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Abstract. Mathematical model of SH wave scattering by an elastic thin-
walled rigidly supported inclusion is presented. The inclusion is replaced
by the effective boundary condition that allow to simplify calculations of
the scattered field significantly. Using the proposed model the problem is
reduced to the system of hyper singular integral equations that is solved
numerically. The numerical algorithm is implemented in the application that
is available through the Web page and can be used as a tool in nondestructive
testing of elastic materials with thin plane rigidly supported inclusions of
arbitrary stiffness.
Keywords: numerical modelling, simulation tool, SH wave scattering, thin-
walled inclusion.

1. Introduction

The elastodynamic wave propagation in solids with thin interface elastic layers
and thin coatings is one that has received much attention, particularly due to its im-
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portance in ultrasonic nondestructive evaluation of materials [1, 2, 3, 4], in acous-
tics [5], electromagnetics [6, 7, 8] and elastodynamics [9, 10, 11, 12, 13]. There
are two problems. One problem may be posed: to describe the elastodynamic in-
teraction of a thin-walled inhomogeneity with the host material by the boundary
conditions, as the ratio of two characteristic lengths - the inclusion thickness and
its diameter - tend to zero. The other problem is the inverse scattering problem of
inclusion properties determination from the scattered data. Ultimately the interest,
of course, lies in trying to determine the properties of such a thin-walled inclusion
from the scattering data, but it seems clear that before that inverse problem can be
studied with any hope of success, the direct scattering problem must be solved in
an effective manner.

The goal of the present investigation is to obtain a solution of the direct scat-
tering problem and implement it in application available through the Web page as
a Java applet. The application can be useful in non-destructive evaluation of elastic
materials with thin plane rigidly supported inclusions of arbitrary stiffness. In order
to implement an algorithm the application uses Wolfram Mathematica. It consists
of two modules. The first module responsible for the interaction with a user is a
Java applet embedded in a Web page. The second application module is respon-
sible for performing the calculations using Mathematica kernel. It communicates
with the kernel through a J/Link interface.

2. Problem formulation

Let us consider a uniform medium in which there is a rigidly supported inclu-
sion. The inhomogeneity occupies the region S = {|x1| < a, |x3| < h/2}, |x2| < ∞,
where h is the thickness, (x1, x2, x3) are the Cartesian coordinates and the quantity
ε = h/a is a small parameter. A plane, incident wave of the form

ui (x) = A0 exp [ik (l1x1 + l3x3)] (1)

impinges on the inclusion, where (l1, l3) = (sin θ0,− cos θ0) is the direction of
incidence, A0 is the amplitude, k is a wave number. Herein u (x) = ui (x) + us (x) is
the displacement in the x2 direction, ui (x) is the displacement in a homogeneous
body, that characterises the applied load, us (x) is the scattering field which satisfies
the Sommerfeld radiation condition at infinity, from which it follows that:

us(x) =
eik|x|+iπ/4
√

8πk|x|
f(ω; l, ν), |x| → ∞,
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where f (ω; l, ν) is the complex amplitude or far-field pattern of the scattering wave,
ν = x/|x| = (sin θ, cos θ) is the direction of observation, ω is the circular frequency.

The scattering problem of time harmonic SH waves is described by the Helm-
holtz wave equations

∆u (x) + k2u (x) = 0, x ∈ R2\S , (2)

∆u0 (x) + k2
0u0 (x) = 0, x ∈ S

where k0 is the wave number for the inclusion, ∆ is the Laplace operator, u0 (x) is
the displacement field in the inclusion.

On the interface of the medium for x ∈ ∂S , the following coupling conditions
hold:

u (x) = u0 (x) ,
∂u (x)
∂n0 = γ0

∂u0 (x)
∂n0 , x ∈ ∂S \

{
x3 = −

h
2

}
, (3)

u (x) = u0 (x) = 0, x3 = −h/2, γ0 =
µ0

µ
.

Herein, n0 denotes the outer direction normal to ∂S , a time factor exp (−iωt)
is assumed and hereafter suppressed, µ and µ0 are the Lamé elastic parameters of
the medium and inclusion, respectively.

The field u(x) satisfies in the domain R2\S the equation (2) and the following
effective boundary conditions on the interval |x1| < a [4, 13]

u+(x1) = 2Zk−1 ∂u+(x1)
∂x3

, u−(x1) = 0, (4)

Z = x
ε

2
γ−1

0 , u± = lim
ε→0

u(x1,±ε),

which describes, asymptotically exactly up to the terms of O(ε), a solution to the
problem (2) and (3). Here Z is the normalised impedance of the material relative
to the intrinsic impedance of the external medium.

From the Green theorem for x ∈ R2\S we obtain that the scattering field can
be described in the form

us(x) =

∫ a

−a

[
kg(x, y)Φ1(y1) − Φ3(y1)

∂g(x, y)
∂y3

]
y3=0

dy1, (5)

g(x, y) = −
i
4

H(1)
0 (k|x − y|),
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kΦ1(x1) =

[
∂u+(x)
∂x3

−
∂u−(x)
∂x3

]
x3=0

,

Φ3(x1) = u+(x1) − u−(x1) = u+(x1).

Here H(1)
0 is the Hankel function of the first kind.

As a middle surface of the scatterer is a plane, let us use the expansion of
the fundamental solution of the Helmholtz equation (cylindrical wave) g(x, y) via
plane waves. This will allow to deal with the symbols of the corresponding pseudo-
differential operators only. As a result, from the equations (1), (2), (4) and (5), the
following system of singular integral equations for Φβ(x1), β = 1, 3 is obtained

Φ1(x1) +
k
Z

∫ a

−a
Φ1(p)K3(k|x1 − p|)dp− (6)

−k
∫ a

−a
Φ3(p)K1(k|x1 − p|)dp = q1 exp(ikl1x1),

Φ3(x1) + k
∫ a

−a
Φ1(p)K3(k|x1 − p|)dp = q3 exp(ikl1x1), |x1| < a,

K1(|z|) =
1

2π

∫
Γ

γ(α)e±iαzdα,

K3(|z|) =
1

2π

∫
Γ

γ−1(α)e±iαzdα,

q1 = A0

(
2il3 +

2
Z

)
, q3 = 2A0, γ =

√
α2 − 1.

Herein the contour Γ coincides with the real axis everywhere except for the
branching points α = ±1 and passes these points below in the right-hand half-plane
of complex variable α and above in the left-hand one according to the limiting
absorption principle and the point α = 0 is situated below the contour Γ. The
square root of the function γ(α) is defined by the condition Im

√
α2 − 1 < 0 for

|α| < 1.

3. Numerical solution of the integral equations

In view of the edge condition we represent a solution of the integral equations
(6) in the complete system of the Jacobi polynomials as

Φβ(x1) = qβ(1 − p2)µβ
∞∑

n=0

an,βP(µβ,µβ)
n (p), p = x1/a, (7)
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where P(µβ,µβ)
n are the Jacobi polynomials with the peculiarity exponents µ1 =

−3/4, µ3 = 1/4 for γ0 = O(ε) and µ1 = −3/2, µ3 = 1/2 for γ0 = o(ε−1).
From the equations (6) and (7) we obtain an infinite system of linear algebraic

equations for the unknown coefficients an,β:

∞∑
n=0

[
an,1(Anm,1 +

Bnm,1

Zx
) − an,3q−1

0 Bnm,2

]
= bm, (8)

∞∑
n=0

[
an,3Anm,3 + an,1

q0

x
Bnm,1

]
= bm, (9)

m = 0, 1, 2, . . . , q0 =
q1

q3
, x = ka,

Bmn,β = (m + 1)
∞∑
j=0

im− j( j + 1)Bβn jIm j,β,

B1
n j =

∫ 1

−1
(1 − p2)µ1 P(µ1,µ1)

n (p)U j(p)dp,

B3
n j =

∫ 1

−1
(1 − p2)µ3 P(µ3,µ3)

n (p)U j(p)dp,

Anm,1 =

∫ 1

−1
(1 − p2)µ3 P(µ1,µ1)

n (p)Um(p)dp,

Anm,3 =

∫ 1

−1
(1 − p2)µ1 P(µ1,µ1)

n (p)Um(p)dp,

Imn,1 =
1
2

∫
Γ

1
γ(α)

Jm+1(xα)Jn+1(xα)α−2dα,

Imn,3 =
1
2

∫
Γ

γ(α)Jm+1(xα)Jn+1(xα)α−2dα,

bm =
π

xl1
im(m + 1)Jm+1(xl1), β = 1, 3,

where Um(p) are the Chebyshev polynomials of the second kind and Jm+1(α) are
the Bessel cylindrical functions.
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The scattering amplitude

f (ω; l, ν) = −

∫ l

−l

[
Φ1(p) + ikν3Φ3(p)

]
e−ikν1 pdp (10)

taking into account the relations (7) is directly connected with the coefficients am,β.
It is obvious that in the numerical calculations the numbers m and n in the

equations (7), (8) and (9) are limited and the quantities Bnm,β, (β = 1, 3) and
consequently am,β can be calculated with a sufficient accuracy by the appropriate
numerical procedures. Indeed, an accuracy of one percent is obtained if m = n ≈
2x.

4. Description of the application

In order to implement the algorithm, Java language and Wolfram Mathematica
were used. They were chosen so that the application could be available for a wide
range of operating systems and computer hardware. Programs developed in Java
can be run in any operating system that provides Java Virtual Machine (JVM),
which in fact means any modern operating system. Mathematica package, which
is a leading software for advanced mathematical computations, is also available
for a wide variety of systems.

The application consists of two modules. The first one is a Java applet embed-
ded on a Web page that a user can request from a Web server using a Web browser.
The graphical user interface of the applet was created by means of the standard
Java visual components library Swing. The applet obtains parameters from the
user and sends them to the second module that resides on the Web server computer
from which a Web page with an applet has been downloaded. That module per-
forms computations in a number of steps. First, it starts the Mathematica kernel
through a standard interface J/Link. Then it sends to the kernel a request to load
definitions of functions used in the algorithm implementation as well as numerical
system coefficient tables. Subsequently it sends the parameters fed by the user and
a request to perform calculations and obtains their results from the kernel through
J/Link. Finally, it closes the kernel and sends the output to the applet. The final
step is the visualisation of the output by the applet.

The application allows to obtain a total scattering cross-section for a wave
scattered from inclusion located in an elastic material. The following parameters:
angle of observation and shear modulus of the inclusion as well as of the material
are provided by the user.
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In Fig. 1 the dimensionless total cross-section σ0 = σ(0)/2a, where σ(θ0) =
1

A0k Im f (ω; l, l), for the incident angles θ0 = 0 is plotted as a function of x.
In Fig. 2 the monostatic radar cross section (RCS) is plotted as a function of

the incident angle (20 log
[
A−1

0 | f (ω, l,−l)|
]
) for x = 15.

a) b)

Figure 1. The normalised total cross-section versus dimensionless wave number
x = ka for normal incidence (θ0 = 0) of SH wave for parameters a) µ0 = 1.9 ·
109Pa, µ = 80 · 109Pa, ε = 0.05, b) µ0 = 268 · 109Pa, µ = 27140 · 109Pa, ε = 0.05.

a) b)

Figure 2. Monostatic RCS for x = 15 for the same parameters as in Fig. 1, ε = 0.05.

5. Conclusion

In this paper the application that can be used as a tool in nondestructive testing
of elastic materials with thin plane inclusions is presented. The application imple-
ments the algorithm that uses mathematical model of SH wave scattering by an
elastic thin-walled rigidly supported inclusion. Java programming language and
Wolfram Mathematica were used to elaborate the application. Application graphi-
cal user interface is implemented as Java applet embedded on a Web page. Such a
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choice causes that the application is available for a wide range of operating systems
and computer hardware.
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