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Abstract: One of the most effective ways of synthesizing carbon nanotubes is the arc 

discharge method. This paper describes a system supported by a magnetic field which can 

be generated by an external coil. An electric arc between two electrodes is stabilized by the 

magnetic field following mass flux stabilization from the anode to the cathode. In this work 

four constructions are compared. Different configurations of cathode and coils are calculated 

and presented. Exemplary results are discussed. The paper describes attempts of magnetic 

field optimization for different configurations of electrodes. 
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1. Introduction 

Nowadays carbon nanotubes (CNTs) are one of the most important materials in almost every industry. 

Discovered in 1991, CNTs quickly became attractive for many companies. Their unique electrical, 

mechanical, optical, thermal and chemical properties make them useful for many engineering 

applications. One of the oldest methods for carbon nanotube production is an electric arc discharge. In 

this method two graphite electrodes are used–one the anode as a source of carbon for carbon nanotubes 

formation and the other as the cathode where carbon deposits are formed. The high temperature of the 

electric arc discharge between graphite electrodes leads to evaporation of carbon material from the anode 
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and subsequent deposition on the relative cold cathode surface. This deposit contains carbon nanotubes. 

In order to improve the efficiency of the system an external magnetic field can be applied [1,2]. The 

magnetic field is used to produce stable arc in the cathode region. It allows one to create an intense and 

uniform vapor which is generated in the anode spot. Due to the magnetic field generated by an external 

coil or permanent magnets, it is possible to stabilize the arc movement and in effect the cathode region 

temperature. The arc temperature in this region and the temperature of the plasma column appear to be 

crucial for the synthesis and the quality of the CNTs. 

2. Carbon Nanotubes for Sensing Applications 

Due to their small size carbon nanotubes may be used in micro- and nanodevices such as sensors. 

Large surface area, high aspect ratio, unique electrical and thermal properties make the carbon nanotubes 

systems more precise and more sensitive than macro-sized devices. In the area of sensors an infrared 

(IR) light detector with higher sensitivity than existing technology has been demonstrated. The device, 

known as an IR bolometer, is made by suspending a 0.5 mm wide layer of single-walled CNTs over a 

3.5 mm gap between two electrical contacts. This layer is heated by incident IR radiation, causing its 

resistance to change. It is also possible to use CNTs as a gas detector because of the existing interactions 

between nanotubes and gas molecules. The gas can be ionized at voltages that are up to 65% lower than 

in traditional sensors [3].  

Chemical and gas sensors sense simple molecules containing only a few atoms. Chemical sensors 

based on carbon nanotubes detect chemicals such as NO2 and NH3. Conventional sensors for NO2  

and NH3 usually work over 550 K and provide limited sensitivity. Semiconducting gas sensors use 

conductance changes between the semiconducting single-walled carbon nanotubes and gas molecules. 

These sensors operate at room temperature and can detect several parts per trillion of measured 

contaminants [4]. Nanotubes can be used to measure ion concentrations and types. In modified 

electrolyte-insulator-semiconductors carbon nanotubes can be placed on the dielectric. When a large 

amount of ions are present, an electric field occurs across the insulator. This field reduces the energy gap 

of the semiconducting nanotube what leads to a source-drain conductance increase [5]. Dielectric  

gas sensors measure dielectric constant changes when a layer of CNTs is exposed to different gas 

molecules [6]. Absorption-based gas sensors use a cantilever covered by single- or multiwalled carbon 

nanotubes. The gas molecules combine with the carbon nanotubes what leads to change of the cantilever 

mass, and accordingly to a change in its oscillating frequency [7,8]. Carbon nanotubes can be also used 

in biological applications. In electrochemical catalytic amplifiers CNTs work as catalysts, as catalysts 

and DNA anchors, and as catalysts and enzyme anchors [9–11]. Another area of biological application 

are nanooptical transducers. In these sensors enzymes, i.e., glucose oxidase, and carbon nanotubes are 

placed in the solution. Laser light is used to illuminate the solution and the fluorescence of single walled 

nanotubes is detected [12].  

Carbon nanotubes are thus very promising products for sensing applications. In practice, the market 

potential depends on technical and manufacturing feasibility. Thus, identifying methods to produce the 

desired, product repeatably is very important. Apart from the CVD method, which seems to be very 

suitable for this, one solution is to improve the electric arc discharge methods. The proposed 

improvement involves the use of an additional external magnetic field in the system. 
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3. Experimental Section 

The main disadvantage of arc methods is the final product quality—the deposit growth rate and carbon 

nanotube purity. These parameters depend on the stability of the arc. Electric arc movement impacts the 

temperature, and thus in effect the carbon elements’ flux. Irregular distribution of the carbon vapor 

stream reduces the efficiency and flow symmetry of molecules which may form carbon nanotubes. In 

our system the arc discharge burns between two graphite electrodes in a steel reaction chamber 

containing helium at a pressure in a range from 0.2 to 0.6 bar. The temperature of the discharge leads to 

anode evaporation and decomposition on a cooled cathode surface as a cathode deposit. The deposit 

consists of two main parts—a soft core containing CNTs and an external hard shell. Figure 1 presents 

the system and examples of deposits. 

Figure 1. The scheme of the system for carbon nanotubes synthesis (I); cathode  

deposit during the process (II) and separated soft core from cathode deposit (III) where: (1) 

water cooled anode holder; (2) water cooled cathode holder; (3) graphite anode;  

(4) cathode; (5) cathode deposit; (6) core with CNTs. 

 

The circuit parameters, the distance between the electrodes and the pressure were adjusted 

automatically by the PLC so that the optimal arc temperature on the cathode surface was obtained.  

Based on authors’ experience [13–15] and on the literature [16–20] the following parameters values 

are required: 

- the arc current should be between 170 and 300 A/cm2 (approximately 50–80 A), 

- the anode diameter should be lower than 10 mm, 

- the distance between electrodes should be 0.5–5 mm. 

Usually the distance does not exceed 3 mm due to efficiency drop over the 3 mm distance. Arc voltage 

is usually within the range of 15 to 25 V, but for carbon electrodes without introduced catalyst this value 

will be confined to about 21–22 V. The arc burns in helium under low pressure but argon or mixture of 

argon and helium can also be used.  

4. Results and Discussion 

In literature, we can find many solutions for plasma column stabilization by an external magnetic 

field [21–26]. Due to the complex shape of the anode and the cathode, the Finite Element Method (FEM) 
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was chosen for the analysis. FEM is used to obtain solutions to partial differential or integral equations 

that cannot or are difficult to solve by analytic methods. In order to optimize the magnetic field 

distribution, a 2d-FEM model of the plasma column was built and a series of simulations of the magnetic 

field for different cathode and cathode holder geometries were performed. In order to obtain precise 

results the model was meshed with 160,000 quadrilateral elements and solved in terms of vector potential 

and equipotential line contours. Options with the anode holder and cathode holder made of magnetic and 

non-magnetic material were considered.  

According to the experimental system and technical limitations used, it was assumed that the 

induction coil is placed on the hollowed and water-cooled cathode. A schematic diagram is shown in 

Figure 2. The cathode holder is divided into three zones: (I) bottom, water-cooled zone; (II) central zone; 

(III) top zone (area of carbon nanotubes deposition). Additional zone (IV) refers to coils placed outside 

the research chamber. 

Figure 2. Diagram of the coils placed in different locations (I–IV) where (1) hollowed, 

water-cooled zone; (2) central zone; (3) top zone; (4) zone outside the chamber. 

 

It can be found in the literature that systems which employ coils placed at a cathode deposit level are 

more common. Because of the high temperature of the plasma column (as high as 5000 K in the axis) 

between anode and cathode solutions with coils close to the arc (case III in Figure 2) are only a 

theoretical. Case IV with coils outside the chamber is limited by the experimental set-up geometry.  

Then the calculations for ferromagnetic cathode holder and coil placed on it were made. Figure 3 

shows distribution of magnetic lines in two cases–coils on the holder in the central zone (II) and coils 

outside the chamber (IV). 

The distribution of magnetic lines in the area close to the cathode surface is very similar.  

In Figure 4, the magnetic force for 390 turns and 5 A placed on the bottom of cathode holder is shown. 

Figure 5 compares the magnetic field strength on the surface of the cathode for different coil placements. 

It can be noticed that in the system where the coil is outside the chamber (about 20 cm from the axis) 

the magnetic field distribution is almost the same. 
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Figure 3. Distribution of magnetic field lines. Coil current = 5 A, 390 turns. Cathode holder 

made of steel. 

 

Figure 4. Magnetic field distribution over the cathode surface. 

 

Figure 5. Magnetic field strength distribution on the cathode surface for coil placed in 

different zones (390 coils, 5 and 10 A). 

 

If various cases of coil position are compared it can be seen that the use of the systems with the coil 

in a 20 cm distance from the arc (outside the reaction chamber) and the coil placed in the region of the 

cathode holder give similar results (the same range of the magnetic field intensity). 
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Based on simulations the arc discharge carbon nanotubes synthesis system has been modified by 

applying the magnetic field (Figure 6). The field is produced by applying a DC-powered electromagnet 

positioned axially on the cathode holder. 

Figure 6. Modified research set-up where (1) main chamber; (2) anode holder; (3) cathode 

holder; (4) electromagnetic coil. 

 

In order to improve the carbon nanotube production efficiency an external magnetic field is generated 

by a coil on the cathode holder. A stable arc allows the creation of a uniform vapor stream from the 

anode to the cathode and also to stabilize carbon molecules flux which results in a mass flow efficiency 

increase. The magnetic field may also be generated by permanent magnets located inside the reaction 

chamber but the then temperature in the chamber would reduce the lifetime of these magnets.  

To determine the relation between the CNT growth according to the electrical factors, a variety of 

parameters such as the electric arc current and the voltage, the pressure inside the chamber and the 

solenoid current were recorded during the tests.  

Carbon decomposition occurred in the arc discharge between two graphite electrodes in a steel 

reaction chamber containing helium under reduced pressure. The gas introduced into the chamber did 

not react with the carbon electrode material. The temperature in the discharge led to the formation of the 

cathode deposit, transferring the material directly from the graphite anode. The stabilization of the arc 

by the presence of the magnetic field made it possible to create an intense and steady stream of vapor 

transferred from the anode to the cathode in order to ensure the effective mass flow of material.  

Figure 7 shows an arc column supported by a magnetic field. 

Diagnosis of the carbon arc plasma was carried out using optical spectroscopy. The research showed 

that the arc column temperature measured in its axis is in the 4800–5600 K range, and is dependent on 

the length of the arc column. The temperature distribution also differs in cases with and without an 

external magnetic field. The magnetic field stabilizes arc movement and consequently stabilizes 

temperature distribution, which in turn affects the carbon decomposition. The carbon nanotube synthesis 

depends on the ratio between small carbon particles and large multi-atom carbons.  
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Figure 7. Plasma column supported by external magnetic field (unnatural colors). 

 

Comparing the distribution of carbon vapors and the carbon deposits formed under similar conditions 

(current, pressure, voltage, temperature) no major differences in the structure and composition of the 

cathode deposit were observed. However, the application of the magnetic field accelerates the deposit 

growth rate which increases the efficiency with no deterioration in the quality of the final product. In 

addition, cathode deposits produced with the magnetic field were characterized by more accurate 

symmetry in comparison to deposits which were formed without this field. It was easier to separate the 

soft core mechanically, which resulted not only in a more accurate cleaning of a hard outer shell of the 

part containing the nanotubes, but also increased the productivity. The quality of the synthesized CNT’s 

is independent of the coil placement. Using the coil placed on a holder considerably simplifies the 

system, which is essential from an economical point of view. Application of a magnetic field improves 

deposit growth rate and deposit symmetry but—what is characteristic for arc plasma systems—the 

resulting CNT’s still need purification [27]. 

5. Conclusions 

The final product of the synthesis is a mixture of carbon nanotubes, amorphous carbon, soot,  

graphite, etc. The final composition depends on the process conditions. Therefore, purification and 

characterization of the final product for analysis is necessary. The research carried out in the system 

showed a significant role of the distance between the electrodes, which influences the diameter and the 

purity of the synthesized carbon nanotubes. It was stated that the increase of the distance between the 

electrodes results in a higher sample purity. A linear relationship between the electrode gap and the arc 

voltage was expected, but it appeared that the arc voltage change is proportional to the distance between 

the electrodes only for large distances. It was also noticed that an additional magnetic field in the system 

improves the quality of the deposits and accelerates the anode conversion into deposits. Appropriately 

arranged magnetic field lines improve the arc movement and the synthesis process. The magnetic field 

increases the deposit growth rate and the purity of the product. It has also been noticed that simulations 

of new constructions are efficient for the process of optimization. Finally, the electromagnetic field 

distribution modeling can be applied for the improvement of carbon nanotube quality. 
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