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Abstract. In this paper, a novel sliding mode flow controller design for the 
connection-oriented communication networks is proposed. The networks 
are modeled as discrete time systems with the available bandwidth acting 
as disturbance. The proposed controller is designed in such a way that 
the closed-loop system stability and fast, finite time error convergence are 
ensured. In order to avoid the problem of excessive control signal 
magnitude, a sliding mode controller with saturation is proposed. When 
this controller is applied no bottleneck link buffer overflow and full 
utilization of its available bandwidth are guaranteed. Furthermore, 
transmission rates generated by the controller are always upper bounded 
and nonnegative. 

1. Introduction 

High-speed connection-oriented communication networks may allow various 
kinds of applications to run under a uniform infrastructure. In these networks 
the sequence of application data units are transmitted by a source and reach their 
destination via a path of intermediate switches. On each switch a server 
schedules and forwards data units along the path from their source to their 
destination in the network. The difficulty of the flow control is mainly caused by 
long propagation delays in the network. If congestion occurs at a specific switch, 
information about these circumstances must be conveyed to all the sources 
transmitting data units through the switch. This information is used to adjust 
source rates and may affect the congested switch after the round trip propagation 
delay. 

Flow control in connection-oriented communication networks has recently 
become an exciting research field and valuable results have been reported in 
many papers [3, 6, 10-15, 17]. Their authors proposed ‘on-off’ [3, 6], classical 
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proportional-derivative (PD) [14], fuzzy proportional-integral-derivative (fuzzy 
PID) [17], stochastic [11], adaptive [13] and neural network based [12] 
controllers. Due to the significant propagation delays several researchers also 
applied the Smith predictors [3, 10, 15] for the flow control in such networks. 

On the other hand, it is well known that sliding mode control is an attractive 
and efficient strategy which offers robustness and good dynamic performance of 
the controlled systems [2, 5, 7, 16, 18]. Therefore, in this paper we attempt to 
apply discrete time sliding mode approach [1, 4, 8, 9] to the flow control in a 
connection-oriented communication network. We consider a model of the 
networks which provide feedback mechanism. An example of such networks is 
Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) 
standard. The proposed control algorithms employ an appropriately defined 
sliding hyperplane, which ensures the closed-loop system stability and finite 
time error convergence to zero. In order to avoid the problem of excessive 
control signal magnitude, we propose a sliding mode controller with saturation. 
When this controller is applied no data loss and full link bandwidth utilization 
are ensured. These desirable properties are explicitly proved. Moreover, the 
relation between the data flow rate and the consumed bandwidth is derived. 

The remainder of this paper is organized as follows. In Section 2, detailed 
description of the network model is given. Afterwards, in Section 3, the 
proposed sliding mode flow controller design and the system performance when 
the controller is applied are presented. In this section the important properties of 
the controlled network are also stated (in a lemma and three theorems) and 
explicitly proved. A simulation example, illustrating the discussed properties, is 
presented in Section 4. Finally, Section 5 concludes the paper. 

2. Network model 

In this paper a single virtual circuit in a connection-oriented communication 
network is considered. Furthermore, it is assumed that there is only one 
bottleneck node in the network. The source sends data (as determined by the 
controller at the bottleneck node) and special control units. The control units 
carry information about the network state. After reaching their destination, they 
are immediately sent back to the source, along the same path they arrived. 
The information carried by the control units is used to adjust the amount of data 
transmitted by the source at each control period. The control units are processed 
by the intermediate nodes on a priority basis, i.e. they are not queued but sent to 
the next node without delay. Consequently, the round trip time RTT of the 
control units in the virtual circuit is constant. Moreover, this time can be 
expressed as the sum of forward and backward propagation delays denoted as TF 

and TB, respectively 

F BRTT T T= +  (1) 
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The block diagram of the flow control system considered in this paper is 
shown in Figure. 

Fig. 1. Network model 
 
Further in the paper, T represents the discretisation period, y(kT) denotes 

the bottleneck queue length at time instants kT, k = 0, 1, 2, …, and yd > 0 is 
the demand value of y(kT). It is assumed that before setting up the connection, 
the bottleneck buffer is empty, i.e. y(kT < 0) = 0. Moreover, in this paper we 
assume that the round trip time is a multiple of the discretisation period, i.e. 
RTT = mRTT T, where mRTT is a positive integer. 

The amount of data to be sent is generated by the controller placed at 
the bottleneck node. The controller output at time kT is denoted as u(kT). This 
amount of data will be sent by the source after backward delay TB and will arrive 
at the bottleneck node TF later. Consequently, the bottleneck buffer for any time 
kT ≤ RTT remains empty. It is assumed that before setting up the connection 

( )0 0u kT < =  (2) 

The amount of data which may leave the bottleneck buffer at time kT is 
modelled as an a priori unknown bounded function of time d(kT), for 
k = 0, 1, 2, … . The maximum value of d(kT) is denoted by dmax and h(kT) 
represents the amount of data actually leaving the bottleneck node at time kT. 
Consequently 

( ) ( )
max

0

0
k

h kT d kT d
≥

≤ ≤ ≤∀  (3) 

Initially, the bottleneck buffer is empty 

( )0 0y kT = =  (4) 

Then, for any k ≥ 1, the queue length can be expressed as follows 

Queue 
integrator Forward delay TF Source Controller 

Backward delay TB 

u y 

yd d 

+
−
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( ) ( ) ( ) ( ) ( )
11 1 1

0 0 0 0

RTTk mk k k

j j j j

y kT u jT RTT h jT u jT h jT
− −− − −

= = = =
= − − = −∑ ∑ ∑ ∑  (5) 

3. Sliding mode controllers 

In this section, the flow control problem for the described network is 
considered. First, a chattering free discrete time sliding mode controller is 
designed so that fast and finite time error convergence to zero is achieved. Then, 
we propose a modified sliding mode control strategy which takes into account 
physical constraints and ensures that the maximum admissible flow rate is never 
exceeded. 

3.1. Proposed control strategy 

This subsection focuses on the design of a discrete time sliding mode flow 
controller for the communication network, whose model was introduced in 
Section 2. For this purpose, first a discrete time state space model of the 
controlled system is formulated. Then, an appropriate sliding plane is introduced 
and its parameters are determined in such a way that the closed-loop system is 
stable and the error converges to zero in finite time. 

Let us consider the following discrete time model of the network 

( )[ ] ( ) ( ) ( )
( ) ( )T

1k T kT u kT h kT

y kT kT

+ = + +

=

x Ax b p

q x
 (6) 

where x(kT) = [x1(kT)  x2(kT)  … xn(kT)]T is the state vector with x1(kT) = y(kT), 
A is n × n state matrix, b, p and q are n × 1 vectors 

1 1 0 0 0 1 1
0 0 1 0 0 0 0

        
0 0 0 1 0 0 0
0 0 0 0 1 0 0

−       
       
       = = = =
       
       
              

…

…

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

…

…

A  b p q  (7) 

and n = mRTT + 1. Alternatively, the state space equation can be written as 
follows 
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( )[ ] ( ) ( ) ( )
( )[ ] ( )
( )[ ] ( )

( )[ ] ( )
( )[ ] ( )

1 1 2

2 3

3 4

1

1

1

1

1

1

n n

n

x k T x kT x kT h kT

x k T x kT

x k T x kT

x k T x kT

x k T u kT

−

 + = + −


+ =


+ =


 + =
 + =

⋮
 (8) 

In this model the available bandwidth h(kT) is represented as unmatched 
disturbance. The desired state of the system is denoted by xd = [xd1  xd2 …  xdn]

T. 
It can be noticed from (8) that all components xdi of vector xd for i = 2, …, n are 
equal to zero when h(kT) = 0. Let us denote the first state variable xd1 
representing the demand queue length by yd. 

We introduce a sliding hyperplane described by the following equation 

( ) ( )T 0s kT kT= =c e  (9) 

where cT = [c1  c2 …  cn] is such a vector that cT b ≠ 0. Similarly as it is usually 
done when designing the control systems, now we neglect the effect of 
disturbance h(kT) in the controller design process. However, this does not imply 
that the disturbance is disregarded in the paper, it will be given full consideration 
when analysing the system performance. The closed-loop system error is 
denoted as e(kT) = xd – x(kT). Hence, substituting (6) into equation 
cT e[(k + 1)T ] = 0 the following feedback control law can be derived 

( ) ( ) ( )1T T
du kT kT

−
 = − c b c x Ax  (10) 

When this control signal is applied, the closed-loop system state matrix has the 

following form ( ) 1T T .c n

− = − A I b c b c A  Then the characteristic polynomial of 

Ac can be found as follows 

( ) 1 21 2 1 1 2det n n nn n n n
n c

n n n

c c c c c c
z z z z z

c c c
− −− − −− − −− = + + + +…I A  (11) 

which leads to the condition cn ≠ 0. Asymptotic stability of the discrete time 
system is ensured if and only if all its eigenvalues are located inside the unit 
circle. Moreover, in order to ensure the closed-loop system error convergence to 
zero in finite time, the characteristic polynomial should have all roots equal to 
zero. Therefore, (11) has to satisfy 

( )det n
n cz z− =I A  (12) 
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Comparing coefficients on the right-hand sides of (11) and (12), the following 
form of vector c is obtained 

[ ]T 1 1 1 1 nc= …c  (13) 

Substituting (7) and (13) into (10) the following state feedback control can be 
derived 

( ) ( )
1

n

d i
i

u kT y x kT
=

= −∑  (14) 

Alternatively, from (8), one can get the state variables xi (i = 2, 3, …, n) 
expressed in terms of the control signal generated by the controller at 
the previous n – 1 samples 

( ) ( )[ ]1ix kT u k n i T= − + −     for i = 2, 3, …, n (15) 

Substituting these expressions into (14) and putting x1(kT) = y(kT), we obtain 

( ) ( ) ( )( ) ( )( ) ( )[ ]{ }
( ) ( ) ( ) ( )

1

1 1

1 2 1

RTT

d

mn

d d
j j

u kT y y kT u k n T u k n T u k T

y y kT u k j T y y kT u k j T
−

= =

   = − + − − + − − + + − =   

   = − − − = − − − =   ∑ ∑

…

 

( ) ( ) ( )
1

RTT

k

d
j k m

y y kT u jTu kT
−

= −
= − − ∑  (16) 

which actually represents a dynamic sliding mode flow controller. This 
completes the design of the flow control algorithm which guarantees the closed-
loop system stability and fast, finite time error convergence to zero in 
the considered network. 

Unfortunately, the strategy proposed in this section may generate initial flow 
rate of unacceptable magnitude. Therefore, in order to avoid this undesirable 
effect, further in the paper a modified sliding mode control strategy will be 
proposed. 
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3.2. Modified control strategy 

In this section we introduce a new flow control strategy. The amount of data 
to be sent by the source at time kT is now determined by the controller according 
to the following formula 

( ) ( ) ( )
1

maxmin ,
RTT

k

d
j k m

u kT y y kT u jT u
−

= −

  = − − 
  

∑  (17) 

where umax > dmax is the maximum admissible value of the flow rate. One can 
easily notice that this strategy determines data transmission rates which never 
exceed the predetermined value umax. 

Let us denote the first argument of the min{·,·} function in (17) as w(kT), i.e. 

( ) ( ) ( )
1

RTT

k

d
j k m

w kT y y kT u jT
−

= −
= − − ∑  (18) 

It directly follows from (17) that at any time instant kT ≥ 0 inequality 

( ) ( )u kT w kT≤  (19) 

is satisfied. Moreover, we will prove that the flow rate generated according to 
strategy (17) is always nonnegative. This is shown in the following lemma. 

 
Lemma If the proposed control algorithm is applied, then data transmission rate 
u(kT) is always nonnegative, i.e. 

( )
0

0
k

u kT
≥

≥∀  (20) 

Proof: At the initial time function w(kT = 0) = yd. Therefore, the flow rate u(0) 
either equals yd or umax. Consequently, inequality (20) is satisfied for k = 0. 
Furthermore, at any time instant kT > 0 if the amount of data to be sent by 
the source is umax, then the flow rate u(kT) is also strictly positive. Hence, in 
order to complete the proof it is only necessary to show that (20) is satisfied for 
any k > 0 when u(kT) = w(kT). For that purpose, let us notice that the following 
relation can be derived from (5) 

( ) ( )[ ] ( ) ( )[ ]1 1 1RTTy kT y k T u k m T h k T = − + − − − −   (21) 

which holds for any positive integer k. Since in the analysed case u(kT) = w(kT) 
and the bottleneck queue length satisfies (21), we obtain 
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( ) ( ) ( ) ( )

( )[ ] ( ) ( )[ ] ( )

( )[ ] ( ) ( )[ ]

( )[ ] ( ) ( )[ ] ( )[ ]

1

1

1

1

2

1

1 1 1

1 1

1 1 1

RTT

RTT

RTT

RTT

k

d
j k m

k

d RTT
j k m

k

d
j k m

k

d
j k m

u kT w kT y y kT u jT

y y k T u k m T h k T u jT

y y k T u jT h k T

y y k T u jT u k T h k T

−

= −

−

= −

−

= − −

−

= − −

= = − − =

 = − − − − − + − − = 

= − − − + − =

= − − − − − + − =

∑

∑

∑

∑

 

           ( )[ ] ( )[ ] ( )[ ]1 1 1w k T u k T h k T= − − − + −  (22) 

Taking into account inequality (19) and the fact that the consumed bandwidth is 
always nonnegative, we obtain 

( ) ( )[ ]1 0u kT h k T≥ − ≥  (23) 

which shows that inequality (20) indeed holds at any time instant kT > 0 when 
u(kT) = w(kT). This conclusion ends the proof of the lemma. 

Thus we conclude that controller (17) generates data transmission rate which 
is always nonnegative and upper bounded, i.e. 

( )
max

0

0
k

u kT u
≥

≤ ≤∀  (24) 

Clearly, this property is of utmost importance for the practical implementation of 
the strategy in any real network. In the sequel, three theorems stating further 
important properties of the proposed flow control scheme are presented. 
The first one gives the condition which must be satisfied in order to eliminate 
the risk of data loss as a consequence of exceeding the bottleneck node buffer 
capacity. Afterwards, the second theorem provides a sufficient condition for 
the full bottleneck link bandwidth utilization. Finally, a relation between 
the control signal u(kT) and the consumed bandwidth is formulated in the third 
theorem. 
 
Theorem 1. If the proposed strategy is applied, then the queue length in 
the bottleneck buffer is always upper bounded by its demand value, i.e. 

( )
0

d
k

y kT y
≥

≤∀  (25) 
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Proof: As it has already been proved, data transmission rate u(kT) is nonnegative 
at any time instant kT. On the other hand, by definition u(kT) is smaller than or 
equal to w(kT). Therefore, the following relation holds for any time kT ≥ 0 

( ) ( ) ( ) ( )
1

0
RTT

k

d
j k m

y y kT u jT w kT u kT
−

= −
− − = ≥ ≥∑  (26) 

Hence, the queue length satisfies 

( ) ( )
1

RTT

k

d
j k m

y kT y u jT
−

= −
≤ − ∑  (27) 

Again taking into account that u(kT) is always nonnegative one concludes that 
the queue length indeed never exceeds its demand value. This ends the proof of 
Theorem 1. 

Another desirable property of the analyzed system is full bottleneck link 
bandwidth utilisation. Since the bottleneck link bandwidth d(kT) is fully used if 
the queue length y[(k + 1)T] is strictly greater than zero, then the next theorem 
specifies a condition which guarantees that the queue length in our scheme is 
always strictly positive. 
 
Theorem 2. If umax > dmax and the demand value of the queue length yd satisfies 
the following inequality 

( ) max1d RTTy m u> +  (28) 

then for any k ≥ mRTT + 1 the queue length in the bottleneck buffer is always 
strictly positive. 
Proof:  Let us define an auxiliary function 

( ) ( ) ( )
1

RTT

k

j k m

kT y kT u jTϕ
−

= −
= + ∑  (29) 

This function represents the amount of data currently waiting in the bottleneck 
buffer queue, and the amount of ‘in flight’ data, i.e. this data which has already 
been sent by the source but not yet arrived at the bottleneck node, and that data 
which will be sent by the source because the controller has already sent out an 
appropriate command signal to the source. 

Substituting formula (5) into (29), one can express function ϕ (kT) as 
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( ) ( ) ( ) ( ) ( ) ( )
11 1 1

0 0

RTT

RTT RTT

k mk k k

j k m j j j k m

kT y kT u jT u jT h jT u jTϕ
− −− − −

= − = = = −

= + = − + =∑ ∑ ∑ ∑  

( ) ( )
1 1

0 0

k k

j j

u jT h jT
− −

= =
= −∑ ∑  (30) 

Hence, taking into account condition (28) for k = 0 

( ) ( ) ( ) max max0 0 1d RTT dkT y m u y uϕ ϕ= = < − + < −  (31) 

Furthermore, if for some k the following inequality ϕ(kT) < yd – umax is satisfied, 
then 

( ) ( ) ( ) ( )
1

max

RTT

k

d d
j k m

w kT y y kT u jT y kT uϕ
−

= −
= − − = − >∑  (32) 

which implies that u(kT) = umax. Consequently, since umax > dmax, we conclude 
that if ϕ(kT) < yd – umax, then function ϕ increases at least at the rate umax – dmax. 
Moreover, since for any time kT < RTT the consumed bandwidth h(kT) = 0, then 
if ϕ(kT) < yd – umax and condition (28) is satisfied, then ϕ(kT) increases at 
the rate umax, reaching mRTT umax at the time mRTTT. 

On the other hand, the consumed bandwidth for any time kT ≥ RTT satisfies 
inequality h(kT) ≤ dmax. This implies that ϕ(kT) can decrease at most at the rate 
dmax. Further, we will show that function ϕ(kT) after reaching mRTT umax never 
decreases below this value, i.e. we will demonstrate that the following inequality 
holds for any kT > RTT 

( )
maxRTTkT m uϕ >  (33) 

In order to prove this we will apply the principle of mathematical induction. Let 
us first check whether (33) holds for k = mRTT + 1. If condition (28) is satisfied, 
then ϕ(mRTTT) = mRTT umax < yd – umax. This implies that u(mRTTT) = umax. 
Consequently 

( ) ( ) ( ) ( )
( )max max

max max max max

1RTT RTT RTT RTT

RTT RTT

RTT RTT

m T m T u m T h m T

m u u h m T

m u u d m u

ϕ ϕ + = + − = 

= + − ≥

≥ + − >

 (34) 

which shows that (33) is indeed true for k = mRTT + 1. Now, let us assume that 
(33) holds for some k ≥ mRTT + 1. We will show that this implies that (33) is also 
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satisfied for k + 1. For this purpose we will consider the following two cases: 
the first one when u(kT) = w(kT) and the second one when u(kT) = umax. 
In the first situation, from (28), (32) and inequality umax > dmax we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

max max max

1

d d

d d RTT

k T kT u kT h kT kT w kT h kT

kT y kT h kT y h kT

y d y u m u

ϕ ϕ ϕ

ϕ ϕ

 + = + − = + − = 

= + − − = − ≥

≥ − > − >

 (35) 

Then, in the second situation, i.e. when u(kT) = umax, we can write 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

max

max max max

1

RTT

k T kT u kT h kT kT u h kT

kT u d kT m u

ϕ ϕ ϕ

ϕ ϕ

 + = + − = + − ≥ 

≥ + − > >
 (36) 

Therefore, we conclude that relation (33) actually holds for any time kT > RTT. 
Finally, taking into account relations (29), (33) and the fact that the flow rate 

generated by our controller is always upper bounded by umax, for any time 
kT > RTT, we get 

( ) ( ) ( )
1

max max 0
RTT

k

RTT RTT
j k m

y kT kT u jT m u m uϕ
−

= −

= − > − =∑  (37) 

which ends the proof of Theorem 2. 
The theorem shows that using strategy (17) with condition (28) we ensure 

full bottleneck link bandwidth utilisation for any time kT > RTT. Further, in 
the next theorem, a relation between the flow rate and the consumed bandwidth 
is stated and proved. 

 
Theorem 3. If the designed sliding mode flow controller is applied, the demand 
queue length yd > umax and the maximum flow rate umax > dmax, then there exists 
such a nonnegative integer k0 satisfying 

max
0

max max
1dy u

k
u d

−< +−  (38) 

that for any k > k0 the following relation holds 

( ) ( )[ ]1u kT h k T= −  (39) 

Furthermore, when yd ≤ umax, relation (39) is satisfied for any k ≥ 1. 
Proof: First, let us consider the situation when inequality yd ≤ umax holds. It will 
be shown that then the following relation is always satisfied 
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( )
max

0k

w kT u
≥

≤∀  (40) 

which directly implies u(kT) = w(kT). 
In order to prove that relation (40) is indeed satisfied for any time kT ≥ 0, we 

apply the principle of mathematical induction. At the initial time 
w(0) = yd ≤ umax. Therefore, inequality (40) holds for k = 0. Now let us assume 
that (40) is true for some k ≥ 0 and we will show that it is also satisfied for k + 1. 
Using equations (18) and (21), and taking into account that u(kT) = w(kT) we get 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

max max

1 1
RTT

RTT

RTT

k

d
j k m

k

d RTT
j k m

k

d
j k m

w k T y y k T u jT

y y kT u k m T h kT u jT

y y kT u jT u kT h kT

w kT u kT h kT h kT d u

= − +

= − +

−

= −

   + = − + − =   

 = − − − + − = 

= − − − + =

= − + = ≤ <

∑

∑

∑

 (41) 

This ends the proof of inequality (40). 
Since it follows from (40) that at any time instant kT ≥ 0 the flow rate 

u(kT) = w(kT), then using expression (22), for any k ≥ 1, we obtain 

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]1 1 1 1u kT w k T u k T h k T h k T= − − − + − = −  (42) 

Equation (42) shows that, if yd ≤ umax, then (39) indeed holds for any positive 
integer k. 

Now let us consider the situation when yd > umax. If for some k inequality 
ϕ(kT) < yd – umax is satisfied, then it follows from equation (30) and assumption 
umax > dmax, that function ϕ increases at least at the rate umax – dmax. Thus, there 
exists such a finite time instant k0T, when the following condition 

( )
maxdkT y uϕ ≥ −  (43) 

becomes satisfied for the first time. 
We will determine the latest time instant when inequality (43) can become 

satisfied for the first time. Since function ϕ(kT) is smaller than the difference 
yd – umax until k < k0, then 
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( ) ( ) ( )
0 02 2

0 max
0 0

1
k k

d
j j

k T u jT h jT y uϕ
− −

= =

 − = − < −  ∑ ∑  (44) 

Moreover, since the flow rate for any k < k0 is equal to umax, then inequality (44) 
can be rewritten as 

( ) ( )
0 2

0 max max
0

1
k

d
j

k u h jT y u
−

=
− − < −∑  (45) 

Number k0 in this equation is the biggest, when for any time from 0 up to      
(k0 – 2)T, the consumed bandwidth has its greatest possible value dmax. 
Consequently, from relation (45) we get the following inequality 

( )( )0 max max max1 dk u d y u− − < −  (46) 

which gives the estimate of k0 specified by relation (38). 
We will now demonstrate that for any time kT > k0T condition (43) is indeed 

satisfied. For that purpose we take into account some k > k0 and we consider 
the two cases: the first one when w(kT) ≤ umax, and the second one when 
w(kT) > umax. In the first case from relations (18) and (29) we obtain 

( ) ( )
maxdw kT y kT uϕ= − ≤  (47) 

From this inequality it can be easily noticed that condition (43) actually holds 
for any k > k0. 

Now let us consider the second case, i.e. the situation when w(kT) > umax. In 
this situation, in order to show that condition (43) holds for any kT > k0T, one 
can apply the principle of mathematical induction. We have already 
demonstrated that there exists such a moment k0T, when inequality (43) is 
satisfied. Now, let us assume that for some instant kT > k0T the considered 
condition holds, and we will show that this implies that the condition is also 
satisfied at the time instant kT + T. Since in the analysed case w(kT) > umax, then 
u(kT) = umax. Taking into account equation (30) and inequality umax > dmax, we 
get 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

max

max max max

1

d

k T kT u kT h kT kT u h kT

kT u d kT y u

ϕ ϕ ϕ

ϕ ϕ

 + = + − = + − ≥ 

≥ + − > ≥ −
 (48) 

Consequently, we conclude that for any k > k0 inequality (43) is always satisfied. 
Condition (43) implies that for any kT > k0T, w(kT) ≤ umax and u(kT) = w(kT). 

Therefore, it immediately follows from equation (22) that relation (39) is indeed 
satisfied for any k > k0. This ends the proof of Theorem 3. 
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4. Simulation example 

In order to verify the properties of the sliding mode flow control strategy 
proposed in this paper computer simulations of the network described by 
equations (6) – (8) have been performed in Matlab-Simulink® environment. 
First, the model of the network was constructed according to the description 
given in Section 2. Then the system parameters were chosen as follows: 
the discretisation period T was selected as 1 ms and the round trip time in 
the virtual circuit was assumed to be RTT = mRTTT = 10 ms (TF = 3 ms, 
TB = 7 ms). Consequently, the system order n = mRTT + 1 = 11. The maximum 
available bandwidth of the bottleneck link was set as dmax = 4.8 Mb per second, 
and the maximum admissible flow rate as umax = 6.1 Mb per second. 
The bandwidth actually available for the data transfer is shown in Fig.2. Sudden 
changes of function d, visible in the figure, reflect the most rigorous networking 
conditions. 

According to Theorem 2, when strategy (17) is applied, the demand value of 
the queue length required to assure full bottleneck link bandwidth utilization in 
the analyzed network must be greater than 0.0671 Mb. Consequently, 
yd = 0.0687 Mb, which is equivalent to 170 ATM cells, is chosen. 
The transmission rate generated by the controller and the queue length evolution 
are shown in Figs.3 and 4, respectively. 

It can be clearly seen from the figures that the transmission rate is always 
nonnegative and never exceeds the maximum value umax. Furthermore, the queue 
length actually never grows beyond its demand value yd, which ensures no data 
loss in the network and no need for data retransmission. Moreover, after initial 
period of 11 ms, i.e. for any time greater than (mRTT + 1)T = 11 ms, the queue 
length is strictly positive, which implies full utilization of the bottleneck link 
available bandwidth. 
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Fig. 2. Available bandwidth at the output link of the bottleneck node 

Fig. 3. Transmission rate generated by the controller 
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Fig. 4. Queue length 

5. Conclusions 

A new discrete time sliding mode flow control strategy for a single virtual 
circuit of a connection-oriented communication network has been presented. 
The strategy is designed so that the closed-loop system stability and fast, finite 
time error convergence are ensured. In order to avoid the problem of excessive 
control signal magnitude, a sliding mode controller with saturation is proposed. 
When this controller is applied, full bottleneck node link utilization and no data 
loss in the controlled network are guaranteed. The conditions ensuring these 
favorable properties are formulated and explicitly proved. Consequently, 
the need for data retransmission is eliminated and the maximum throughput is 
achieved. Moreover, as the flow rate generated by the controller is always 
nonnegative and bounded, the proposed mechanism can be feasibly incorporated 
in real communication networks. Our further research focuses on adapting 
the control strategy proposed in this paper for multi-source networks. 

Acknowledgement 

This work has been financed by the Polish State budget in the years      
2008 – 2010 as a research project N N514 300035 “Design of the switching 
surfaces for the sliding mode control". 

0 20 40 60 80 100 120

0

0,02

0,04

0,06

0,08

time,  ms

y(
kT

),
  

M
b 

yd 



Sliding mode approach to congestion control … 

 
63
�  

References 

[1] Bandyopadhyay B., Janardhanan S.: Discrete-time sliding mode control. A 
multirate output feedback approach. Series: Lecture Notes in Control and 
Information Sciences, Vol. 323, Springer-Verlag Berlin Heidelberg, 2006. 

[2] Bartolini G., Fridman L., Pisano A., Usai E.: Modern Sliding Mode Control Theory. 
New Perspectives and Applications. Series: Lecture Notes in Control and 
Information Sciences, Vol. 375, Springer-Verlag Berlin Heidelberg, 2008. 

[3] Bartoszewicz A.: Nonlinear flow control strategies for connection-oriented 
communication networks. IEE Proceedings on Control Theory and Applications, 
2006, Vol. 153, No.1, pp. 21-28. 

[4] Bartoszewicz A.: Discrete time quasi-sliding mode control strategies. IEEE 
Transactions on Industrial Electronics, 1998, Vol. 45, No.4, pp. 633-637. 

[5] Bartoszewicz A., Kaynak O., Utkin V.I. (editors): Sliding mode control in 
industrial applications. Special section: IEEE Transactions on Industrial 
Electronics, 2008, Vol. 55, No. 11, pp. 3805-4103. 

[6] Chong S., Nagarajan R., Wang Y.: First-order rate-based flow control with 
dynamic queue threshold for high-speed wide-area ATM networks. Computer 
Networks and ISDN Systems, 1998, Vol. 29, pp. 2201-2212. 

[7] DeCarlo R.S., Żak S., Mathews G.: Variable structure control of nonlinear 
multivariable systems: a tutorial. Proceedings of IEEE, 1988, Vol. 76, No.3, pp. 
212-232. 

[8] Furuta K.: Sliding mode control of a discrete system. Systems & Control Letters, 
1990, Vol. 14, pp. 145-152. 

[9] Gao W., Wang Y., Homaifa A.: Discrete-time variable structure control systems. 
IEEE Transactions on Industrial Electronics, 1995, Vol. 42, pp. 117-122. 

[10] Gómez-Stern F., Fornés J., Rubio F.: Dead-time compensation for ABR traffic 
control over ATM networks. Control Engineering Practice, 2002, Vol. 10, pp.     
481-491. 

[11] Imer O., Compans S., Basar T., Srikant R.: Available bit rate congestion control in 
ATM networks. IEEE Control Systems Magazine, 2001, pp. 38-56. 

[12] Jagannathan S., Talluri J.: Predictive congestion control of ATM networks: multiple 
sources/single buffer scenario. Automatica, 2002, Vol. 38, pp. 815-820. 

[13] Laberteaux K., Rohrs Ch., Antsaklis P.: A practical controller for explicit rate 
congestion control. IEEE Transactions on Automatic Control, 2002, Vol. 47, pp. 
960-978. 

[14] Lengliz I., Kamoun F.: A rate-based flow control method for ABR service in ATM 
networks. Computer Networks, 2000, Vol. 34, pp. 129-138. 

[15] Mascolo S.: Congestion control in high-speed communication networks using the 
Smith principle. Automatica, 1999, Vol. 35, pp. 1921-1935. 

[16] Slotine J.J., Li W.: Applied Nonlinear Control, Prentice-Hall International Editions, 
1991. 

[17] Sun D.H., Zhang Q.H., Mu Z.C.: Single parametric fuzzy adaptive PID control and 
robustness analysis based on the queue size of network node. Proceedings of 2004 
International Conference on Machine Learning and Cybernetics, 2004, Vol. 1, pp. 
397-400. 

[18] Utkin V.: Variable structure systems with sliding modes. IEEE Transactions on 
Automatic Control, 1977,Vol. 22, pp. 212-222. 


