

 if(m!=null){
 int numer=m.getId_kat();

 url="/studyinlodz,menu"+numer+",_index.htm";

 }else{
try{

request.getRequestDispatcher("/"+"domena_not_operable.htm"

).forward(request,response);
 return;

 }catch(Exception ex){ log.debug(ex.toString());}}

 …
 try { super.process(request, response);} catch …

}}}

Code list 1. Code example of multi-domain operation in one web context block in controller

If server name contains domain checked then the data are being fetched to

show in the context of this domain. This might be implemented as Struts extension
since most Web-tier application frameworks lack this design pattern.

1.2. Multi hierarchy and multi language support

Figure 2. ERD schema of self referencing menu table

idKat1

idKat

Menu

1..n

0..1

4 J.Wojciechowski / From academic project to production software based on Java web-tier CMS application

This solution is very flexible and usefull for multi hierarchy support for menu
items. The data is encoded with UTF-8 standard thus allowing for multilanguage
content for all domain context to be presented in one web context. Thus presenting
polish, english version, and Chinese, and russian, and Ukrainian.

The relational schema implies risk on how we collect the hierarchical data.
One mistake in the algorithm and it may casue the jam problem. Then only helps the
memory dump of the thread with “kill -3 javapid”, detailed analysis of the dump, debug
and fixation of code.

1.3. Decentralization of operation of CMS by administrative staff of TUL

The Access Control Lists (ACL) for the CMS allowed for decentralization of operation
of CMS. Using a combination of ACLs, permissions, and roles, CMS provides methods
for setting and restricting the access available to CMS users.

That means that each organizational unit is able to operate its content by
themselves. This feature was deployed in 2007 at the Lodz University of Technology.
The rest functionality are the following:

 • Browser-based interface
 • WYSIWYG editing tool
 • Role-based workflow
 • Permissions model

1.4. Friendly urls

The system has been based on url generation with keywords coming from title of the
article put to the CMS by the editor. The url schema was modelled on the basis of the
“Google secrets…” [20]. The link structure is plain and wide.

Thanks to the Search Eengine Optimization (SEO) up till now the web page is
easily found on top 10 position in Google. For example it keeps top Search Engine
Results Page (SERP) position for keyword “Politechniki”. There are circa 30k content
urls.

2. Performance solutions

When quantity of visitors of web in 2010 increases the improvement of performance
was demanded. Many software designers and developers take the functionality as the
most important issue in a product while thinking of performance and scalability as add-
on features. Most of them believe that expensive hardware can fix the performance
issue. The same was with the authors CMS thus the web application must have evolved
from academic project and become production application.

To scale vertically (or scale up) means to add additional CPUs or memory to a
single computer [14]. To scale horizontally (or scale out) means to add more nodes to a
system, such as adding a new computer to a distributed software application. The
author concentrates on architectural approach which touches mostly the aspect of
performance and at last the vertical scalablity.

J. Wojciechowski / From academic project to production software based on Java web-tier CMS application 5

2.1. Avoid the database - make cache

In order to improve performance of web-application we have to take into account many
aspects of web-application i.e. server side consists of many aspects in the topic of
performance. By analyzing the results obtained during this phase it is possible find
bottlenecks, memory leaks or performance problems related to database layer.

In this case the re-architecture and re-code the whole solution is demanded but it
cost money and time since obtaining performance is a time consuming work and error
prone.

The architecture of the system assumed in the academic project in 2006 (static
data) that all files are put to the database (because of the ease of db migration) and
when http requests comes they are taken again and again out of the database through all
3-tir layers of the web app. This caused big bottleneck when the http traffic increased.
The re-architecture and re-coding the whole solution was done in a way that the
uploaded files were not only saved to database but also into directory of web server (as
static data) as well. This solution concerning static data improved significantly
performance.

In the web apps where every request processing action needs much data to process
the memory-caching comes into play. The method applied by the author in the CMS is
based on caching objects in AppContext and readdressing them to HttpRequest for
every request in the session for the presentation layer of guest user-agent - code list 3
ilustrates that. Avoiding the database to reduce the database reads is sometimes not
possible because of the dynamics of the system and e.g. some-point-critical e.g.
financial data but in the author’s CMS caching and reloading the cache is appropriate
solution for servicing data.

In the CMS the http data is cached where there are more frequent reads operation
than updates. The cached object is PrePrezenter.

Of course there are algorithms for invalidating and remaking the cache whenever
the update from the backend system is done. This solution improved the performance
significantly. Caching objects in memory when the system is initialized to avoid
creating and fetching from persistent tier too many objects when running improves
performance.

 PrePrezenter pp1=null;

…
pp1=(PrePrezenter)context.getAttribute("preprezenter_spec_pl");

 if(pp1!=null&&pp1.getList().size()>0&&breloadnewsstronaglowna==false){

 Helper.setToRequest(request,pp1,"preprezenter_spec");
 }else{

 pp1=Helper.getDocumentsMainPage("stronaglownamain",…params);

 Helper.setToRequest(request,pp1,"preprezenter_spec");
 context.setAttribute("preprezenter_spec_pl", pp1);

 context.removeAttribute("reloadnewsstronaglowna")

//--
}

Code list 3. In app cache making schema

2.2. Switch from Hibernate to JDBC on front end requests

At the beginning of working on CMS the front end as well as back office were
designed with a Hibernate - an object-relational mapping framework for

6 J.Wojciechowski / From academic project to production software based on Java web-tier CMS application

the Java language. This framework mapped from Java classes to database tables (and
from Java data types to SQL data types) excellent but there was a little performance
overhead. Author decided to rewrite the code for front-end http actions to jdbc instead
of hibernate leaving the previous framework for a backend.

JDBC (Java DataBase Connectivity) access a database in much quicker time.
Of course there is source code overhead instead when writing JDBC logics.

2.2.1. Not leak resources

Close any jdbc instances that weren't explicitly closed during normal code path, not
'leaking' resources. The code listing 4 shows the details of explicit releasing resurces in
whatever path of execution of the code.

 public List getRodzajeMenu(String lang) throws DAOSysException {

 Connection c = null;

 Statement stmt=null;
 ResultSet rs = null,rs2 = null;

 List ret = new ArrayList();

 javax.sql.DataSource ds;
 String f="select identyfikator_menu from dmenu m where

m.id_jezyka='"+lang+"'

group by m.identyfikator_menu order by m.kolejnosc";
 try {

 ds = DBAFactory.getDs();

 c = ds.getConnection();
 stmt = c.createStatement();

 rs=stmt.executeQuery(f);//

 while(rs.next()){
 ret.add(rs.getString("identyfikator_menu"));

 }

 if(rs!=null)rs.close();
 if(rs2!=null)rs2.close();

stmt.close();

c.close();
 } catch (SQLException se) {

 log.error("Error List "+se.toString());

 throw new DAOSysException("SQLException: " + se.getMessage());
 }finally { if (stmt != null) { try {

 stmt.close();

 } catch (SQLException sqlex) {}
 stmt = null;}

 if (c != null) {

 try {
 c.close();

 } catch (SQLException sqlex) {}

 c = null;
 }}

 return ret;

 }
Code list 4. JDBC closing connection

2.3. Coordination beetwen threads – “synchronized” keyword

“The primary tool for managing coordination between threads in Java programs is the

synchronized keyword. The synchronized keyword will force the scheduler to serialize

operations on the synchronized block. If many threads compete for the contended

J. Wojciechowski / From academic project to production software based on Java web-tier CMS application 7

synchronizations, and only one thread is executing a synchronized block, then any

other threads waiting to enter that block are stalled. If no other threads are available

for execution, then processors may sit idle. In such situations, more CPUs can help

little on performance. The JVM has to maintain a queue of threads waiting for that

block (and this queue must be synchronized across processors), which means more

time spent in the JVM or OS code and less time spent in your program code” [14][15].
To avoid the hot lock problem, the author made synchronized blocks as short as
possible – code listing 5 - moving the thread safe code outside of the synchronized
block.

package config;
…

public class SessionCounter implements HttpSessionListener {

…
 if(se.getSession().isNew()==true){

synchronized(this){

 activeSessions++;
}

…

Code list 5. Synchronized block

Paying attention to lock granularity is recommended. When we put the
"synchronized" keyword on a method, we are locking on "this" object implicitly
making lesser granularity. The entire object is locked when calling its method thus we
decrease performance and ability to scale. The same is the lock on static methods
which means lock on all instances of this class [15]. Programmer may choose the
attitude from vast choice of wait-free methods like compare and swap CAS or from
java.util.concurrent.atomic package.

2.4. Non-Blocking IO in Tomcat 6

Upgrade of server Tomcat 5 to Tomcat 6 which has embraced non-blocking IO was key
factor of better performance of the web application of Lodz University of Technology.

In non-blocking IO, a working thread will not binding to a dedicated request [15].
If one request is blocking due to any reasons, this thread will reuse by other requests, In
such way, Glassfish can handle thousands of concurrent users by only tens of working
threads.

2.5. Adding more Memory to the Server

Memory is an important resource for your applications. Enough memory is critical to
performance especially for database systems. More memory means larger shared
memory space and larger data buffers, to enable applications read more data from the
memory instead of disks.

“Too little memory will cause garbage collection to happened too frequently.

Enough memory will keep the JVM processing your business logic most of time, instead

of collecting garbage. Java garbage collection relieves programmers from the burden

of freeing allocated memory, in doing so making programmers more productive. The

disadvantage of a garbage-collected heap is that it will halt almost all working threads

when garbage is collecting. In addition, programmers in a garbage-collected

environment have less control over the scheduling of CPU time devoted to freeing

8 J.Wojciechowski / From academic project to production software based on Java web-tier CMS application

objects that are no longer needed.If one adds Java applications are NOT scalable by

given too much memory. In most cases, 3GB memory assigned to Java heap (through "-

Xmx" option) is enough. “ Cited [14].
This scenario gives the conlucion that Java applications must be well prepared for

the scalability, from the system design phase to the implementation phase of the
products' life cycle. The scalability is really based on ones programmer vision.

Conclusion

In a Web environment concurrent use is measured as simply the number of users
making requests at the same time. When the application has decent response time then
this aspect is called good performance. Performance refers to the capability of a
system to provide a certain response time. It is also software quality metric.

It became crucial for the author of CMS when number of visitors of web page of
Lodz University of Technology inceased in 2010.

As we see in this paper the system become production application from academic,
focusing in the later stage on the performance increasing teachnique rather then
functional. The author realies that the systems are NOT scalabable out-of-the-box and
in nearly all cases this is architectural problems.

The system reached decend response time ~1s for 0-2000 http request at the same
time. The statistics shows nearly 300.000 http sessions per month in a peak period.

Author suggest premature optimization shoud be done with performance
optimization during designing and implantation phase.

Lifecycle APM (Lifecycle Performance Management) and Continuous
Performance Management [19], suggest to get all information to know about the
scalabilty and performance characteristcs of your application any time. This serves as a
basis for deciding when and where to optimize.

“Concluding we can say that if we want our systems to be scalable we have to take

this into consideration right from the beginning of development and also monitor

throuhout the lifecycle. If we have to ensure it, we have to monitor it. This means that

performance management must then treated equally relevant than the management of

functional requirements”. [16]

References

[1] Wojciechowski J., Napieralski A., „Zastosowanie Platformy J2EE w Projekcie Serwisu Internetowego
DWZ P.Ł.” XI Konferencja „ Sieci i Systemy Informatyczne, Łódź, październik 2003, pp. 131-135,
ISBN 83-88742-91-4

[2] Wojciechowski J., Napieralski A. „System wspomagający wykładowcę i studenta przez WWW ”
MIKROELEKTRONIKA I INFORMATYKA, maj 2004, KTMiI P.Ł. pp. 235-238, ISBN 83-919289-
5-0

[3] Wojciechowski J., Sakowicz B., Dura K., Napieralski A.,” MVC model struts framework and file upload
issues in web applications based on J2EE platform” TCSET’2004, 24-28 Feb. 2004, Lviv, Ukraine, pp.,
342-345 , ISBN 966-553-380-0

[4] SZYMAŃSKI G., Wojciechowski J.A., CIOTA Z. “Design of Web-Based Tutor-Supporting System on
The Basis of JAVA Platform” 11th International Conference MIXDES 2004, Szczecin , Poland 24-26
June, pp. 607-610, ISBN 83-919289-7-7

[5] Wojciechowski J.A., OWCZAREK M., Napieralski A. “Java Web Services Aplication in University Web
System” 11th International Conference MIXDES 2004, Szczecin , Poland 24-26 June, pp. 611-614,
ISBN 83-919289-7-7

https://www.researchgate.net/publication/41649684_System_wspomagajacy_wykladowce_i_studenta_przez_www?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649684_System_wspomagajacy_wykladowce_i_studenta_przez_www?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649684_System_wspomagajacy_wykladowce_i_studenta_przez_www?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/4109214_MVC_model_struts_framework_and_file_upload_issues_in_web_applications_based_on_J2EE_platform?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/4109214_MVC_model_struts_framework_and_file_upload_issues_in_web_applications_based_on_J2EE_platform?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/4109214_MVC_model_struts_framework_and_file_upload_issues_in_web_applications_based_on_J2EE_platform?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649666_Java_Web_Services_application_in_university_web_system?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649666_Java_Web_Services_application_in_university_web_system?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649666_Java_Web_Services_application_in_university_web_system?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==

J. Wojciechowski / From academic project to production software based on Java web-tier CMS application 9

[6] Wojciechowski J., Kozłowski M., Napieralski A. “Security Aspects of Web Applications Implemented
within J2EE Platform” 11th International Conference MIXDES 2004, Szczecin , Poland 24-26 June, pp.
619-622, ISBN 83-919289-7-7

[7] Wojciechowski J.,Napieralski A., „System jednolitej autoryzacji w środowisku heterogenicznym
opartym o www z zastosowaniem architektury klucza publicznego PKI oraz bazy danych LDAP”
International Workshop for Candidates for a Doctor’s Degree, 16-19 October, Wisła, pp. 461-464,
ISBN 83-915991-8-3

[8] Wojciechowski J., Murlewski J., Napieralski A.: POZYCJONOWANIE STRON INTERNETOWYCH
W SERWISACH WYSZUKIWAWCZYCH NA PRZYKŁADZIE GOOGLE, KmiTI Mikorzyn 23-
25.09.2005, Mikroelektronika i Informatyka, Prace Naukowe, Łódź 2005, str. 89-94, ISBN 83-922632-
0-0

[9] Wojciechowski J., Murlewski J., Sakowicz B., Napieralski A., "Object-relational mapping application in
web-based tutor-supporting system", CADSM, Lviv-Polyana, Ukraine, Feb. 23-26, 2005,pp. 307-310,
ISBN 966-553-431-9

[10] Owczarek D., Wojciechowski J., Murlewski J., Sakowicz B.,Napieralski A: „Electronic Document
Management System”,13th International Conference Mixed Design of Integrated Circuits and Systems
MIXDES 2006, 22-24 czerwca 2006, Gdynia,wyd. KMiTI, str. 791-792, ISBN 83-922632-9-1, str. 808,
A4

[11] Wojciechowski „New methodology in designing reactive systems with formal methods based on
authorization for hierarchical, component based system with time dependencies”, International PhD
Workshop for Candidates for a Doctor's Degree OWD 2006, 21-24 X 2006, Wisła, Polska

[12] Wojciechowski J. „Mapping of Petri net formal model of concurrent system to class model with aspect
of polymorphism in object oriented paradigm”, Zeszyty Naukowe Katedry Mikroelektroniki i Technik
Informatycznych : Mikroelektronika i Informatyka, zeszyt nr 7, Łódź 2007, ISBN 83-9222632-5-1,
ss.167-170

[13] Zięba B., Wojciechowski J., Jabłoński G., Zabierowski W., Napieralski A., :Web-Based Distributed
Physic-Based Simulation System of Semiconductor Diode Structure” 10th International Conference
Mixed Design of Integrated Circuits and Systems MIXDES 2003, 26-28 June 2003, Łódź, Poland , pp.
690-693, ISBN 83-7283-095-9

[14] Scaling Your Java EE Applications, By Wang Yu, 01 Jul 2008, TheServerSide.com
http://www.theserverside.com/news/1363681/Scaling-Your-Java-EE-Applications

[15] The Top 10 Ways to Botch Enterprise Java Application Scalability and Reliability, Cameron Purdy on
Jul 23, 2008 http://www.infoq.com/presentations/10-ways-botch-scalability-reliability

[16] Performance vs. Scalability September 11, 2008, Alois Reitbauer
http://apmblog.dynatrace.com/2008/09/11/performance-vs-scalability/

[17] Wojciechowski J., “From formal methods to implementation based on Petri Nets model of concurrent
systems”, Pomiary, Automatyka, Kontrola, Vol. 53, No. 5/2007, Maj 2007,pp.132-134, ISSN 0032-
4140

[18] Wojciechowski J. ”Translation method of Coloured Petri Nets models towards Java Web application
schema based on multi-tier distributed authorization system” Praca doktorska, 2009, Biblioteka
Politechniki Łódzkiej

[19] Compuware APM application lifecycle performance management
http://www.compuware.com/en_us/application-performance-management/products/lifecycle-
performance-management.html

[20] “Google secrets How to get a top 10 Ranking on the most important search engine in the world” Blue
Moose Webworks inc. 2003 ISBN 0-9728588-0-6

https://www.researchgate.net/publication/41649680_Security_aspects_of_Web_Applications_implemented_within_J2EE_platform?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649680_Security_aspects_of_Web_Applications_implemented_within_J2EE_platform?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649680_Security_aspects_of_Web_Applications_implemented_within_J2EE_platform?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649712_System_jednolitej_autoryzacji_w_srodowisku_heterogenicznym_opartym_o_www_z_zastosowaniem_architektury_klucza_publicznego_PKI_oraz_bazy_danych_LDAP?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649712_System_jednolitej_autoryzacji_w_srodowisku_heterogenicznym_opartym_o_www_z_zastosowaniem_architektury_klucza_publicznego_PKI_oraz_bazy_danych_LDAP?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649712_System_jednolitej_autoryzacji_w_srodowisku_heterogenicznym_opartym_o_www_z_zastosowaniem_architektury_klucza_publicznego_PKI_oraz_bazy_danych_LDAP?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/41649712_System_jednolitej_autoryzacji_w_srodowisku_heterogenicznym_opartym_o_www_z_zastosowaniem_architektury_klucza_publicznego_PKI_oraz_bazy_danych_LDAP?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/277931313_Mapping_of_Petri_net_formal_model_of_concurrent_system_to_class_model_with_aspect_of_polymorphism_in_object_oriented_paradigm?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/277931313_Mapping_of_Petri_net_formal_model_of_concurrent_system_to_class_model_with_aspect_of_polymorphism_in_object_oriented_paradigm?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/277931313_Mapping_of_Petri_net_formal_model_of_concurrent_system_to_class_model_with_aspect_of_polymorphism_in_object_oriented_paradigm?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/277931313_Mapping_of_Petri_net_formal_model_of_concurrent_system_to_class_model_with_aspect_of_polymorphism_in_object_oriented_paradigm?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/266743269_WEB-BASED_DISTRIBUTED_PHYSICS-BASED_SIMULATION_SYSTEM_OF_SEMICONDUCTOR_DIODE_STRUCTURE?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/266743269_WEB-BASED_DISTRIBUTED_PHYSICS-BASED_SIMULATION_SYSTEM_OF_SEMICONDUCTOR_DIODE_STRUCTURE?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/266743269_WEB-BASED_DISTRIBUTED_PHYSICS-BASED_SIMULATION_SYSTEM_OF_SEMICONDUCTOR_DIODE_STRUCTURE?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/266743269_WEB-BASED_DISTRIBUTED_PHYSICS-BASED_SIMULATION_SYSTEM_OF_SEMICONDUCTOR_DIODE_STRUCTURE?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/277931141_From_formal_methods_to_implementation_based_on_Petri_Nets_model_of_concurrent_systems?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/277931141_From_formal_methods_to_implementation_based_on_Petri_Nets_model_of_concurrent_systems?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==
https://www.researchgate.net/publication/277931141_From_formal_methods_to_implementation_based_on_Petri_Nets_model_of_concurrent_systems?el=1_x_8&enrichId=rgreq-ffde5154-ea67-4c22-bf8a-9a5f342d23df&enrichSource=Y292ZXJQYWdlOzI4MjY0MzY5ODtBUzoyOTIwNzQ0NzA1NTk3NDRAMTQ0NjY0NzM4ODIxMg==

