
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 18 No. 2 (2010), pp. 25-55

On Distributed Data Processing in Data Grid
Architecture for a Virtual Repository∗

Kamil Kuliberda1, Jacek Wiślicki1, Tomasz M. Kowalski1,
Radosław Adamus1, Krzysztof Kaczmarski2, Kazimierz Subieta3

1Technical University of Łódź, Computer Engineering Department
Stefanowskiego 18/22, 90-924 Łódź, Poland

{kamil, jacenty, tkowals, radamus}@kis.p.lodz.pl
2Warsaw University of Technology

Faculty of Mathematics and Information Science
Plac Politechniki 1, 00-661 Warsaw, Poland

kaczmars@mini.pw.edu.pl
3Polish-Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warsaw, Poland
subieta@pjwstk.edu.pl

Abstract. The article describes the problem of integration of distributed,
heterogeneous and fragmented collections of data with application of the
virtual repository and the data grid concept. The technology involves: wrap-
pers enveloping external resources, a virtual network (based on the peer-to-
peer technology) responsible for integration of data into one global schema
and a distributed index for speeding-up data retrieval. Authors present a
method for obtaining data from heterogeneously structured external databa-
ses and then a procedure of integration the data to one, commonly available,

∗This research work is funded from the science finances in years 2010/2012 as a research project
nr N N516 423438.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lodz University of Technology Repository

https://core.ac.uk/display/53096335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


26 On Distributed Data Processing in Data Grid Architecture. . .

global schema. The core of the described solution is based on the Stack-
Based Query Language (SBQL) and virtual updatable SBQL views. The sys-
tem transport and indexing layer is based on the P2P architecture.
Keywords: virtual repository, wrapper, object to relational mapping, P2P,
distributed index, grid integration.

1. Introduction

A grid is a novel technology widely researched by many academic and indus-
trial organizations. Recently, every year there are organized more than 10 different
grid-oriented conferences in the world. The grid-related researches are very im-
portant not only in computer science but also in business area. There are lot of
different approaches and solutions for grid realizations for different resources and
processes.

Formerly a grid was referred mostly to computational networks, however, due
to the rapid evolution of the Internet technologies and increase of a worldwide
business information exchange, there have arisen further expectations towards grid
systems. Well known P2P systems, where communities manage a flat data, are
not sufficient in contemporary business applications. Thus, people want to reach
higher forms of information processing and integration a structured data. Such
data come mainly from database resources. These new opportunities have opened
doors for our proposal which deals with a distributed parallel database content,
where various data and service resources residing in separate locations can be vir-
tually available through their global representation. This technology is referred to
as a data-intensive grid or just a data grid. Such a global representation (a view)
should abstract users from all the technical aspects of the process of a data inte-
gration (which concerns location, heterogeneity, fragmentation, replication, redun-
dancy, etc.), and which is referred to a transparency. The effect of the transparency
requires enveloping (wrapping) the grid resources with dedicated programmatic
structures - wrappers.

The paper is focused on the data grid (DG) architecture devoted to data-inten-
sive applications. It covers technical aspects of data processing in the virtual repos-
itory (VR) and try to describe a complete architecture for transparent processing
of different data formats. The proposal rely on the Stack Based Approach (SBA)
and the query/programming language SBQL (based on SBA). The VR platform
implementation is based on the prototype od an object oriented database environ-



K. Kuliberda et al. 27

ment ODRA. [20]. The main VR components includes a peer-to-peer transport
platform (TP) as a non-limited communication middle-layer, a global index for re-
sources indexation and an object-to-relational wrapper for sharing legacy data in
the VR environment. In our opinion this architecture is well suited to many situ-
ations where distributed, heterogeneous and redundant data resources that are to
be virtually integrated into a centralized, homogeneous and non-redundant whole.
The important element of the VR architecture is an distributed index (DI) for in-
dexing distributed data. The VR deals with some aspects of higher forms of dis-
tribution transparency and offers some common infrastructures build on top of the
grid, including the trust infrastructure (security, privacy, licensing, payments), web
services, distributed transactions, workflow management, etc.

Contemporarily, there are a lot of solutions where various forms of data from
distributed resources become unified into one VR with a common data schema.
Such approaches are popular in database environments and they let users to achieve
many forms of transparent accesses to heterogeneous resources. In such solutions
a user is not aware of an actual data form as he or she gets only needed information
in the best shape for a particular use. Among many other new concepts in modern
databases this branch evolves and develops very quickly as an attractive answer to
business needs. There are many potential applications of dynamic data integration
technologies in a modern society, where data must be accessible from anywhere, at
any time, for example e-Government, e-University or e-Hospital. Common tech-
nological approaches involve a semantic data description and an ontology usage
extended by logic-based programs that try to understand user needs, collect data
and transform it to a desired form (RDF, RDFQL, OWL). Other commercial sys-
tems like Oracle-10G offer a flexible execution of distributed queries but they are
still limited by a data model and languages not sufficient for distributed queries, in
which programming suffers from inflexibility, complexity and many unpredictable
complications. There are also several open technologies designed to share or ex-
change data like Edutella [10], OGSA-DAI [11] and Piazza [17], [18].

In this article we present a data integration environment providing query-prog-
ramming language facilitates that, in our opinion, are able to express very complex
integration scenarios (including updates), and still keep programming model sim-
ple and easy to maintain. The rest of the paper is organized as follows. In Section
2 we present basic functional elements of VR and DG. In Section 2 subsections
there are discussed details of SBA and ODRA implementations, distributed data
representation inside VR with DI mechanism. There is also description of TP and
GI components with an appropriate integration data process. At the end of this sec-



28 On Distributed Data Processing in Data Grid Architecture. . .

tion there is an introduction to the generic wrapper architecture. Section 3 presents
in details an example how we integrate distributed resources. Section 4 concludes.

2. Details of a Virtual Repository and its Data Grid
Mechanism

Figure 1. The concept of a Virtual Repository. Users work with their own and
favorite view of resources not knowing the real data or services

The solutions exploiting virtual repositories (VR), currently available in the
field, implement particular approaches which are hard to reuse for other organiza-
tions and business goals. Processing in the VR comprises some complex issues.
One of them is updating virtual data seen through the VR. The state of research
on this problem is open, practically unexplored. Similar problems concern security



K. Kuliberda et al. 29

and global transaction infrastructures which are built over of the VR. Another one
concerns performance issues, in particular, a global query optimization concerning
our object oriented database query language as a user interface for the VR.

The problems described above lead to an idea of developing generic method-
ologies, environments, tools and languages that support quick development of a
grid with the virtual repository aiming at a particular application integration goal.
This problem can be solved within an architectural idea of the grid components
presented in Figure 1. This also reflects on a developing of concrete technical so-
lutions concerning particular components:

- developing a canonical model and a schema according to global user require-
ments (several directives like a business contract, a standard, law regulations, etc.).
The model and the schema should be implemented in a corresponding language
having both human and machine interpretations,

- developing local models and schemata of providers for participating local
data and service resources in terms of a canonical model and a schema, i.e. show-
ing how particular local providers contribute to the global schema,

- developing an integration schema exploiting a local schema and a global
schema which shows dependencies between local resource providers and the global
view and the dependencies between the local providers (redundancies, replications,
etc.),

- developing a communication middle-layer which performs on easy connec-
tion of VR participants and where data may be transported without any limitation
(e.g. NATs, firewalls, etc.) between all connected units. This module also must as-
sure keeping the VR and its contents up-to-date,

- developing a tool for treatment remote objects, it must create a transparent
process of catching the remote objects and make them available for local users like
their local objects,

Although, the literature contains many works concerning the above issues and
problems, the field is rather in a premature stage, far from a complex and universal
solution. Our research based on generic object-oriented database model with up-
datable views focused on unifying query languages and updatable views to design
well defined grid mechanisms creates a big chance to receive significant theoreti-
cal and practical results much beyond the current state of art.

The technical aspects of realization of the described idea assume an existence
of several cooperating technologies nearby. The principal aspect is a good design
of a virtual repository platform corresponding with two other aspects which are re-
sponsible for data resources maintenance (wrappers) and a business data exchange



30 On Distributed Data Processing in Data Grid Architecture. . .

including a grid security and its management (a TP). The concept concerns ex-
isting individual software modules with interconnectivity mechanisms enabling a
restricted and specified participation of data processing. It has an original and gen-
eral tendency. The modules may be developed and implemented according to the
idea of a project’s architect.

Our concept assumes the following strategies:
- a virtual repository (VR) - physically available with applications based on

the previously described architecture. Parts of a repository will be client, provider
application and management application.

- a transport platform (TP) [6] - determines independent software environment
responsible for free distributed transaction processing. The platform particularly
should grant an unlimited physical access to a grid network for clients and resource
providers (units) and an assurance of a well formed protocol for an information in-
terchange. It is based on a centrally managed peer-to-peer network infrastructure.
The following P2P features should assure operations such as: unit unique identi-
fying, unit naming, units’ interconnections, network security, etc. Other important
aspects keep resources location transparent for acting units, a scalability of a net-
work, an independence of a physical network configuration and naming. All these
aspects can be developed using a multiprotocol, fully programmable P2P platform
of the JXTA project [13].

- import/export adapters and wrappers - mechanisms supporting a grid archi-
tecture to import and export local resources which may contribute to a virtual
repository. They are software modules enabling a resource provider’s services ex-
ploitation. Each of grid clients and providers will be equipped with, a user selected
or corresponding to a grid, contribution schema module. Such module can discover
local data and by the views mechanisms grant access as a part of a virtual reposi-
tory [4].

- developing assumptions concerning export wrappers for particular providers
sharing their resources.

2.1. SBA and SBQL in ODRA Platform

Integration of the distributed data requires sophisticated and flexible platform
with an adequate set of features including:

- generic data model that is able to express wide range of possible models of
data sources,

- powerful query/programming language with full computational power of pro-



K. Kuliberda et al. 31

gramming languages seamlessly integrated with a high-level query languages ca-
pabilities,

- virtual views with full update functionality that allow to: wrap local resources
into a common data model; build global applications through integration of local
resources; customize global assets to the needs of a particular client applications.

All the above mentioned features are hardly to achieve using current state-of-
the-art platforms, programming and/or query languages and common data models.
Fortunately the methodology called Stack Based Approach (SBA) to query-prog-
ramming languages [14], [15] is able to equip the SBA-based platforms with all
the tools to work out required solution. SBA extends the database programming
with all the popular object-oriented mechanism and introduces new unknown pre-
viously, like e.g. dynamic object roles and virtual updatable views.

The query language, which is based on SBA, is called Stack Based Query
Language (SBQL) [14], [15]. It is new self-contained query/programming lan-
guage without distinction between traditional programming language expressions
and declarative constructs (queries) for data processing. SBQL is defined on very
general data store model based on object relativism and full internal identification
principles.

SBQL also support imperative constructs and mechanisms, e.g.: control struc-
tures, procedures, classes, interfaces, modules. One of the most important features
of SBQL are virtual updatable object views [19]. The entirely new property of
SBQL views is their full updatability. View designer/programmer has full control
over the update operations that are performed on the virtual objects defined by the
view. There are no restrictions concerning the type of allowed operation. The view
definition can contain nested view definition, procedures, variables, etc.

The advantages of SBA and SBQL have been implemented in a project called
ODRA (Object Database for Rapid Application development) [20]. The aim of the
ODRA is to design an object-oriented application development platform - the tool
for future database application programmers. Because the ODRA features are still
under development and continuous extension, below we summarize only the most
important ones:

- core of the ODRA environment is the SBQL language defined for a general
data store model based on the object relativism principle. There are no dangling
pointers and null values,

- queries are treat in the same way as expressions in popular programming
languages. The design is based on the compositionality principle (e.g. select-from-
where syntactic sugar is avoided),



32 On Distributed Data Processing in Data Grid Architecture. . .

- names occurring in queries are bound using environment stack (ENVS), a
structure well known from popular programming languages implementations,

- operators are divided for the sake of its association with the ENVS: alge-
braic (e.g. +, -, auxiliary name) do not use ENVS; and non-algebraic (navigation,
where, quantifiers, join, etc.) which use it in a similar way to procedures (opens
new ENVS section and execute against new ENVS state),

- ODRA introduces the concept of updatable object views that allows perform-
ing a transparent update operation on a virtual data. The views are the core for data
and application integration using ODRA [4],

- ODRA implementation includes strong query optimization techniques based
on query rewrite (procedures and views rewrite), query modification (independent
sub-queries, removing dead sub-queries) [21] and indices,

- For execution of SBQL programme the ODRA provides virtual execution
mechanism called Juliet. The Juliet virtual machine consists of bytecode, bytecode
interpreter and set of services (virtual memory, scheduling, loading, security),

- ODRA is able to plug an existing data sources through wrappers (e.g. rela-
tional data) and filters (e.g. XML and RDF). Next, such a data can be queried with
SBQL queries.

All the above mentioned features of the ODRA environment predestine the
platform to be an excellent tool for implementation of virtual repositories for data
grid applications.

2.2. Distributed Data Representation through Data Grid in Virtual
Repository

The proposal for processing distributed and heterogeneous resources presented
in previous subchapter assumes different approach to work with data than similar
solutions like [10], [11], [16], [17]. Our solution represents a Data Grid architec-
ture which is described in details in [7]. We claim that neither data nor services
can be copied, replicated and maintained in the centralized server. They are to be
supplied, stored, processed and maintained on their autonomous sites [7], [8]. The
external resources should be easily pluggable into the system as well as users can
appear and disappear unexpectedly.

A user as well as a data provider (see Figure 1) may plug into a VR and use
its resources according to his or her requirements, availability of the resources and
assigned privileges. The goal of our research is to design a platform where all
users and providers are able to access multiple distributed resources and work on



K. Kuliberda et al. 33

the ground of a global schema for all the accessible data and services. A virtual
repository should present a middleware supplying a fully transparent access to dis-
tributed, heterogeneous and fragmented resources from its clients [1], [5], [6].

Looking on the system at its participants’ side (clients and data providers) there
are two kinds of data schemata. The first, a contributory schema - it is description
of a local resource acceptable for the virtual repository. A virtual repository can
deal only with the data which is exported by the decision of a local administrator.
Another reason for limited access to local resources is a consortium agreement,
which is established for the VR. The agreement has certain business goals and
not need to accept any data from any provider [5], [6]. As the second schema
we claim, is a description of global data and services available for clients. Such
schema is named global user schema.

The basic assignment to solve for the VR is transformation of local client’s data
through contributory schemata into a global user schema. The transformation can
perform more sophisticated homogenization of data and integration of fragmented
collections. This is done by updatable views which are able to perform any data
transformation and support view updates without limitations which are commonly
known from other similar systems. Our views have the full algorithmic power of
programming languages, thus they are much more powerful than e.g. SQL views.

A responsibility of management of grid contents through access permissions,
discovering data and resources, controlling location of resources, and indexing all
grid attributes are basic tasks of a global infrastructure. The design and imple-
mentation challenge is a method of combining and enabling non-limited both-way
processing of clients’ and data providers’ contents which participate in VR’s global
virtual store [8].

Our DG architecture provides a views system (Set of Views in Figure 1) avail-
able to every VR’s participant. Moreover, each data provider possesses a view
which transforms its local share into an acceptable contribution, a contributory
view. Providers may also use extended wrappers to existing DBMS systems (see
sub-chapter 2.7 and [6], [7]). Similarly, a client uses an integration view to con-
sume needed resources in a form acceptable for his or her applications. This view
is performing the main task of data transformation and its designer must be aware
of data fragmentation, replication, redundancies, etc. [3], [5]. This transformation
may be described by an integration schema prepared by business experts or being
a result of automatic semantic-based analysis. The problem is how to allow trans-
parent plugging in new resources and how to incorporate them into existing and
working views. This question is discussed in section 2.4.



34 On Distributed Data Processing in Data Grid Architecture. . .

2.3. The Distributed Index for Virtual Repository

Indices are auxiliary (redundant) database structures stored at a server side.
A database administrator manages a pool of indices generating new or removing
them depending on the need. As indices in the end of the book are used for quick
page finding, database indices quicken retrieving objects (or records) matching
given criteria. The advantage of indices is their relatively small size (comparing to
a whole database) and a single aspect search, which makes their organization very
efficient.

Implementing indexing in an object-oriented data grid requires applying stan-
dard local indexing techniques and other techniques dedicated to a distributed da-
tabase environment. This issue is still not deeply studied and requires introducing
new solutions. Authors focus on Scalable Distributed Data Structure (SDDS) [9]
as a basis for a distributed index organization in order to optimally utilize data grid
computational resources.

A query optimization schema for local and distributed indexing of data which
considers an index transparency is under development and implementation in the
ODRA prototype. This aspect should be presented in a separate paper due to its
complexity and introduced solutions. So far in the proposal [3] a grid stores just
server link objects. However, it could also take care of indices. Building global
indices kept by a virtual store has very significant potential for an optimization of
grid computing. An idle time of a global virtual store can be filled with indexing
and cataloguing data held by local servers.

For users a grid technology should satisfy following general requirements: a
transparency, a security, an interoperability, an efficiency and a pragmatic univer-
sality.

The most important for a complexity of a design, programming and a mainte-
nance effort addressing distributed data and services is a transparency. It reduces a
complexity of a global application. One of forms of a transparency is in a field of
indexing. As in relational databases, programmer must not to be aware of indices
that are introduced to improve performance, because they are used automatically
during a query evaluation. Therefore, an administrator of a database can freely
generate new indices and remove them without need to change a code of applica-
tions.

Knowledge about indices existing in local stores is not and does not need to
be available on a level of a global schema. A grid user query, during a process of
rewriting optimization, in many cases can be decomposed into sub-queries sent to



K. Kuliberda et al. 35

particular grid participants. Such a sub-query concerns data stored locally on a tar-
get peer and does not take advantage of existing local indices. Before an evaluation
a grid participant can optimize it by rewriting according to a local metabase and a
local index repository. There are many advantages of local indexing strategy in a
distributed environment:

- data and indices are localized on the same server so only local methods for
preserving an indices cohesion are needed,

- global query optimization is divided between grid peers on global and local
levels. A global optimizer does not have to take into account local optimizations.

Local indexing is transparent to a grid. Local indexing is not always sufficient
regarding a computational power of a grid, however we purpose using distributed
index data-structure. SDDS is a scalable distributed data structure introduced by
[9] which deals with storing index positions in a file distributed over a given net-
work. Its properties make it a good candidate for indexing local or global data in a
grid infrastructure. SDDS uses LH* which generalizes a linear hashing technology
to a distributed memory or disk files. An application of SDDS introduces follow-
ing features in distributed indexing:

- avoids a central address calculus spot,
- supports a parallel and distributed query evaluation,
- provides a concurrency transparency,
- scalability - it does not assume any constraints in a size or a capacity,
- SDDS file expands over new servers when an optimal load of current servers

is reached,
- index updating does not demand a global refresh on servers or clients,
- over 65 percent of a SDDS file is used,
- in general a small number of messages between servers (1 per random insert;

2 per key search).
With all these characteristic SDDS outperforms in an efficiency of the central-

ized index directory approach or any static data structures, therefore, it is planned
to be implemented in a currently developed grid platform prototype [2], [3], [4].

Integration of distributed resources into grid, as in examples shown in next
sections, due to large amount of data to be processed needs optimization. As it was
shown in [12] strong optimization methods can be easily introduced in SBA ap-
proach. Indexing plays a very important role in optimizing evaluation of integrat-
ing queries because it significantly reduces amount of processed data and therefore
lightens a grids load.



36 On Distributed Data Processing in Data Grid Architecture. . .

Figure 2. Data grid communication layers and their dependencies

2.4. The Transport Platform for Data Obtaining

A grid oriented communication requires several additional solutions for flexi-
ble data transportation between the VR’s participants through its virtual network.
Especially the transport platform solution should comply following functionali-
ties like; (1) transparent data processing (queries and results), (2) transparent in-
tegration of resources, (3) dynamic users joining, (4) rapid indexation of avail-
able resources, (5) trust infrastructure for contributing participants. The general
architecture of the TP concept solves the above issues through a middleware plat-
form mechanism designed for an easy and scalable integration of a community
of database users. It creates an abstraction method for a communication in a grid



K. Kuliberda et al. 37

community, resulting in a unique and simple database grid, processed in a parallel
peer-to-peer (P2P) architecture [6] realized with the JXTA package [13]. Proposed
realization of the TP has an additional advantage, the P2P communication is al-
ways non-dependent of TCP/IP stack limitations, e.g. firewalls, NAT systems and
encapsulated private corporate restrictions. Thus, our grid solution is more flexible
for the users than OGSA [11] and Piazza [16], [17] where communication relies on
standard client-server TCP/IP protocols. Additionally our solution creates network
processes (such as an access to the resources, joining and leaving the grid) that are
transparent for the participants.

User grid interfaces - in this proposal database engines - are placed over the
P2P network middleware. DBMS-s work as heterogeneous data stores, but in fact
they are transparently integrated in the VR through P2P interfaces (separate trans-
parent applications placed in P2P virtual network). Users can process their own
local data schemata, but additionally they are able to work on remote business in-
formation from global schema available for all contributors. This part of data grid
activity is implemented with top-level user applications available through data-
base engines and SBQL query language [14], [15], see OODBMS Engines Layer
in Figure 2. In such architecture, databases connected to the virtual network’s P2P
applications arrange unique parallel communication between physical computers
for an unlimited business information exchange.

Our proposed virtual network has a centralized architecture whose crucial ele-
ment is a central management unit (CMU) showed in Figure 2. There is an assump-
tion that inside the P2P virtual network could be placed only one CMU peer being
responsible for a DG’s lifetime. Besides, it manages the VR integrity and resource
accessibility. At the P2P virtual network level, the CMU has some responsibilities,
the most important are; (1) a creation of the grid network, (2) a managing the grid
network, (3) a handling errors and status of the grid network.

For the regular VR users - we mean clients and data providers, separate P2P
applications are implemented. They are depicted on a Figure 2 as Client Peers.
These applications are interfaces to the VR for OODBMS users’ engines. In this
architecture (see Figure 2) each database has its unique name in local and global
schemata which is bound with the P2P application’s unique name in the virtual
network. If current database ID is stored in the CMU, a user can cooperate with
others and process information in the VR (according to a trust infrastructure). This
is only possible through the OODBMS engine with a transparent P2P application.
Unique peer identifiers are a part of P2P implementation of JXTA platform [13],
[18].



38 On Distributed Data Processing in Data Grid Architecture. . .

A P2P application contains an additional separate embedded protocol for a
local communication with OODBMS engine. All exceptions concerning a local
database operation, virtual network availability and TCP/IP network state are han-
dled by this protocol and P2P application which is responsible for a local part of
grid maintenance. Notice that in one local environment two separate applications
(P2P virtual network application and OODBMS engine) reside and compose (in
grid aspects) one logical application [6].

2.5. Remote Objects in Distributed Resources

As a result of data processing within distributed database nodes, objects may be
exchanged and sent between clients and data providers. Transport platform should
not limit this behavior if it is only not forbidden by certain VR agreement regula-
tions. We assume, that an object of any kind (simple or complex data or procedure)
may travel from its original server to any other server in the VR using the TP. Such
an object living in place other than its origin is called a remote object. Again our
system should not limit operations that may be done on remote objects if it is not
forbidden by organization’s agreement. Such an agreement may say, for example,
that a patient object may be read by any application and may be updated by any
application which has rights of at least a hospital.

If there are many peers in the system, there are also many views which are
used to share and access data. After evaluation of a query on a global level (within
responsibilities of the global schema) an object may be exchanged many times be-
fore it reaches its destination and thus, its update may go through several servers.
To be able to sent any object to any destination and also track its update we must
use global object identifiers and path tracking.

Our TP solves this problem in rather classical way. Each object gets a unique
identification in the time it is created. Unique global object’s id is based on unique
identification of its original server. If it is sent to another node its identification
part is extended by the identification of the destination node. Subsequent object’s
exchange may add another parts to its identification. In this way remote object’s
global identification contains not only its source node and identification within that
node, but also all the path it traveled to the destination node. If one wants to update
a remote object all the nodes which took part in its travel may be informed about
the change and may participate in change propagation.

For example, let us consider two steps of address book data exchange. The first
node publishes just names of employers. The second node (first stage of data inte-



K. Kuliberda et al. 39

gration) adds address information to each of the employee object. The third node
(second stage of data integration) adds telephone and email information. If such a
complex object is modified in another node, update information may be sent to all
the nodes participating in the object construction. What’s more important a node
responsible for certain part of a remote object may control and verify the update
procedure.

2.6. Generic Integration Model for Distributed Resources

The real grid systems may have property of permanently changing resources.
Thus, our VR technology must react on these changes and a state of VR must
be permanently updated. We claim it to be the most important aspect of the VR
operating. For an easy management of the VR’s content, we have equipped the
CMU with a global index mechanism, which covers all technical networking de-
tails, management activities and is also a tool for efficient programming in a dy-
namically changing environment. The global index not necessarily has to be really
centralized as there are many ways to distribute its tasks. However, the system
needs this kind of additional control and it does not matter how it is organized.
Its tasks are: (1) collecting information about available clients and data providers,
(2) keeping information on alive peers, (3) indexing location of available objects,
(4) managing information about fragmentation types of the available objects, (4)
registering and storing information on available resources, (5) keeping network
statistics.

The global index is an object which has a complex structure. Its interior reflects
object structure of the VR’s global schema. The global index can be accessed with
SBQL syntax (as a typical database object) on each database engine plugged into
the VR. This means that we can evaluate the queries on its contents. There is how-
ever one substantial difference from processing typical virtual repository’s objects
- as a result of an expression evaluation CMU can return only an actual content of
its index, like a location list of on-line grid participants.

The global index is the basic source of knowledge about the content of the VR.
Basing on the indexed information, referring the views’ system, we can easily inte-
grate any remote data inside the VR. If the data have been indexed already, it can be
transparently processed without any additional external interference. Additionally
the global index contains objects for characterizing the type of data fragmentation.
These objects are dynamically managed through the views’ systems whenever the
VR contents undergoes a change (e.g. when a resource joins or disconnects). The



40 On Distributed Data Processing in Data Grid Architecture. . .

global index keeps also dependencies between particular objects (complexity of
the objects, etc.) as they are organized in a global schema.

Each indexed object in the global index is equipped with a special sub-object
called HFrag (for horizontal fragmentation) or VFrag (for vertical fragmentation).
Each of them keeps a special attribute named ServerName, whose content is a
remote object - an identifier of a remote data source (see Figure 5). If any new
resource appears in a virtual repository, there will be added a suitable ServerName
into the global index automatically with appropriate information about it.

Accessing the remote data can be achieved by calling the global index with:
GlobalIndex.Name-of-object-from-global-scheme.(Name-of-subobject).
HFrag-or-VFrag-object.ServerName-object;

Because every change of the virtual repository’s content is denoted in the
global index, accessing data in this way is the only correct one.

2.7. Wrapping External Data Models into Virtual Repository

A wide presentation of wrapping problems is discussed in previous works [7],
[8]. Now, we present some implementation aspects of the mentioned wrapper mod-
ules. A grid resource (the ODRA engine) denotes any data resource providing an
interface capable of executing SBQL queries and returning SBQL result objects as
their results (a local query optimization should be performed also, if possible). A
nature of such a resource is irrelevant, as only the mentioned capability is impor-
tant. In the simplest case, where a resource is an ODRA database, its interface has a
direct access to a data store and it is similar to an ODRA database engine (DBMS).
However, as our grid aims to integrate existing business resources, whose models
are mainly relational ones, an interface becomes much more complicated, as there
is no directly available data store - SBQL result objects must be created dynami-
cally basing on results returned from SQL relational queries evaluated directly in
a local RDBMS.

Such cases (the most common in our grid’s real-life application) force intro-
ducing additional middleware, a wrapper showed in Figure 4 as a client-server
solution. This kind of architecture was applied for a few reasons. One of them are
simplicity of implementation and portability. A standard ODRA database can be
extended with as many wrappers as needed (e.g. for relational or semistructured
data stores) and plugged into any resource model without any lost of its primary
performance.



K. Kuliberda et al. 41

Figure 3. A general architecture of data grid including integration process and
wrapper modules

Furthermore, a wrapper server can be developed independently, providing a
communication protocol to its client. Of course, an ODRA database with a wrap-
per’s client can work on a separate machine.

A query evaluation process in our data grid environment is depicted in Fig-
ure 4. One of the global grid applications sends a query (arrow 1). This query is
expressed with SBQL, as it refers to the business object oriented model available
to grid users. According to the global schema and its information on data frag-
mentation, replication and physical location (obtained from integration schemata),
the query is sent to appropriate resources. In Figure 4 this stage is realized with
arrows 2, 2a and 2b. A notion ’partial query’ is general, as in some cases each
resource-oriented query can be the same (e.g. in case of a pure horizontal data
fragmentation), however in most situations ’partial queries’ are different. Query
processing corresponding to arrows 2a and 2b is out of the scope of the paper as



42 On Distributed Data Processing in Data Grid Architecture. . .

Figure 4. Query evaluation through the wrapper

those grid resources are regarded here as black boxes (any resources conforming
with grid requirements, including relational ones described here).

A query evaluation process in our data grid environment is depicted in Fig-
ure 4. One of the global grid applications sends a query (arrow 1). This query is
expressed with SBQL, as it refers to the business object oriented model available
to grid users. According to the global schema and its information on data frag-
mentation, replication and physical location (obtained from integration schemata),



K. Kuliberda et al. 43

the query is sent to appropriate resources. In Figure 4 this stage is realized with
arrows 2, 2a and 2b. A notion ’partial query’ is general, as in some cases each
resource-oriented query can be the same (e.g. in case of a pure horizontal data
fragmentation), however in most situations ’partial queries’ are different. Query
processing corresponding to arrows 2a and 2b is out of the scope of the paper as
those grid resources are regarded here as black boxes (any resources conforming
with grid requirements, including relational ones described here).

The partial query aiming at our relational resource is further processed with a
resource’s ODRA interface. As mentioned above, the local interface does not have
its physical data store, it can only retrieve required data from its RDBMS on-the-
fly. First, the interface performs a query optimization. Apart from efficient SBQL
optimization rules applied at any grid resource’s interface, here we can also trans-
form queries so that powerful native SQL optimizers can work and amounts of data
retrieved from the RDBMS are acceptably small. Relational optimization infor-
mation (indices, cardinalities, primary-foreign key relationships, etc.) is provided
by the wrapper server’s resource model (arrow 3) and appropriate SBQL query
syntax tree transformations are performed. These transformations are based on
finding in the tree patterns resembling SQL-optimizable queries. Appropriate tree
branches (responsible for such SQL queries) are substituted with calls to execute
immediately procedures with optimizable SQL queries (their evaluation at the
resource is fast and efficient and returned results are acceptably small).

Once syntax tree transformations are finished, the interface starts a regular
SBQL query evaluation. Whenever it finds an execute immediately procedure,
its SQL query is sent to the server via the client (arrows 4, the client passed SQL
queries without any modification). The server executes SQL queries as a resource
client (JDBC connection), arrow 5, and their results, arrow 6, are encapsulated and
sent to the client (arrow 7). Subsequently, the client creates SBQL result objects
from results returned from the server (it cannot be accomplished at the resource
site, which is another crucial reason for a client-server architecture) and puts them
on regular SBQL stacks for further evaluation (arrow 8). In the preferable case
(which is not always possible), results returned from the server are supplied with
TIDs (tuple identifiers), which enables parameterizing SQL queries within the
SBQL syntax tree with intermediate results of SBQL subqueries. Having finished
its evaluation, the interface sends it ’partial result’ upwards (arrow 9), where it is
combined with results returned from other resources (arrows 9a and 9b) and the
global query result is composed (depending on fragmentation types, redundancies
and replication). This result is returned to the global application (arrow 10).



44 On Distributed Data Processing in Data Grid Architecture. . .

In a next chapter we present wrapping example for data set which is possible
in real-life events.

3. Details of Virtual Repository and Its Data Grid
Mechanism

Here we present little complicated example of retrieving particular data objects
through our grid solution (VR) for external RDBMS resources which are available
through the wrapper modules. At the beginning we introduce how we create and
use integration of distributed resources, later we will show an example how we
obtain data from external DBMS-s.

3.1. An Integration

Regarding our previous solution defining an integration mechanism for objects
fragmented horizontally and vertically (for details see [5]) there was ability to in-
vestigate a real life distributed data composition. In this example we deal with
different data resources where some of them can store an object with different sub-
objects. An object also can store simultaneously identical sub-objects in different
resources as a form of data replication. For this purpose a GlobalIndex object was
prepared which is also a separate mechanism providing basic information for data
integration process. Additionally, it is equipped with HFrag and VFrag subobjects
for creating a generic apparatus where all types of data forms and extensions can
be addressed.

The situation becomes dramatic if we assume that all of physical data are
stored in homogeneous RDBMS-s. This fact forces us to use wrapper modules
and catch the data from external DBMS into VR. We will use a full power of our
solution to process the data in this exampled grid. First we will show integration
procedures for distributed data, after an example on retrieving these data from ex-
ternal resources through wrappers will be shown. All examples use following data
structure in the VR (see Figure 5).

The current example shows a method of creating virtual objects from a mixed
fragmentation (horizontal and vertical together) including extended dependencies
between objects in resources having the same structure, but different data content.
This is the most common situation encountered in business data processing, like
the following exampled health centre data processing system (Figure 6 and 7).



K. Kuliberda et al. 45

Figure 5. Virtual repository global data schema

Taking an assumption that every health agency has different location and some of
them are equipped with a data store containing information of their doctors and
wards, then processing must deal with horizontal fragmentation of ’Doctor’ and
’Ward’ objects. Every health agency must be also equipped with a database of
their patients. This is represented by ’Patient’ complex objects.

Because these agencies serve special health services according to their specific
roles as health institutions (hospitals, clinics, etc.) the situation in data fragmenta-
tion becomes more complicated. The patient’s personal data should be the same in
every health agency, but their treatment history or medicines prescribed are differ-
ent in every place. Moreover, the system also stores the archival data separately. In
this case there must be used a mixed form of a data fragmentation. Health-related
patient’s data are fragmented vertically on different servers where their personal
data, in fact, creates implicit replicas. In this situation we also assume that for each
’Patient’ object in a mixed fragmentation contains ’PESEL’ subobjects - id number
with identical content in every resource. Thus here utilization the knowledge about
’PESEL’ content must be employed to make a join on fragmented ’Patient’ ob-
jects. The PESEL attribute is a unique identifier (predicate) for joining distributed
objects into a virtual one. Please notice that in the current example we know ex-
plicitly which objects are fragmented and how. This situation is depicted in Figure
6, according to this, the content of central index is in Figure 7.

In the example one needs to obtain a list of patients who suffer from "tuber-
culosis" and who are assigned to doctors working in "cardiology" ward. A query
formulated according to specified views definitions should be following:
PatientGrid where (Disease = "tuberculosis" and
isAssignedTo.DoctorGrid.worksIn.WardGrid.Name = "cardiology");

Basing on solutions presented in [5] defining an integration mechanism for ob-
jects fragmented horizontally and vertically a creation of view definition for mixed



46 On Distributed Data Processing in Data Grid Architecture. . .

Figure 6. Integration of distributed databases (with mixed object fragmentation)
into one virtual structure for a virtual repository

form of fragmentation is rather easy. At first, there must be defined joining proce-
dures for vertical fragmentations in views. After this, the resulting virtual objects
must be merged with existing physical objects in a horizontal fragmentation by
creating union views’ procedures. As a result, this combination of views generates
complete virtual objects. In example; the DoctorGrid virtual objects definitions
(through object views) create virtual objects from horizontal fragmentation. The
same situation is for WardGrid objects. PatientGrid objects have to be defined
differently, because dependencies between objects and their contents in different
resources must be considered. In this example we deal with implicit object repli-
cas:

create view DoctorGridDef {
virtual_objects DoctorGrid {
//return remote not fragmented objects doc
return (GlobalIndex.Doctor.HFrag.ServerName).Doctor as doc};
//the result of retrieval virtual objects
on_retrieve do {return deref(doc)};



K. Kuliberda et al. 47

create view NameDef {
//subobjects Name of object DoctorGrid
virtual_objects Name {return doc.Name as dn};
//the result of retrieval virtual objects

on_retrieve do {return deref(dn)};
};

create view SurnameDef {//?};

create view worksInDef {
virtual_pointers worksIn {return doc.WorksIn as wi};
on_retrieve do {return deref(wi)};
};
};

create view WardGridDef {
virtual_objects WardGrid {
return (GlobalIndex.Ward.HFrag.ServerName).Ward as war};
on_retrieve do {return deref(war)};
create view NameDef {
virtual_objects Name {return war.Name as wn};
on_retrieve do {return deref(wn)};
};

create view IDDef { //?};
};

create view PatientGridDef {
//below procedure integrates all physical ’Patient’ objects into complete virtual
objects ’PatientGrid’ independent of fragmentation issues, please notice that some
objects may have data replicas which are not known explicitly for a VR creator
(like personal data)
virtual_objects PatientGrid {
return {
//create a bag of identifiers to all distributed Patient objects
bag ((GlobalIndex.Patient.HFrag.ServerName).Patient as patH),



48 On Distributed Data Processing in Data Grid Architecture. . .

(GlobalIndex.Patient.VFrag.ServerName).Patient as patV)).
//create a list of all PESEL objects from all servers excluding repetitions as uniquePe-
sel
((distinct(patH.PESEL) as uniquePesel).
//basing on the unique pesel list, for each unique pesel create bags containing ref-
erences to Patient objects with the current pesel from every remote resource/server
accessible as Patients virtual object
bag((ref PatH where PESEL = uniquePesel),
(ref PatV where PESEL = uniquePesel))) as Patients };
//as a result we get as many Patient objects as instances of unique PESEL objects
available from all servers, please notice that some PatientGrid objects can have
replicas with personal data objects such Name, Surname, Address, PESEL, more-
over to solve the situation where query about Name returns a number names for
one PESEL we propose additional procedures of retrieving and calling these ob-
jects separately.
};
//return a complete information about every Patient
on_retrieve do { return deref(Patients) };

create view DiseaseDef {
virtual_objects Disease { return distinct(Patients.Disease
as PatDis };
//return remote not fragmented Disease objects without repetitions
on_retrieve do {return deref(distinct(PatDis))};
};
//here should be definitions of access procedures to achieve; Name objects, Sur-
name objects, Medicines objects and PESEL objects that are similar to access
procedure of Disease objects

create view isAssignedToDef { virtual_pointers isAssignedTo
{return Patients.isAssignedTo as iat};
on_retrieve do {return deref(iat)};
};
};

The above example is focused on processing a data schema showed in Figure
5, so it demonstrates only the necessary procedures of integration objects shaped in



K. Kuliberda et al. 49

Figure 7. The contents of CMU global index for example of mixed fragmentation

different fragmentation applying to exampled query. Actually, the presented pro-
posal has no limitations in designing a fully automatic integration process by ex-
tending the above views with the additional integration routines (like for ’Disease’
and ’Name’ objects) for every object indexed in the CMU global index.

3.2. Wrapping

Let us consider an object-oriented data model available in the VR (see Fig-
ure 5). Its relational reflection available at back-end of the wrappers is presented
on Figure 8. For the exemplification clearness we utilize only the most important
of its parts, moreover, if we use all its tables, the example will be not acceptable
long to show it in this paper. All the table names in relational model are extended
by ’R’ which means ’relational’ to increase the clearness.

Please notice that all relationships between relational tables in OO data schema
are realized with virtual pointers like worksIn, isAssignedTo, etc.:



50 On Distributed Data Processing in Data Grid Architecture. . .

create view DoctorDef {
virtual_objects Doctor {return DoctorR as doc };
virtual_objects Doctor(docID)
{return (DoctorR where ID == docID) as doc };

create view NameDef {
virtual_objects Name {return doc.Name as dn};
on_retrieve do {return dn};
};

create view worksInDef {
virtual_pointers worksIn {return DocToWardR.WardID as w};
on_retrieve do {return Ward(w) as Ward};
};
};

create view WardDef {
virtual_objects Ward {return WardR as war };
virtual_objects Ward(warID)
{return (WardR where ID == warID) as war };

create view NameDef {
virtual_objects Name {return war.Name as wn};
on_retrieve do {return wn};
};
};

create view PatientDef {
virtual_objects Patient {return PatientR as pat };
virtual_objects Patient(patID)
{return (PatientR where PESEL == patID) as pat };
on_retrieve do {return pat};

create view DiseasePatDef {
virtual_objects Disease {return DiseaseR as di};
virtual_objects Disease(disID)



K. Kuliberda et al. 51

Figure 8. The example of a relational schema, in reflection of OO model in Fig. 5

{return (DiseaseR where ID == disID) as di};
on_retrieve do {return (Disease(PatToDisR.DiseaseID)).Name};
};

create view isAssignedToDef {
virtual_pointers isAssignedTo {return PatToDocR.DoctorID as d};
on_retrieve do {return Doctor(d) as Doctor};
};
};

Consider a query appearing at the front-end of the wrapper, see example query
for integration in subsection 3.1 and some additional information about unique
indexes in relational tables (primary-foreign key integrity), the optimization pro-
cedures in wrapper are performed by the following steps:

1. Introduce implicit deref (dereference) functions:
Patient where (deref(Disease) = "cancer" and
isAssignedTo.Doctor.worksIn.Ward.deref(Name) = "cardiology");

2. Substitute deref with the invocation of on_retrieve function for virtual ob-
jects and on_navigate for virtual pointers:
Patient where ((Disease(PatToDisR.DiseaseID)).Name) = "cancer"
and isAssignedTo.(Doctor(d) as Doctor).Doctor.worksIn.Ward(w)
as Ward.Ward.(Name.wn) = "cardiology");



52 On Distributed Data Processing in Data Grid Architecture. . .

3. Substitute all view invocations with the queries from sack definitions:
PatientR where ((DiseaseR where ID ==
PatToDisR.DiseaseID as di).Name) = "cancer" and
(PatToDocR.DoctorID as d).(((DoctorR where ID == d) as doc)as
Doctor).Doctor.(DocToWardR.WardID as w).((WardR where ID == w)
as war) as Ward).Ward.((war.Name as wn).wn) = "cardiology");

4. Remove auxiliary names w and d:
PatientR where ((DiseaseR where ID ==
PatToDisR.DiseaseID).Name) = "cancer" and
(((DoctorR where ID == PatToDocR.DoctorID) as doc) as
Doctor).Doctor.(((WardR where ID == DocToWardR.WardID)
as war) as Ward).Ward.(war.Name) = "cardiology");

5. Remove auxiliary names doc and war:
PatientR where ((DiseaseR where ID ==
PatToDisR.DiseaseID).Name) = "cancer" and
((DoctorR where ID == PatToDocR.DoctorID) as
Doctor).Doctor.((WardR where ID == DocToWardR.WardID as
Ward).Ward.Name = "cardiology");

6. Decompose the query on small parts:
PatientR where ((DiseaseR where ID ==
PatToDisR.DiseaseID).Name) = "cancer" and
(DoctorR where ID == PatToDocR.DoctorID) and ((WardR where
ID == DocToWardR.WardID) and (WardR.Name = "cardiology")));

7. Here unique indexed sub-query can be substituted with
exec_immediately clause with SQL conversion:
PatientR where ((DiseaseR where ID ==
PatToDisR.DiseaseID and Name) = "cancer" and
(DoctorR where ID == PatToDocR.DoctorID) and
(exec_immediately (SELECT * FROM WardR WHERE ID ==
DocToWardR.WardID AND WardR.Name = "cardiology")));

8. Because another integrity constraint is available to the wrapper, the pattern is
detected and another exec_immediately substitution is performed:



K. Kuliberda et al. 53

PatientR where ((exec_immediately (
SELECT * FROM DiseaseR WHERE ID == PatToDisR.DiseaseID AND
DiseaseR.Name = "cancer") and
(DoctorR where ID == PatToDocR.DoctorID) and
(exec_immediately (SELECT * FROM WardR WHERE ID ==
DocToWardR.WardID AND WardR.Name = "cardiology")));

Either of the SQL queries invoked by exec_immediately clause is executed
in the local relational resource and pends native optimization procedures (with ap-
plication of indices and fast join, respectively).

4. Conclusions and Future Work

In this paper authors presented a complete solution to a transparent integration
of distributed data in the Virtual Repository mechanism and the Data Grid archi-
tecture. The solution utilizes a consistent combination of several technologies such
as; SBA object-oriented database as basic system for design a data grid architec-
ture; the SBA’s query language SBQL as an interface for processing distributed
data; virtual updatable views as a complex structure for a distributed data virtual-
ization into a global schema; P2P networks developed on the ground of JXTA as a
background layer for unlimited communication and finally a distributed index for
grid resources and object-oriented to relational wrapper idea plus its architecture
and example processing.

A preliminary implementation solves a very important issue of independence
between technical aspects of distributed data retrieving through the wrappers, man-
aging through set of views (including additional issues such as participants’ incor-
poration, resource contribution) and a logical virtual repository content scalability
(a business information processing). We expect that the presented solution will be
efficient and fully scalable. We also expect that due to the power of object-oriented
databases and SBQL such a mechanism will be more flexible than other similar
solutions (if they appear). The prototype is implemented and preliminarily tested.
Currently we are working on extending the presented idea to achieve better flex-
ibility for a real data models. This will include solutions to managing the data
replicas and redundancies residing inside distributed resources.



54 On Distributed Data Processing in Data Grid Architecture. . .

References

[1] Foster, I., Kesselman, C., Nick, J., and Tuecke, S., The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integra-
tion. Global Grid Forum, June 22, 2002.

[2] Habela, P., Kaczmarski, K., Kozankiewicz, H., Lentner, M., Stencel, K., and
Subieta, K., Data-Intensive Grid Computing Based on Updateable Views. ICS
PAS Report 974, June 2004.

[3] Kozankiewicz, H., Stencel, K., and Subieta, K., Implementation of Federated
Databases through Updateable Views. Proc. EGC 2005 - European Grid Con-
ference, Springer LNCS, 2005.

[4] Kozankiewicz, H., Stencel, K., and Subieta, K., Integration of Heteroge-
neous Resources through Updatable Views. ETNGRID2004 WETICE2004,
Proceedings published by IEEE.

[5] Kuliberda, K., Adamus, R., Wislicki, J., Kaczmarski, K., Kowalski, T., and
Subieta, K., Autonomous Layer for Data Integration in a Virtual Reposi-
tory. International Conference on Grid computing, high-performAnce and Dis-
tributed Applications (GADA’06), Springer 2006 LNCS 4276, pp. 1290-1304.

[6] Kuliberda, K., Kaczmarski, K., Adamus, R., Błaszczyk P., Balcerzak, G.,
and Subieta, K., Virtual Repository Supporting Integration of Pluginable Re-
sources. 17th DEXA 2006 and 2nd International Workshop on Data Manage-
ment in Global Data Repositories (GRep) 2006, Proc. in IEEE Computer So-
ciety.

[7] Kuliberda, K., Wislicki, J., Adamus, R., and Subieta, K., Object-Oriented
Wrapper for Relational Databases in the Data Grid Architecture. OTM Work-
shops 2005, Springer LNCS 3762, 2005, pp. 367-376.

[8] Kuliberda, K., Wislicki, J., Adamus, R., and Subieta, K., Object-Oriented
Wrapper for Semistructured Data in a Data Grid Architecture. 9th Interna-
tional Conference on Business Information Systems 2006, LNI vol. P-85, GI-
Edition 2006, pp. 528–542.

[9] Litwin, W., Nejmat, M. A., and Schneider, D. A., LH*: Scalable, Distributed
Database System. 1996. ACM Trans. Database Syst., 21(4) pp. 480-525.



K. Kuliberda et al. 55

[10] Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson,
M., Palmer, M., and Risch, T., EDUTELLA, a P2P networking infrastructure
based on RDF. Proc. Intl. World Wide Web Conference, 2002.

[11] Open Grid Services Architecture, Data Access and Integration Documenta-
tion, http://www.ogsadai.org.uk

[12] Plodzien, J., Optimization Methods in Object Query Languages, PhD Thesis.
IPIPAN, Warsaw 2000.

[13] Project JXTA Community: http://www.jxta.org (home-page)

[14] Subieta, K., Stack-Based Approach (SBA) and Stack-Based Query Language
(SBQL). http://www.ipipan.waw.pl/subieta, Description of SBA and SBQL,
2006

[15] Subieta, K., Theory and Construction of Object-Oriented Query Languages.
Editors of the Polish-Japanese Institute of Information Technology, 2004 (in
Polish)

[16] Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong,
X., Kadiyska, Y., Miklau, G., and Mork, P., The Piazza Peer Data Management
Project, ACM SIGMOD Record, Vol. 32, No. 3, 2003.

[17] Tatarinov, I. and Halevy, A., Efficient Query Reformulation in Peer Data
Management System, SIGMOD Conference 2004, pp. 539–550.

[18] Wilson, B., JXTA Book, http://www.brendonwilson.com/projects/jxta/ (home-
page)

[19] Kozankiewicz, H., Updateable Object Views. PhD Thesis, 2005,
http://www.ipipan.waw.pl/subieta/

[20] Lentner, M. and Subieta, K., ODRA: A Next Generation Object-
Oriented Environment for Rapid Database Application Development, 2006,
http://www.ipipan.waw.pl/subieta/artykuly/ODRA paperpl.pdf

[21] Plodzien, J. and Krakeni, A., Object Query Optimization in the Stack-Based
Approach. Proc. ADBIS Conf., Springer LNCS 1691, pp. 303-316, 1999.


