
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 20 No. 2 (2012), pp. 7-26

Effective Similarity Measures in Electronic
Testing at Programming Languages

Adio Akinwale, Adam Niewiadomski

Lodz University of Technology
Institute of Information Technology

ul. Wólczańska 215, 90-924 Łódź, Poland
adio.taofiki.akinwale@guest.p.lodz.pl

adam.niewiadomski@p.lodz.pl

Abstract. The purpose of this study is to explore the grammatical proper-
ties and features of generalized n-gram matching technique in electronic test
at programming languages. N-gram matching technique has been success-
fully employed in information handling and decision support system dealing
with texts but its side effect is size n which tends to be rather large. Two
new methods of odd gram and sumsquare gram have been proposed for the
improvement of generalized n-gram matching together with the modification
of existing methods. While generalized n-grams matching is easy to gener-
ate and manage, they do require quadratic time and space complexity and
are therefore ill-suited to the proposed and modified methods which work
in quadratic in nature. Experiments have been conducted with the two new
methods and modified ones using real life programming code assignments
as pattern and text matches and the derived results were compared with the
existing methods which are among the best in practice. The results obtained
experimentally are very positive and suggested that the proposed methods
can be successfully applied in electronic test at programming languages.
Keywords: similarity and distance measures, fuzzy relations, n-gram, pro-
gramming codes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lodz University of Technology Repository

https://core.ac.uk/display/53096346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

8 Effective Similarity Measures in Electronic Testing. . .

1. Introduction
Programming language is a problem-solving oriented and very practical pro-

cess in nature whereas its assessment requires a big challenge for the purpose of
uniformity and consistency. Many recent virtual learning environment systems do
not provide any electronic test for the verification of the student’s source codes
submitted for grading. The traditional assessment is not easy to be adopted to var-
ious new developments in higher levels of programming language from structural
programming to object oriented programming languages. Assessment of students’
source codes under examination condition is notoriously difficult and therefore
needs the attention of electronic test. Due to the problem of assessment of pro-
gramming codes, many students’ assignments in programming languages are al-
ways plagiarized which in one way decreases learning outcomes.
Recently many higher institutions of learning have started off to switch from tradi-
tional paper and pencil examinations into electronic test due to intranet and internet
technologies. Electronic test is supposed to reduce cost and improve quality as well
as fast processing of examinations. There are number of tools used by institutions
to facilitate automatic grading of students’ programming language assignments but
these tools fail to take into account the way in which a problem has been solved
[1]. This at times leads to inequitable grading results because a program producing
a right output may not meet the programming specifications. The tools only work
with fill in the gap type programming assessments. Electronic test at programming
languages has been of interest to computer science tutors in grading students’ as-
signments and examinations. Till now, there is no established consensus on the best
way to evaluate students’ assignments objectively using electronic test. An exist-
ing similarity functions have achieved some levels of practical success in solving
problem associating with natural language processing, but they have generally not
been assessed in term of their ability to model human judgment of programming
languages. As a result, a new similarity measure of N-grams is proposed at pro-
gramming language to rank students’ codes into step-wise grade categories based
on their programming capabilities. The methods will give reasonable marks to
partly correct matching programming codes in the semantic analysis.

2. Literature reviews

Essentially, the N-grams model is a probabilistic model originally devised by
the Russian mathematician, Andrey Markov in the early 20th century and later ex-

A. Akinwale, A. Niewiadomski 9

tensively experimented by Shannon and Chomsky for predicting the next item in
a sequence of items [2]. N-grams have been successfully used for a long time in a
wide variety of problems and domains such as text compression [3], spelling error
detection and correction [4], optical character recognition, information retrieval
[5], automatic text categorization [6], music representation, speech and handwrit-
ing recognition [7]. Other useful domains include computational immunology,
analysis of whole-genome protein sequences [8], language identification, author-
ship attribution, phylogenetic tree reconstruction., data integration , filtering and
cleaning, prediction of English language [9], phonetic matching algorithms, and
text retrieval [10].
A typical example, acceleration of general string searching has been accomplished
using n-gram signatures by Harrison in 1971 [11]. In 1995, Damarshek pursued
n-grams as a method of comparing documents because the n-gram spectrum offers
a uniform framework for fast compression and is also easy to compute. He used
n-gram of length 5 and 6 for clustering of text by language and topic. He applied n
= 5 for English Language and n = 6 for Japanese Language. He also used n-gram
sliding windows approach for categorizing text in a completely unrestricted multi-
lingual environment. He proposed a simple but novel vector-space technique that
makes sorting, clustering and retrieval feasible in a large multilingual collection of
documents [12]. Pearce and Nicholas followed Damashek work by using 5-gram
to support a dynamic hypertext system in 1995 [13]. In the same year, a more so-
phisticated n-gram weighting scheme based on the G2 statistics has been used by
Cohen. The method highlighted words by statistical characteristic of the n-grams
of which they are composed [14]. Yannakoudakis et. al. used n-gram that cross
word boundaries that is, start with one word and end in another word and include
the space character that separates consecutive words [15]. Church and Gale pro-
posed smoothing techniques to solve the problematic of zero-frequency of n-gram
that never occurred in a corpus [16]. Kuhn and De Moris suggested the weighted
n-gram model which precisely approximates the n-grams length based on their po-
sition in the context [17]. Niesel and Woodland used the variable length n-gram
model which changes the n size of n-grams depending on the text being manipu-
lated so that better overall system accuracy is achieved[18]. Assale et. al. addressed
an n-gram based signature method to detect computer viruses [19]. Niewiadomski
used generalized n-gram matching for automatic evaluating text examination and
used the method also to evaluate electronic language test using German language
as a case study [20].

10 Effective Similarity Measures in Electronic Testing. . .

3. Fuzzy binary relations and similarity as a relation

Given a set U an ordinary subset A of U can be defined in terms of its char-
acteristic function XA(x) (that return 1 if x ∈ X or 0 otherwise). On the other
hand, a fuzzy subset A of U is a function A : U −→ [0, 1]. The function is called
the membership function and the value A(x) represents the degree of membership
of x in the fuzzy subset A, being a generalization of the notion of characteristic
function. Similarly, an ordinary binary relation on U is a subset of U×U and it can
be identified by its characteristic function U × U −→ (0, 1). Therefore, the easy
extension of this concept to the fuzzy case is to agree that, a fuzzy binary relation
R is a fuzzy subset on U × U (that is a mapping R : U × U −→ [0, 1]). So given
two elements ui and u j in R, R(ui, u j) = αi j represents the degree to which the pair
〈ui, u j〉 is compatible with the relation R.

Definition: A similarity relation on a set U is a fuzzy binary relation R : U ×
U −→ [0, 1] holding the following properties:

Re f lexive R(x, x) = 1 f or any x ∈ U (1)

S ymmetric R(x, y) = R(y, x) f or any x, y ∈ U (2)

Transitive R(x, z) ≥ R(x, y) 4 R(y, z) f or any x, y, z ∈ U (3)

where the operator 4 is an arbitrary t-norm. A t-norm 4 : [0, 1] × [0, 1] −→ [0, 1]
is a binary operator which is commutative, associative, monotone in both argu-
ments and 1 4 x = x hence it subsumes the classical two-valued conjunction op-
erator. Sometimes, transitivity is qualified by an specific t-norm 4 and it is called
4−transitivity.When the operator 4 = ∧ (this is the minimum of the two elements
), a similarity relation is called a fuzzy equivalent relation. Certainly in this case,
there exits a close relation between similarity relations and equivalence relations.
The so called ∨ − cut of a fuzzy equivalence relation R is an equivalence relation.
If R is a fuzzy binary relation on U, the binary relation R∨ = (x, y) | R(x, y) ≥ ∨ is
call the ∨ − cut of R. Since R can be considered as a generalization of the identity
relation, intuitively, a fuzzy equivalence on a set specifies when two elements may
be considered equal with regard to a property that is not sharply defined. In the
sequel, we restrict ourselves to similarity relation that are fuzzy equivalence rela-
tions. Moreso, we are interested in fuzzy equivalence relations at a syntactic level
[21].

A. Akinwale, A. Niewiadomski 11

We consider a relation of similarity x1 and x2 which is written as x1 ∼ x2. These
similarity relations are subject to reflexive and symmetry and may not be neces-
sarily be transitive. In this case, relation R on X is called the relation of neighbour-
hood if R is reflexive on X and R is symmetry on X. Neighbourhood relationship
is also referred as follows: non-sup-min transitive similarity relation, tolerance re-
lation, proximity relation, partial preorder relation, resemblance relation, approxi-
mate equality relation, etc.

3.1. Set similarity

Definition: Let A, B be arbitrary sets on X. Function µ : X −→ R+ ∪ 0 is a
measure of sets if and only if

µ(φ) = 0 (4)

µ(A ^ B) ≤ µ(A) + µ(B) (5)

Equations 4 and 5 can narrow down to µ(A ^ B) = µ(A)+µ(B)−µ(A _ B). Other
properties of similarity measure sets are:

A = B −→ µ(A) = µ(B) (6)

A ⊆ B −→ µ(A) ≤ µ(B) (7)

The implication of the reverse is not necessarily to be true [20].

4. Test similarity measures

There are two ways to measure resemblance between a pair of test, namely:

• Similarity or dissimilarity measure

• Distance or metric measure

4.1. Distance or metric measure

Distance measures dissimilarity. The measurement between feature i and j is
denoted by di j. Distance is a quantitative variable which in general will satisfy the
following at least the first three conditions: 1. di j = 0 (distance is zero if and only

12 Effective Similarity Measures in Electronic Testing. . .

if it measured to itself), 2, di j ≥ 0 (distance is always positive or zero), 3, di j = d ji

(distance is symmetry), 4, di j ≤ dik + d jk (distance satisfies triangular inequality).
Distance is also metric if it satisfies all above four conditions. Due to the triangular
inequality, it is not all the distance that is metric but all metrics are distances. Test
distance measure tends to quantify the minimum cost of transforming one test to
another. In general, cost weights are assigned for each substitution, insertion and
deletion operations. Examples of familiar distance measures are as follows:

Minkowski distance = λ

√√ n∑
i=0

| xi − yi |
λ (8)

if λ = 1 gives city block distance; λ = 2 gives Euclidean distance; λ = ∞ gives
Chebychev distance

Chessboard distance(x, y) = (maxi | xi − yi |) (9)

Canberra distance(u, v) =
∑ | ui − vi |

| ui | + | vi |
(10)

Hamming distance(i, j) =

n−1∑
k=0

[yik , y jk] (11)

S pearman distance(i, j) =

n∑
i=1

(xik − x jk)2 (12)

4.2. Similarity or dissimilarity measure

Similarity measure is quantity that reflects the strength of relationship between
two objects or two features. The measurement between feature i and j is denoted
by si j. The relationship between dissimilarity and similarity is given by si j = 1−di j

. The relationship is usually having a range of either -1 to 1 or normalized into 0 to
1. When the similarity is 1 that it is exactly similar, the dissimilarity is 0. There are
a variety of functions to measure the similarity between texts. Among the familiar
similarity measures are as follows:

Jaccard similarity(x, y) =
| x _ y |
| x ^ y |

(13)

A. Akinwale, A. Niewiadomski 13

Cosine similarity(x, y) =

d∑
i

xiyi

(

√
d∑
i

x2) × (

√
d∑
i

y2)

(14)

Overlap similarity(x, y) = | x _ y | (15)

The above similarities and distance functions are inter-related and recent researches
have been combined them to improve the performances of string processing for dif-
ferent applications[22]. For example, Fuzzy Jaccard Similarity measure, an exten-
sion of Jaccard Similarity measure combined token-based similarity and character-
based similarity as follows :

FJaccard(s1, s2) =
| T1 ∧ζ T2 |

| T1 | + | T2 | − | T1 ∧ζ T2 |
(16)

where T1 and T2 are token sets and ζ is an edit similarity threshold.
Character-based similarity in the above method used edit similarity to quantify the
similarity of two strings where edit similarity between the two strings s1 and s2 is
defined as

NED(s1, s2) = 1 −
ED(s1, s2)

max(| s1 |, | s2 |)
(17)

In this case, edit distance has been modified.

5. Methods

There are many methods of measuring similarity between two strings as indi-
cated in section 4. Our approach involves the use of n-gram where the similarity
between two strings is assessed by comparing their respective n-grams. The greater
the number of n-gram they have in common, the greater is their similarity. Another
approach is by counting the different between corresponding numbers of n-gram
occurrence. For example, Alberga in 1967 measured similarity between strings
based on the proportion of removing the longest common substring from the pairs
[23].

5.1. N-gram method

Definition: Let A = (a1, a2, a3, . . . , an) be a sequence, where ai ∈
∑

(i =

1, 2, 3, . . . , k) then (a j+1, a j+2, . . . , a j+n) ∈
∑n is called a n-gram of the sequence

14 Effective Similarity Measures in Electronic Testing. . .

, where 0 ≤ j ≤ k − n : the set of all the n-grams of sequence is called the n-
gram set of sequence , that is G(A, n) = (a j+1, a j+2, . . . , a j+n) | 0 ≤ j ≤ k − n is the
n-gram set of sequence where n ∈ Z+ is the length of the n-gram. It is noted that
G(A, n) = φ if k < n.

5.2. Dice method

In evaluating one term against another term, Dice similarity is chosen because
it is popular and widely used in analogous text of retrieval systems. This measure
takes into account the length of terms. The coefficient values varies between zero
and one. If two terms have no characters in common then the coefficient value is
zero. On the other hand, if they are identical, the coefficient value will be one [24].
For two string x and y, the Dice coefficient is measured as

d(X,Y) =
2(n − gram(X _ Y))

n − gram(X) + (n − gram(Y))
(18)

5.3. Generalized n-gram matching

Generalized n-gram matching was introduced by Niewiadomski. The algo-
rithm matches an answer string to a template string. The matched strings are de-
noted as s1, s2 and N(s1) = N(s2) = N is the length of the string. Hence,

sim(s1, s2) = f (n1, n2)
n2∑

i=n1

N−n+1∑
j=1

h(i, j) (19)

where f (n1, n2) = 2
(N−n1+1)(N−n2+2)−(N−n2+1)(N−n1) denotes the number of possible

substrings not shorter than n1 and not longer than n2 in s1, h(i, j) = 1 iff an i-
element-long substring of the string s1 starting from j-th position in s1 appears (
at least) once in s2 (otherwise h(i, j) = 0). If all substrings from one argument
of comparison are found in the other, the final similarity degree is evaluated as 1
which is interpreted as the identity of s1 and s2 [20]

5.4. Modification of existing methods

Bigram and Trigram were modified as Bi-n-gram and Tri-n-gram where n
stands for two and three letters as against one letter for each statement line or

A. Akinwale, A. Niewiadomski 15

function in programming codes. For example, a four statement lines of A, B, C
, D would become for Bi-n-gram AB, CD, EF, and GH while for Tri-n-gram are
ABC, DEF, GHI, and JKL. Let assuming that instead of ABCD, student answer is
ACBD, Bigram would award zero grading whereas modified methods will award
grading for the two matches which are similar to human judgment. In this case the
edit distance is very low with 2 operations and intuitively, the similarity should be
high. This necessitates for the modification of bigram and trigram into bi-n-gram
and tri-n-gram which increases letter of each statement line by line and allowing
more string sharing.

5.4.1. Bigram into Bi-n-gram

Generalized n-gram matching is normally used to derive bi-n-gram where n
represents two letters for each statement in programming codes. The formula is as
follows:

sim(s1, s2) =
1

N − n + 1

N−n+1∑
i=0

h(i) =
1

N − 2 + 1

N−2+1∑
i=0

h(i) =
1

N − 1

N−1∑
i=0

h(i)

(20)

5.4.2. Trigram into Tri-n-gram

Tri-n-gram is also derived from generalized n-gram matching as follows where
n represents three letters for each statement in programming codes.

sim(s1, s2) =
1

N − n + 1

N−n+1∑
i=0

h(i) =
1

N − 3 + 1

N−3+1∑
i=0

h(i) =
1

N − 2

N−2∑
i=0

h(i)

(21)

5.5. New methods

5.5.1. Odd gram

Odd-gram was inspired by the generalized n-gram matching which takes n(n-
1)/2 substrings for processing before measuring the performance. The odd gram
would take half substrings of generalized n-gram matching for processing the per-
formance which would still reduce the running time. For the method, the matched

16 Effective Similarity Measures in Electronic Testing. . .

strings are denoted as s1, s2 and max(N(s1),N(s2)) = N which is the maximum
length between string s1 and s2. If N is odd then N = dN

2 e

sim(s1, s2) =
1

N2

N∑
i=N

N−i+1∑
j=1

h(i, j) else
1

N2 + N

N∑
i=N

N−i+1∑
j=1

h(i, j) (22)

5.5.2. sumSquare-gram

Likewise Odd-gram, sumSquare gram was inspired by the generalized n-gram
matching which processing time is quadratic for every N-gram in the query string
with every N-gram in a line. While similarity measures of N-gram are easy to gen-
erate and manage, they do require quadratic time and space complexity and there-
fore ill-suited to both odd-gram in section 5.5.1 and sumSquare gram which work
in quadratic. Odd-gram and sumSquare gram methods are expected to write their
results into similarity measure (s) between a pair of submissions (pattern match-
ing and text matching). Given pattern matching and text matching i and j, si j will
be near to 1 if both patterns are considered identical and near to 0 if they are very
dissimilar. That is, odd-gram and sumSquare grams are normalized to fall within
the interval [0, 1]. Similarly, similarity measure of odd-gram and sumSquare gram
are expected to be symmetric, that is the equality si j = s ji is expected to hold for
every i, j. For the sumSquare gram, the matched strings are denoted as s1, s2 and
max(N(s1),N(s2)) = N which is the maximum length between string s1 and s2.
N = b

√
Nc

M = times − to − jump = N − 1
P = f irst − jump = N2 − (N − 1)2

simsq(s1, s2) =
6

N(N + 1)(2N + 1)

P∑
i=1

M∑
j=1

h(i, j) (23)

For an example, Consider the word ıALGORIT HM for string one and two.
The substrings are shown in Table 1. The common substrings between the word
“ALGORITHM” are used for the calculating all the six methods as follows:

1. Generalized N-gram matching

sim(s1, s2) = 2
N2+N

N∑
i=1

N−i+1∑
j=1

h(i, j) = 2
92+9 ×

9+8+7+6+5+4+3+2+1
1 = 90

90 = 1

2. Dice’s Coefficient = d(X,Y) =
2(n−gram(X_Y))

n−gram(X)+(n−gram(Y)) =
2(8)
8+8 = 16

16 = 1

A. Akinwale, A. Niewiadomski 17

Figure 1. Sample of programming codes

18 Effective Similarity Measures in Electronic Testing. . .

Table 1. Sample of common substrings for calculating the methods

Element Substring Number of common
substrings

1 A, L, G, O, R, I, T, H, M 9
2 AL, LG, GO, OR, RI, IT, TH, HM 8
3 ALG, LGO, GOR, ORI, RIT, ITH, THM 7
4 ALGO, LGOR, GORI, ORIT, RITH, ITHM 6
5 ALGOR, LGORI, GORIT, ORITH, RITHM 5
6 ALGORI, LGORIT, GORITH, ORITHM 4
7 ALGORIT, LGORITH, GORITHM 3
8 ALGORITH, LGORITHM 2
9 ALGORITHM 1

3. Bigram = sim(s1, s2) = 1
N−n+1

N−n+1∑
i=0

h(i) = 1
9−1 ×

8
1 = 8

8 = 1

4. Trigram = sim(s1, s2) = 1
N−n+1

N−n+1∑
i=0

h(i) = 1
9−2 × 71 = 7

7 = 1

5. Odd-gram = If is odd then N = dN
2 e = N = odd = d 9

2e = 5, sim(s1, s2) =

1
N2

N∑
i=N

N−i+1∑
j=1

h(i, j) = 1
52 ×

9+7+5+3+1
1 = 25

25 = 1

6. sumSquare gram = N = b
√

Nc = 3, M = timesto jump = N − 1 = 2, P =

f irst jump = N2 − (N − 1)2 = 32 − 22 = 5, 22 − 12 = 3, simsq(s1, s2) =

6
N(N+1)(2N+1)

P∑
i=1

M∑
j=1

h(i, j) = 6
3(4)(7) ×

9+4+1
1 = 14

14 = 1

Since the pattern matching is the same as text matching, all the six methods have
the same result of one.

6. Experiment

All the methods in number 18, 19, 20, 21, 22 and 23 were implemented using
JAVA Programming Language. The experiment was conducted on HP Laptop with
an Intel Pentium 2.10 GHz dual core CPU and 1.00 GB memory, running a 32-bit

A. Akinwale, A. Niewiadomski 19

Windows Vista operating system. A statement line or functions of programming
languages are donated by unique letter which serve as input data to the system.
The combination of these unique letters form string codes. Figure 1 illustrates one
of the samples of code lines and their unique letters. To test the knowledge of
computer science students, they are requested to study the program step by step
and arrange them in sequence way the computer system will execute the codes.
The sequence unique letters formed by the students represent pattern matching
while the correct unique letters formed by the tutor represent text matching. In
the case of the programming codes in Figure 1, the correct answer is (bcradfe-
higjlmnpoqk) while the first five unique letters generated by five students are as
follows: 1: bcadefhigjlmnoqpkr, 2: bcadefhigrljmnopqk, 3: bacrdfehigjlmnopqk,
4: bcardefhigjlmnoqpk, 5: bcradefhigjmnolpq. These data were read by the system
and generated the values of similarities, running times and performance to price
for Niewiadomski generalized n-gram matching, Dice similarities, odd gram, sum-
square gram, bi-n-gram and tri-n-gram of the five students’ assignments as illus-
trated in Figure 2, 3 and 4. The performance to price (Ptp) is measured as (simi-
larity values/running time values). The value of running time has been converted
to milliseconds. For the effective measurement of each method in respect to the
degree of similarity, running time and performance to price, we were able to get
302 pattern matches from 100 programming codes through students’ assignments
which were not the same with the correct answers. Due to the large number of the
individual result of 302 pattern matches, the average and standard derivation were
used. Figures 5, 6 and 7 show the total average of similarity values, running time
and performance to price of the six methods.

7. Results

Looking at the Figure 2, 3 and 4, the degree of similarity values between pat-
tern matches answered by the individual student and text matches generated by
the tutor, the values of Dice and sumSquare gram method have the range of the
same results (0.53, 0.53), (0.65, 0.60) as examples while the values of bi-n-gram
and tri-n-gram also have the range of the same results (0.77, 0.77), (0.74, 0.73).
For instance, the times of processing each individual method of Dice, odd gram
and sumSquare gram are the same. Despite long string processing, tri-n-gram is
the fastest in term of running time of individual method. Figure 5, 6, and 7 illus-
trate the total average similarity, running time and performance to price of the six

20 Effective Similarity Measures in Electronic Testing. . .

Figure 2. Individual result for generalized n-gram, Dice, Odd and sumSquare
methods

Figure 3. Individual result for bi-n-gram

A. Akinwale, A. Niewiadomski 21

Figure 4. Individual result for tri-n-gram

methods using 302 pattern and text matches. As depicted in the Figure 5, the total
average similarity of bi-n-gram is the best, followed by sumSquare, tri-n-gram, and
latter by odd gram, Dice and generalized n-gram methods. The average times of
processing the 302 text matches, bi-n-gram performed the best while sumSquare,
Dice and odd gram have more or less the same processing times as shown in Fig-
ure 6. Among the six methods, the total average performance to price of bi-n-gram
was demonstrated to be the most highly efficiency, followed by sumSquare and
tri-n-gram, latter by Dice, odd gram and generalized n-gram methods as depicted
in Figure 7. The experimental results indicate that bi-n-gram and sumSquare gram
achieve high performance with qualitative values and outperform than Dice and
generalized n-gram methods. The results achieved by the odd gram method was
not exceptional better than Dice similarity values but the running times with Dice
method are highly encouraging and better than generalized n-gram matching.
The results generated by the methods must be evaluated to determine their useful-
ness in real life of electronic test at programming languages. The evaluation used
step-wise grade to determine to what percentage degree the numbers of the grade
scores obtained from the Dice, bi-n-gram, and sumsquare methods are very closed
to the tutors’ grades. Three experts manually graded the students’ assignments and

22 Effective Similarity Measures in Electronic Testing. . .

Table 2. Analysis of the results using sumsquare gram, Dice methods, bi-n-gram
and Tutors’ grading scores

Methods 70-100 60-69 50-59 45-49 40-44 0-39 Total
(A) (B) (C) (D) (E) (F)

Dice 50 48 81 14 20 89 302
sunSquare 61 133 94 4 2 8 302
bi-n-gram 111 160 29 2 302
Ave (Tutor) 58 90 88 39 18 9 302

the average of the scores were converted into step-wise grade as shown in Table
2 along side the Dice method which is the best in practice. As shown in the Table
2, there are many students who passed very well using bi-n-gram method than ei-
ther Dice or sumSquare gram methods whereas the numbers of grades produced
by sumSquare gram method are very close to the numbers of grades by experts.
Intuitively, sumSquare gram method permits to achieve a very high relatively and
relevant grade results in electronic test at programming languages.

8. Conclusion

In this paper, two methods of odd gram and sumsquare gram as well as modi-
fied of bigram and trigram have been proposed to improve the performance of gen-
eralized n-gram matching of similarity measure in electronic test at programming
languages. The new methods used essential features of common substrings to get
better discrimination for the necessary computational performance. The computa-
tional process of the methods have drastically reduced a large amount of storage
by using half nested loop to compare n-gram in the pattern match with every n-
gram in the text matches. The experimental results indicate that bi-n-gram is the
best among the six methods using two-digit-letter for each code line which has
improved the effectiveness of n-gram analysis. The results achieved by the odd
gram method was not exceptional better than Dice similarity values but the run-
ning times with Dice method are highly encouraging and better than generalized
n-gram matching. The results obtained from sumSquare gram method in similar-
ity measure are very close to the results of experts which indicate that it can be
successfully used in electronic test at programming language.

A. Akinwale, A. Niewiadomski 23

Figure 5. Total average of similarity measures of 302 pattern matches

Figure 6. Total average of running times of 302 pattern matches

24 Effective Similarity Measures in Electronic Testing. . .

Figure 7. Total average of performance to price of 302 pattern matches

References

[1] Spinels, D., Zaharias, P., and Vrechopoulos, A., Coping with Plagiarism and
Grading Load: Randomized Programming Assignments and Reflective Grad-
ing, Computer applications in engineering education, Vol. 5, No. 2, 2007,
pp. 113–123.

[2] Markoff, A. A., Essai d’une recherche statistique sur le text du roman, En-
gene oneguine, bull. Acad imper sci. st Petersburg, Vol. 7, No. 3, 1913,
pp. 153–162.

[3] Shannon, C. E., Prediction and entropy of printed English, The Bell System
Technical Journal, Vol. 30, 1951, pp. 50–64.

[4] Zamora, E. M., Pollock, J. J., and Zamora, A., The use of trigram for spelling
error detection, Information Processing and Management, Vol. 17, 1981,
pp. 305–316.

[5] Burnett, J., Cooper, D., Lynch, M., Willett, P., and Wycherley, M., Document
retrieval experiments using indexing vocabularies of varying size, Journal of
Documentation, Vol. 35, No. 3, 1979, pp. 197–206.

A. Akinwale, A. Niewiadomski 25

[6] Trenkle, J. and Cavnar, W. B., N-gram based text categorization, In: Proceed-
ings of SDAIR-94, the 3rd Annual Symposium on Document Analysis and
Information Retrieval, 1994, pp. 161–175, University of Nevada, Las Vegas.

[7] Zhao, J., Network and n-gram decoding in speech recognition, Master’s the-
sis, Department of Electrical and Computer Science, Mississippi State Uni-
versity, 2000.

[8] Cheng, B. Y., Carbonell, J. G., and Klein-Seetharaman, J., Protein classifi-
cation based on text document classification techniques, Journal of protein,
Vol. 58, No. 4, 2005, pp. 955–970.

[9] Nakamura, M. and Shikano, M., A study of English word category prediction
based on neural networks, International conference on acoustics, speech and
signal processing, Vol. 2, 1989, pp. 731–734.

[10] Tan, C. L., Sung, S. Y., Yu, Z., and Xu, Y., Text Retrieval from Document
Images based on N-Gram Algorithm, In: Text and Web Mining Workshop,
6th Pacific Rim International Conference on Artificial Intelligence, Publisher,
2000, pp. 257–270.

[11] Harrison, M., Implementation of the substring test by hashing, Communica-
tion of the ACM, Vol. 14, No. 12, 1971, pp. 777–779.

[12] Damashek, M., Gauging similarity with n-grams: Language-independent
categorization of text, Science, Vol. 267, No. 5199, 1995, pp. 843–849.

[13] Pearce, C. and Nicholas, C., Experiments in a dynamic hypertext environ-
ment for degraded and multilingual data, Journal of the American society
for information science, Vol. 47, No. 4, 1996, pp. 263–275.

[14] Cohen, J. A., Highlight: Language and domain independence automatic in-
dexing terms for abstracting, Journal of the American society for information
science, Vol. 46, No. 3, 1995, pp. 162–174.

[15] Yannakoudakis, E., Goyal, P., and Huggil, J., The generation and use of text
fragments for data compression, Information processing and management,
Vol. 18, No. 1, 1982, pp. 15–21.

26 Effective Similarity Measures in Electronic Testing. . .

[16] Church, K. W. and Gale, W. A., A comparison of the enhanced good-turing
and deleted estimation methods for estimating probabilities of English bi-
grams, Computer speech language, Vol. 5, No. 1, 1991, pp. 19–54.

[17] Kuhn, R. and De Mori, R., A cache-based natural language model for speech
recognition, IEEE transactions on pattern analysis and machine intelligence,
Vol. 12, No. 6, 1990, pp. 570–583.

[18] Niesler, T. R. and Woodland, P. C., A variable-length category-based n-gram
language model, In: IN PROCEEDINGS, IEEE ICASSP, 1996, pp. 164–167.

[19] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R., N-gram based
detection of new malicious code, In: COMPSAC ’04 Proceedings of the
28th Annual International Computer Software and Applications Conference
- Workshops and Fast Abstracts - Volume 02, 2004, pp. 41–42.

[20] Niewiadomski, A., Methods for the linguistic summarization of data: Appli-
cation of fuzzy sets and their extensions, EXIT Piblishing House, Warsaw,
2008.

[21] Pascual, J.-I., A procedure for the construction of a similarity relation,
In: Proceedings of IPMU’08, Malaga, edited by L. Magdalena, M. Ojeda-
Aciego, and J. Verdegay, 2008, pp. 489–496.

[22] Wang, J., Li, G., and Fe, J., Fast-Join: An efficient method for fuzzy token
matching based string similarity join, In: IEEE 27th International Conference
on Data Engineering (ICDE), 2011, pp. 458–469.

[23] Arsmah, I. and Zainab, A. B., Automated grading of linear algebraic equa-
tion using n-gram method, Tech. rep., Institute of Research, Development
and Commercialization, Universiti Teknologi MARA, 2005.

[24] Buckles, B. P. and Petry, F., Information theoretic characterization of fuzzy
relational databases, IEEE transaction systems man cybernet, Vol. 13, No. 1,
1983, pp. 74–77.

