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Abstract: In this paper the influence of an example indoor environment on narrowband 

radio channel path loss for body area networks operating around 2.4 GHz is investigated 

using computer simulations and on-site measurements. In contrast to other similar  

studies, the simulation model included both a numerical human body phantom and its  

environment—room walls, floor and ceiling. As an example, radio signal attenuation 

between two different configurations of transceivers with dipole antennas placed in a direct 

vicinity of a human body (on-body scenario) is analyzed by computer simulations for 

several types of reflecting environments. In the analyzed case the propagation 

environments comprised a human body and office room walls. As a reference environment 

for comparison, free space with only a conducting ground plane, modelling a steel mesh 

reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed 

in two on-body configurations chest–back and chest–arm. Path loss vs. frequency 

simulation results obtained using Finite Difference Time Domain (FDTD) method and a 

multi-tissue anthropomorphic phantom were compared to results of measurements taken 

with a vector network analyzer with a human subject located in an average-size empty 

cuboidal office room. A comparison of path loss values in different environments variants 

gives some qualitative and quantitative insight into the adequacy of simplified indoor 

environment model for the indoor body area network channel representation.  
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1. Body Area Network Propagation Channel 

Wireless Body Area Networks (BANs) use radio transmitters which can be located inside of the 

human body (implants), on the body, or in its proximity. This implies at least three corresponding 

possible communication scenarios: in-body, on-body, and off-body. The on-body scenario includes 

transceivers located either directly on the human body or embedded in clothes. The off-body scenario 

covers the systems in which the communication takes place between transceivers located on-body and 

in a near range around the person (depending on the case the distance can vary from meters to even 

hundreds of meters). In-body communication allows the transmission of data between the devices that 

are located inside the body and in its proximity. This case encompasses mainly wireless endoscopes 

and heart pacemakers. Readers interested in a general characteristics of these communication scenarios 

may for instance refer to [1]. This paper will only concentrate on the on-body scenario, where antennas 

of the communicating devices are located either directly on the human body or in its direct vicinity at 

distances in the range of millimeters.  

BAN systems also differ by the physical-layer channel type, which can be narrowband or  

ultra-wideband. Galvanic coupling may also be used instead of electromagnetic waves—where 

electrodes positioned on the skin replace antennas. In the paper, an Industrial Scientific Medical (ISM) 

2.4 GHz band narrowband indoor channel is considered, which is used in many contemporary medical 

applications, such as wireless physiological sensor networks. BAN radio signal transmission is 

strongly affected by the presence of the human body which is a lossy medium with a complex 

structure, comprising tissues that have various values of dielectric permittivity and conductivity. When 

the radio wavelength is considerably greater than the cross-section of the body the resultant attenuation 

is low, however it becomes significant at gigahertz frequencies. In that case choosing radio 

propagation channel models for BAN is difficult because expected values of path loss through the 

body are high (up to about 90 dB) and may be critical for the proper operation of the network [2,3].  

An in-depth simulation based analysis of the coupling between body mounted antennas using 

computational electrodynamics methods, such as the finite difference time domain (FDTD) method 

and numerical phantoms, can be found in literature, e.g., [4–7]. However, some of these considerations 

focus on an unrealistic case of BAN operating in free space and the influence of reflecting objects in 

the environment around the human body is neglected [6,7]. An interesting but specific simulation 

scenario is described in [5], where body communication channel in a hospital environment is 

considered with focus on subject-specific body mass index influence. Experience shows that for some 

antenna configurations (for example chest to back) it can be expected that the relatively short direct 

propagation path through the body introduces greater attenuation to the signal than the indoor 

multipath formed by the reflecting environment (floor, walls, ceiling and other objects) surrounding 

the BAN. Some research results provide insight into selected factors that affect propagation for  

body-area networks, for instance, in [8] effects of earth ground is considered. In [9] a comprehensive 
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statistical characterization of body-to-body communication channel in a complex fire and rescue 

indoor training environment has been presented. In [10,11] a FDTD body channel model and a 

Geometrically Based Statistical Channel indoor multipath environment model are separately 

considered first and then combined into an indoor BAN deterministic/statistical channel model. This 

approach assumes independence of the two models. Also intricate analytical models for free-space 

BAN, for instance applying dyadic Green’s function have been elaborated [12]. Some channel models 

are based solely on a statistical processing of measurement results [13]. 

In contrast to those research concepts, in order to gain more quantitative insight into the influence of 

the reflecting multipath environment and its particular elements, an all-in-one numerical FDTD model 

was developed. The goal of this research was to find a simplified model of the complex building 

structure that is capable of giving simulation results useful for indoor BAN designers. Thus the number 

of obstacles (walls and ceiling) that should be included in the model was analyzed. The model consists 

of both a human body phantom with a pair of transmitting and receiving antennas and several 

examples of the surrounding multipath environment, including walls, ceiling, and floor. In this 

investigation the ISM 2.4 GHz band is considered. This is a remarkably important band for medical 

applications. Its proper use requires a reliable channel model for the radio link budget analysis, 

important not only for transmission reliability but also for radio node energy consumption 

optimization. Very intense use of the ISM 2.4 GHz frequency range by other systems also calls for 

interference analysis (electromagnetic compatibility) in BAN, which also requires a reliable 

propagation channel model. In the paper, the properties of BAN radio channel are considered as a 

function of link attenuation vs. frequency for the radio link between the transmitting and the receiving 

antennas located on the body in two different configurations following from three antenna locations 

shown in Figure 1.  

Figure 1. Graphical representation of the NMR Hershey body phantom in Remcom 

XFdtd® (10 mm voxels) and antenna location: 1–chest, 2–back, 3–arm. 
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2. Computer Simulations  

The simulations of the indoor BAN channel were carried out with the use of Remcom XFdtd® [14] 

package that implements the finite-difference time-domain (FDTD) method for electromagnetic 

analysis. With the BioPro® [14] module the simulation can use the NMR Hershey heterogeneous 

model of the human body. The model is available with different degrees of discretization of tissues 

allowing the selection of voxel size from 1 to 10 mm. For further analysis the 10 mm model was used, 

as it combines a reasonable accuracy of human body representation with an acceptable amount of 

computer memory occupancy that is required to run simulations on the server available to the authors 

for relatively large simulation domain including office room walls. The simulations were performed on 

a PC computer equipped with two nVIDIA Tesla C2075 GPU cards. To benefit from massively  

multi-thread calculations that can be performed on Tesla cards, the model size had to be limited in 

such a way that it can fit into the RAM memory available on the cards. The model used for further 

analysis fits the cuboid (simulation domain) of the following dimensions: 5 m × 5.5 m × 2.52 m which 

resulted in a ten-fold reduction of the simulation time compared to the simulations on a 4-core CPU. In 

Figure 1 the body model is presented along with the location of the transmitter and receiver antennas. 

Both are half wave dipole antennas shortened for resonance at 2.45 GHz. The transmitter was located 

on the human body (phantom) chest (position 1 in Figure 1) and the receiver was placed on the back of 

the torso (position 2) and in the second case on the arm (position 3). 

Radio link path loss (signal attenuation between the antennas) for 2.2–2.8 GHz frequency range was 

determined for all simulation scenarios. The simulations were performed for three environments in 

which human body model was located. In Figure 2 the environment that consists of a conducting 

ground plane (modelling a floor reinforced with a steel mesh) is presented (Figure 2a) as well as an 

environment with a ground plane with walls (Figure 2b).  

Figure 2. Human body model in two environments: (a) with a ground plane only;  

(b) with a ground plane and four walls. The third case with a ceiling is not shown but was  

also implemented. 

(a) (b) 
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As a compromise between maximum FDTD simulation domain size (limited by memory available 

to the nVIDIA Tesla cards) and the accessibility of office rooms that could be used for experimental 

verification of the model, the size of the environment was set up as the cuboid of dimensions:  

5 m × 5.5 m × 2.52 m. The thickness of the wall is in all simulations is 10 cm, typical of partition 

walls. The parameters of gypsum walls at 2.4 GHz were taken after [15]: ε = 1.5, loss tangent 

tg δ = 0.01, width w = 0.01 m, while the floor and ceiling are represented by a homogenous imperfect 

conductor with conductivity σ = 1.39·106 (construction steel).  

In Figure 3 signal attenuation vs. frequency plots are shown for antennas located on the chest and 

the back of the human body for different propagation environments (presented in Figure 2). It can be 

observed that in the free space model there is one strong, −115 dB null at 2.55 GHz. It is likely that it 

corresponds to the destructive superposition of the components that get across and around the body 

(direct and diffracted rays). Adding a conductive floor causes multiple nulls of 10 dB depth.  

Figure 3. Simulated signal attenuation vs. frequency: A pair of antennas located on the 

chest and on the back (1–2) simulated for different propagation environments comprising 

gypsum walls.  

 

When walls are added the average level of attenuation is reduced significantly, most probably by 

the dominating multiple reflections that provide a more effective coupling path. The minimum average 

attenuation is obtained where all four walls, the conductive ceiling, and the floor are present  

(a complete cuboid). The conductive ceiling introduced multiple nulls of significant depth which is 

very close to the results obtained from our experimental study. 

In Figure 4 signal attenuation between antennas located on the chest and on the arm is presented. 
Compared to the chest–back configuration the chest–arm configuration has stronger direct coupling 

between the antennas and the corresponding attenuation with ground plane only is in the range of 

60 dB (compared to −90 dB for the chest–back configuration). In this case there is only a minor 

difference between results obtained with and without a ground plane as direct coupling dominates in 

the propagation mechanism. Adding walls results in a strong frequency-selective attenuation due to 

multipath effects. It is also worth noticing that the ceiling (modeled as a conducting structure) introduces 

only a small contribution to the total attenuation in the considered configuration of antennas.  
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Figure 4. Simulated signal attenuation vs. frequency: A pair of antennas located on the 

chest and on an arm (1–3) simulated for different propagation environments comprising 

gypsum walls. 

 

3. Experimental Verification 

To verify the simulation results, radio link path loss (signal attenuation between the antennas) for 

the 2.2–2.8 GHz frequency range was measured for a scenario similar to that in simulations scenarios. 

The measurements were made in an empty room with geometry and dimensions similar to that used  

in computer simulations. The side walls were made of gypsum and the floor and ceiling of steel 

reinforced concrete. The measurement setup is presented in Figure 5.  

Figure 5. Path loss experimental setup in an empty office room with a human subject: 

(a) human subject with antennas; (b) setup including ferrite beads on coaxial cables to 

reduce the influence of the cable outer conductor radiation.  

(a) (b) 
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Two half-wave dipole antennas were placed on the body of the human subject in positions 

corresponding to the simulation scenarios. The antennas were dipoles shortened for resonance at  

2.45 GHz. Rohde Schwarz ZVB-14 vector network analyzer was used to measure the signal 

attenuation between antennas vs. frequency. The ferrite beads were fitted on the measurement cables to 

reduce radiation from the cables that might decrease the isolation between the antennas and modify 

their radiation pattern. The distance between the ferrites was a quarter of the wavelength for the center 

of the measurement band, D = 30 mm (see Figure 5b). 

In Figure 6 the results obtained from measurements and simulations of signal attenuation between 

antennas located on chest and on the back (position 1–2 in Figure 1) are presented. In this case the 

median value of measured signal attenuation was −74.2 dB and the median value of simulated signal 

attenuation was −73.1 dB. In Figure 7 the results obtained for measurement and simulation of signal 

attenuation between antennas located on chest and on an arm (position 1–3 in Figure 1) are presented. 

In this case the median value of measured signal attenuation was −63.6 dB and the median value of 

simulated signal attenuation was −58.9 dB.  

Figure 6. Measured and simulated signal attenuation vs. frequency in the indoor 

environment: A pair of antennas located on the chest and on the back (1–2).  

 

Figure 7. Measured and simulated signal attenuation vs. frequency in the indoor 

environment: A pair of antennas located on the chest and on an arm (1–3). 
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Although the location of attenuation nulls differs between simulations and measurements, the 

median values exhibit good agreement. Differences between simulation and measurement attenuation 

curves shape can be attributed to an imprecise room geometry representation in computer models, only 

approximated values of wall material electromagnetic properties, as well as inhomogeneity of the real 

building walls and ceilings. 

4. Conclusions 

In the paper the influence of the indoor environment on the signal attenuation in body area networks 

was studied for several simple antenna and wall geometries in the 2.4 GHz ISM band (and beyond, i.e., 

2.2–2.8 GHz). Both measured and simulated attenuation median values (needed e.g., to calculate the 

fade margin and RF power budget used in the design of BAN networks) and channel frequency 

responses are shown and compared. Simulations were carried out with XFdtd® software package and 

NMR Hershey numerical human body phantom. In contrast to many other similar studies, the FDTD 

simulation domain included both a numerical body phantom and the surrounding room walls, floor and 

ceiling which is more realistic than free-space approach to BAN channel modeling.  

Comparison of estimated path loss values for the considered scenarios gives a qualitative and 

quantitative insight into the properties of a typical indoor BAN channel (as opposed to a purely 

theoretical, idealized free-space BAN channel). As expected, the highest attenuation can be observed 

for the model with the ground plane only (90 dB) and antennas located on the chest and the back of the 

human torso. In a reflective multipath environment with walls, a typical value of path attenuation for 

the same on-body antenna locations is significantly lower (60 dB for ground plane and two walls). For 

the antenna pair located on the chest and on one arm the path loss is lower than for the antennas 

located on the opposite sides of the torso (chest and back). In this case a reflective environment also 

decreases attenuation of radio signal but, additionally, strong frequency selective fades can be 

observed. To summarize, the following main conclusions of practical (engineering) importance can be 

drawn from the results of measurements and numerical simulation of the indoor BAN propagation  

on-body scenarios in 2.4 GHz band:  

1. Free-space modeling of the coupling between BAN antennas located on the human body can 

be applied to real indoor scenarios only for the antennas located close one to another, e.g., in 

the arm–chest configuration, where direct coupling between the antennas prevails over the 

room multipath. However in such a case free space model can be used only to approximate 

the median value of attenuation over the bandwidth. Frequency selective fades will not  

be represented.  

2. For some antenna pair locations e.g., chest–back, where free-space approach (mostly 

presented in the literature) shows strong attenuation through the body (even up to 90 dB) in 

typical indoor environment the attenuation is significantly decreased. In the studied case the 

difference was up to 30 dB. The propagation mechanism in such a case can be dominated by 

room multipath propagation. In these cases BAN channel models for engineering applications 

should include multipath effects–even only to obtain median attenuation values.  

3. Multipath effects can be easily simulated with simple room model comprising only two 

conducting surfaces (floor and ceiling) and dielectric walls. Such a simplification can free 
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indoor BAN designers from creating very complex indoor environment models of target 

buildings. These buildings have mechanical structures that might be unknown to the BAN 

designer. For instance hospital rooms that are located on the same floor can differ 

significantly in the location of wiring and pipelines. This simplified model can be created in 

any full wave modeling tool. The median values of signal attenuation obtained with 

simulation and measurements as well as the character of frequency dependent fades (depth 

and frequency separation) are in good agreement. For the case of antennas located on chest 

and back, the corresponding simulated and measured median values differ only by 1.1 dB. For 

the case of antennas located on the arm and the chest the difference was 4.7 dB. Some 

differences between the shapes of simulation and measurement attenuation curves (e.g., 

location of the fades) can be attributed to an imprecise representation of room geometry and 

material parameters in computer models. 

Indoor BAN simulation studies for a simulation domain corresponding to an average-sized office 

room are feasible using XFDTD software package with only a moderate PC computer configuration 

containing two nVIDIA Tesla C2075 GPU cards. With this computer configuration the simulations 

took from 45 min to 70 min depending on the FDTD algorithm convergence for a given simulated case. 

The authors plan to carry out an in-depth study to formulate a practical indoor BAN radio channel 

path loss model taking into consideration various on-body antenna configurations as well as room 

dimensions and human body location as parameters. The model should be of help to engineers 

designing BAN destined for operation in particular indoor environments.  
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