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Summary: A texture segmentation algorithm which combines 
grey level intensity from 2 images after discrete wavelet 
transform and variance has been applied on 2D images to 
segment lamellar colonies in (α+β) titanium alloy Ti6Al4V. 
Images were acquired using both optical microscope and X-
ray tomography. The results are satisfying for the former 
technique and encouraging for the latter one. Possible 
extension of the method to volumetric data is presented. 
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1.  Introduction 

Two-phases (α+β) titanium alloys are widely used in 
the aeronautical, power generation and biomedical 
industry because of excellent mechanical and corrosion 
properties combined with a relatively low density. The 
mechanical properties of these alloys, especially fatigue 
related properties are strongly dependent on variations 
in the microstructure. Most importantly, understanding 
the effects of microstructure on short crack growth 
behaviour of titanium alloys is critical. Recent work 
carried out at the ID-19 microtomography beamline at 
the European Synchrotron Radiation Facility (ESRF) 
has allowed to qualitatively correlate for the first time in 
3D and in-situ the short crack propagation with the 
titanium fully lamellar microstructure, i.e. β-grain 
boundaries and orientation of α-lamellar colonies. 
(Babout et al., 2006). 

A challenging computing task is then to 
automatically correlate the crack path with the 
microstructure. This correlation implies that the 
different phases, i.e. the crack, the β-grain boundaries 
and α-lamellar colonies are segmented separately. From 
an image processing point of view, the task to segment 
the different lamellar colonies is not conventional 

because an image of lamellar microstructure is a good 
example of textured image since it seems composed of 
repeated elements (the lamellae) with different 
interspacing and different orientations (a group of 
lamellae with the same orientation and relative constant 
interspacing forms a colony),. Moreover, classical 
segmentation methods based on intensity histogram 
cannot be used to segment and separate the different 
colonies. Even if the pattern in each α-lamellar colony 
does not repeat perfectly, image texture segmentation 
algorithms have been used for this work. 

Texture is a commonly used feature in the analysis 
and interpretation of images. It is characterized by a set 
of local statistical properties of pixel intensities. It 
analyses the variations in the image, looking at 
properties such as smoothness, coarseness and 
regularity of patterns. Traditionally, texture features 
have been calculated using a variety of statistical, 
structural and spectral techniques including, co-
occurrence matrices, spectral measures using filters 
such as Gabor filter (Teuner et al., 1995), fractal 
dimension and multi-resolution technique, such as 
wavelets (Mallat, 1989). The latter has been 
successfully used in image processing with the recent 
emergence of application to texture classification. The 
main advantages of the wavelet frames representation 
are that it focuses on scale and orientation texture 
features and it decomposes the image into orthogonal 
components. 

This paper presents a first attempt to apply texture 
segmentation of lamellar titanium alloy microstructure. 
As a first step, the texture segmentation has been 
applied to 2D images from optical microscope and 2D 
reconstructed images from X-ray tomography of 
titanium alloy. The motivation of such preliminary test 
was to check the approach on 2D images, before the 
extension to 3D data. The manual inspection of the 
image has shown evidence that segmentation can be 
partly carried out based on quantitative description of 
directionality and grey level variation of the image 
texture. Directionality of lamellar colonies are extracted 
using discrete wavelet frames decomposition (Kim and 
Kang, 2007) and separation between colonies of the 
same directionality is performed using grey level 
variance. Firstly, the paper compares the result using 
standard optical microscope with segmented image 
using EBSD (Electron Back Scattered Diffraction 
microscope) technique. Secondly, it analyses the 
method applied on image from X-ray tomography. 
Limitations of the present method, other potential 
approaches possible and future works on extension to 
3D case are finally proposed in the conclusion. 

2.  Images of the microstructure 

The type of microstructure investigated in this paper, 
e.g. lamellar microstructure, appears in (α+β) titanium 
alloys during heat treatment, where β phase (bcc crystal 
lattice) transforms to α phase (hcp crystal lattice) during 
cooling of the sample. Description of the mechanism 
can be found in (Lutjering, 1998). A typical example of 
such microstructure, corresponding to titanium alloy 
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Ti6Al4V (90% Ti, 6% Alu, 4% V) and obtained using 
conventional optical microscope, is shown on Fig. 1, 
where β grain boundary and α-lamellae are visible: the 
α-lamellae, which can be schematised as lines are in 
dark, while the light grey background correspond to 
primary β-grains. Because the α-phase can develop 
within the β-phase with 6 possible variants (so called 
Burgers-relationship (Lutjering, 1998)), group of 
parallel-like lamellar, known as colonies, can have 
different orientations within the same β grain (see Fig. 
1). It can also occur that colonies interpenetrate each 
other.  

The same features from the same sample can also be 
observed in 2D longitudinal image reconstructed from 
X-ray tomography scans, as shown on Fig. 2.  The 
corresponding set-up can be found in (Babout et al., 
2006). The spatial resolution was set to 0.7 μm. In this 
figure, dark grey pixels correspond to β phase while 
white fringes, generated by phase contrast (Cloetens et 
al., 1997), indicate the presence of α-lamellae. The 
phase contrast is particularly crucial in this study case 
since it compensates the weak attenuation contrast 
between α and β phases. One can also notice that the 
image presents a higher level of noise than the one from 
optical microscope. 

 
Fig. 1. Example of microstructure of fully lamellar 
titanium alloys obtained from optical microscope. 

 

As mentioned above, lamellar colonies can be easily 
separated by eye, due to their preferential directionality. 
One can also notice that the variation of thickness of the 
lamellae and their interspacing within different colonies 
give rise to changes in local grey level contrast, 
especially in Fig. 1, hence facilitating the separation 
between colonies. These two features, directionality and 
local variance in contrast are common properties used in 
texture segmentation. The following section describes 
how they are used to segment the colonies. 

3.  Texture segmentation method 

The method considered different sets of images for 
the texture segmentation: the original image and so-
called detail images after Discrete Wavelet Transform 
decomposition (DWT) of the original one. Wavelets 
have been shown to be useful for texture analysis, 
possibly due to their finite duration, which provides 
both frequency and spatial locality. The hierarchical 
wavelet transform uses family of wavelet functions and 
its associated scaling functions to decompose the 
original image/signal into different sub-bands (Mallat, 
1989). Example of such decomposition at level 1 is 
shown on Fig. 3. The decomposition has been obtained 
using MaZda, a texture analysis software (Strzelecki et 
al., 2006). The figure shows the so-called 
Approximation Image (A1; top-left), the Vertical Detail 
Image (V1; bottom-left), the Horizontal Detail Image 
(H1; top-right) and the Diagonal Detail Image (D1; 
bottom-right). The Details images have been binarised 
and inverted to enhance the contrast between colonies of 
different directionality. These images are obtained from 
the decomposition of the original image using 
combination of low-pass and high-pass bands based on 
Haar wavelet (Dettori and Semler, 2007), along x- and 
y- directions of the input image. For instance, H1 is 
obtained from the original one by consecutively 
convolving the image with the low-pass filter along x-
direction and the high-pass filter along y-direction. 
During decomposition, approximation and detail images 
are down-sampled, resulting in images 4 times smaller 
than the original image. In order to create decomposed 
images of the same size as the original one, the input 
image is then up-sampled prior to wavelet 
decomposition. The Approximation Image at level 1 can 
as well be decomposed into 4 sub-images, and the 
process can be repeated recursively up to a filtered 
images of size 1 (pixel). The wavelet decomposition is 
then a multi-resolution technique since at each level of 
decomposition the spatial resolution is decreased by a 
factor of 2. 

One can see from Fig. 3 that V1 and H1 exhibit 
higher contrast than in the original image for colonies 
which tend to be perpendicular and parallel to x-
direction, respectively. On the other hand, D1 does not 
exhibit such trend. Therefore, H1 and V1 are used 
preferentially for the following step of the texture 
segmentation method. It consists in generating a new 
image A1 for which each pixel is classified as follows: 
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Where pA1,xy is the grey level of the pixel at 
coordinate (x,y), δ an empirical dimensionless factor 
smaller than 0.1, I(V1xy) and I(H1xy) are local mean grey 
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level intensities, as described by the following general 
expression: 
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where A is a given analysed image, 2r+1 the size of the 
analysing window and pA(i,j) the grey level of the pixel 
at coordinate (i,j). The third classifier in equation 1 
(pA1,xy=255) corresponds to the situation where there is 
no preferential directionality (either vertical or 
horizontal) at the current position. In practice, δ is 
selected after comparison of the data in ROIs where 
both H1 and V1 present similar grey level intensity. 

 
Fig. 2. 2D reconstructed longitudinal image from 
X-ray tomography scan of the same type of fully 

lamellar microstructure shown in Fig. 1. 

The second step of the texture segmentation is based 
on local analysis of the grey level variance parameter in 
the original image. The variance σ2 is one of texture 
measures that can be used to discriminate among 
different texture pattern classes. This parameter tells 
about how spread out the distribution of grey level is. 
For a window (also called ROI) of size NxM centred at 
pixel position (x,y) the variance calculated for an image 
A is given by: 
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where Ng  denotes the number of intensity levels (i.e. 
256 in the present case), h(i) is a normalized histogram 
vector (i.e. histogram whose entries are divided by the 
total number of pixels in ROI ) and I(Axy) is the mean 
intensity defined by equation 2. 

A new set of classifier is defined depending on the 
value of the variance. The range of variance value of the 
image is separated into 3 regions delimited by: 

ε+= 11 CP  
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(4) 

Where C1 and C2 are the minimum and maximum 
variance of all windows extracted from the input image, 
respectively and ε a scale factor defined by: 

( ) δε ′×−= 12 CC  (5) 

Where δ' is an empirical factor with value ranging 
between 0.1 and 0.5. A new image A2 is created based 
on the following class of pixels, depending on their 
variance value (low, middle and high):  
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Finally, the pixels of the final image Afs are classified 
into 7 different classes cl1→7 based on their 
corresponding value in A1 and A2: 
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The definition of the class 7 is not taking into 
account the variance since the areas around the pixels of 
this class do not exhibit directionality, hence variation 
in the average intensity. 

Values assigned to pixels from classes 1 to 7 were 
set to 0, 75, 125, 150, 175, 200 and 255, respectively. It 
is worth mentioning that the method described above 
has not been thought to assess or not the possibility of 
using wavelet-based texture segmentation method to the 
microstructure of interest. The following scenario has 
then been thought: testing the approach on a 2D model 
"little-noise" image of lamellar microstructure where 
good texture segmentation is expected and on 2D "real" 
image of the same microstructure obtained using X-ray 
tomography to analyse the possible limitations of the 
method and foresee new strategies. 

4.  Application to 2D images from Optical 

Microscope 

Fig. 4 displays the result of the above method to the 
image presented in Fig. 1. Particularly, it shows the 
pixel classification after the wavelet transform (Fig. 4b), 
and the final segmented image (Fig. 4c). The size of the 
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original image is 1070 pixels in width and 1250 pixels 
in height. The features (mean intensity in decomposed 
images and variance) were calculated for each pixel of 
the original image using a local window of size 25x25 
centred on the corresponding pixel. The problem 
encountered for the pixels nearer to the edge of the 
image than the half-width of the window, is solved by 
assuming that the image edges are mirrors, so that each 
row or column containing these pixels is duplicated 
beyond it. The window size of 25x25 was found a good 
compromise between the reliability of the calculated 
texture features and the accuracy of boundary 
localisation in texture segmentation. Moreover, the 
choice of δ and δ' set to 0.1 and 0.2 (equations 1 and 5) 
was found to provide the best texture segmentation. The 
corresponding variance boundaries, P1 and P2 defined 
in equation 4, were set to 700 and 2820, based on the 
minimum and maximum variance of all windows 
extracted from the image, i.e. 0 and 3520, respectively. 

 

 
Fig. 3. Wavelet transforms applied to image shown 
in Fig. 1. (a) Approximation image, (b), Horizontal 

Detail image, (c), Vertical Detail image and (d) 
Diagonal Detail image. 

One can notice that the first classification based on 
the local intensity of wavelet transform decomposition 
separates relatively well colonies with nearly-horizontal 
and vertical orientations. Only few boundary between 
areas with strong horizontal details and vertical details 
present no preferential directionality (very thin white 
layers and spots in Fig. 4b).  The final segmentation 
compares also relatively well with an EBSD1 map of the 
same region (Error! Reference source not found.d), 
showing the relative good effect of variance 
                                                 
1 EBSD is a microscopy technique which scans regions of a sample to 
determine crystal lattice orientation maps based on the diffraction of 
an X-ray beam with the sample under investigation. 

classification to separate colonies of the same wavelet-
based classification. It is worth noticing that even 7 
classes of features properties were defined in equation 
7, the colonies are mainly classified as cl1, cl2, cl4 and 
cl5, as shown in Fig. 4c.  Mean variance and 
corresponding standard deviation of the 11 colonies 
indexed in Fig. 4a are listed in Table 1. The values have 
been calculated over 10 windows of size 25x25 
manually selected in each colonies.  The results show 
particularly good boundary discrimination between 
colonies 7 and 8, where mean variances are different 
and standard deviation low (small fluctuation of the 
variance indicating regularity of the lamellar pattern in 
these colonies). However, the texture segmentation fails 
to separate features where the mean variance is of 
similar order of magnitude, for instance, between 
colonies 5 and 7 (~520 in both zones) or 9 and 10.  In 
the former case, the method shows as well its current 
limitation to detect the grain boundary, present between 
these 2 colonies. Finally, the variance shows some 
limitation to accurately discriminate boundary of 
colonies where interspacing between lamellae is 
irregular and of the length as the size of the analyzing 
window, illustrated by large fluctuation of the variance 
value, such as in zone 4. 

 
Table 1. Mean and standard deviation of variance 
in 11 zones (colonies) indexed in Fig. 4a. Values 
have to be multiplied by 1E+3. 

zone 1 2 3 4 5 6 

mean 0.18      0.28 1.15 0.99 0.52 0.60 

Std 0.12      0.12 0.17 0.36 0.11 0.09 

zone 7 8 9 10 11  

mean 0.52 0.80 0.29 0.40     0.15  

std 0.16 0.17 0.06 0.07     0.04  

5.  Application to reconstructed images from 

X-ray tomography 

The method presented in the previous section was in 
the case of the best scenario where features of the image 
with different orientations and grey level intensities are 
clearly distinguishable. The type of image, presented in 
this section, is of greater importance since it is directly 
linked to the main goal of correlating in 3D using X-ray 
tomography the propagation of a crack with the 
microstructure of lamellar titanium alloy. However, 
such images contain a higher level of noise than in the 
previous case, reducing the perception of lamellar 
colonies. Not only noise but also weak phase contrast 
resulting of unresolved lamellar at the given spatial 
resolution of the system (in the present case, 0.7 μm) 
may also weaken locally the colony segmentation. 
Therefore, the method has been applied to 2D 
reconstructed images of the same material observed 
using optical microscope, i.e. Ti64 sample, before 
considering the 3D case. 
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Fig. 4. (a)Image from optical microscope and 

corresponding segmented results:  (b) 
segmentation after wavelet classification (c) final 
segmentation (d) EBSD map of the same region as 

(a) showing the different hcp crystal lattice 
orientation of the colonies. 

Fig. 5 displays the result of the texture segmentation 
of the reconstructed image shown in Fig. 2 (500x500 
pixels). The features (intensity in decomposed images 
and variance) at pixel (x,y) were calculated within a 
local window of size 32x32 centred on the 
corresponding pixel. This window was set larger than 
the window in the previous example because of higher 
level of noise in the image. Moreover, the choice of δ 
and δ' were set to 0.1 and 0.4, the latter showing, for the 
author's point of view, the best texture segmentation. 
The pixels in this image present a variance between 840 
and 4790, which result in variance boundaries P1 and 
P2 equal to 2620 and 3015, respectively.  

In general, the result of the texture segmentation 
shown in Fig. 5c, superimposed on the original image as 
shown on Fig. 5d, is less satisfying than in the previous 
case, i.e. image from the optical microscope. However, 
due to the complexity of the image, results are 
encouraging. Indeed, one can notice than some 
boundary discriminations between colonies are 
relatively accurate, such as between colonies 1 and 2, 1 
and 5 or 5 and 6, which, in these cases, are mainly due 
to rather good wavelet decomposition (see Fig. 5b).  
Some small regions, such as zones 3 and 4 are also 
detected. However,  the decomposition fails, like in the 
previous example, to delimitate colonies of the same 
orientation separated by a grain boundary, such as 
colony 1 and the one which stands above colony 3 in 
Fig. 5a. As expected, areas which correspond to the 
third class from wavelet decomposition (equation 1), i.e. 
without preferential directionality (white colour), occur 
at boundaries between colonies with strong 

misorientation. Two large white areas can also be 
noticed between zones 2 and 3, 3 and 5. While the 
former area results from misorientation of colonies 
within the same grain, the latter one surprisingly 
corresponds to a portion of zone 5. The possible reason 
which could explain the presence of no preferential 
directionality in this zone is the average orientation of 
the lamellae at 45º which may result, after wavelet 
decomposition, to nearly equal local intensity in the 
corresponding Horizontal and Vertical Detail images. 
Finally, the boundary discrimination is not satisfying in 
zones where the lamellar directionality is fading, such 
as in zone 7. However, Fig. 6 shows that the lamellae 
are better distinguishable and regularly spaced in 
another orthogonal plane.  The boundary discrimination 
may therefore be more accurate in this plane for this 
colony. 

 
Fig. 5. (a) image from X-ray tomography and 

corresponding segmented results (b) segmentation 
after wavelet classification (c) final segmentation 

(d) superposition of (a) and (c). 

 
Fig. 6: 3D view showing the reconstructed image 
of Fig. 5a with another orthogonal plane crossing 

the colonies 2 and 5. 
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The superposing effect of variance for the pixel 
classification is less significant and precise than in the 
previous example to accurately separate colonies of the 
same wavelet classification. However, the algorithm is 
relatively able to distinguish them, as it can be seen on 
Fig. 5c and Fig. 5d where colonies 6 and 8 are relatively 
well detected.  Colony 9 presents large variance 
fluctuation, as shown in Table 2, which explains partly 
why the zone contains areas of class cl1, cl2 and cl3 (see 
equation 7).  

Table 2 Mean and standard deviation of variance 
in 7 zones (colonies) indexed in Fig. 5a. Values 
have to be multiplied by 1E+3. 

zone 1 2 3 5 6 7 9 

mean 1.66   1.34 2.4 1.82  1.85 2.07 3.30 

std 0.47   0.21 0.20 0.28 0.35 0.65 0.63 

 
6.  Discussion and conclusion 

This paper has presented a preliminary approach based 
on wavelet-based texture segmentation method to 
segment lamellar colonies in (α+β) titanium alloy. The 
primary aim of the paper was not to present an 
optimised method but rather to show its applicability 
and limitations to the present study. Segmentation 
results of images of the same titanium-based 
microstructure from optical microscope and X-ray 
tomography have shown that this method, which does 
not take into account any prior knowledge of the texture 
pattern, works relatively well when the lamellae are 
clearly distinguishable and the pattern in colonies 
regular. However, the present method does not detect 
grain boundaries which may be of importance when it 
separates two colonies of the same orientation. This is a 
crucial point in the future study of correlation between 
crack path and microstructure since it is known that 
grain boundaries in lamellar titanium alloys deflect 
cracks. A possible method would be to specify a special 
class of grey level features which discriminate only 
grain boundaries among all the patterns which compose 
the lamellar image. Moreover, the choice of the 
boundaries for the variance classification may also be 
problematic to adequately discriminate connected 
colonies of the same orientation. The present method 
was simply considering 3 ranges of variance value, 
based on the minimum and the maximum variance of 
the image, while another approach could consider a 
study of the variance histogram to select the ranges.   
Before considering the extension to 3D data, other 
approaches could be tested, like co-occurrence matrices 
(Haralick and Shapiro, 1992) and ridgelet transform 
(Donoho, 2001).  Grey Level Co-occurrence Matrices 
method (GLCM), which is defined over an image to be 
the distribution of co-occurring values at a given offset, 
is often used in texture analysis since it is able to 
capture the spatial dependence of gray-level values 
within an image. The method is sensitive to rotation and 
particularly sensitive to regular patterns, and may 

therefore be of utility to analyse lamellar structure. A 
possible approach would be to pre-define window 
samples, extracted directly from the analysed image, or 
generated automatically to resemble to different 
lamellar patterns, and compare the properties of the 
corresponding GLCM with the ones of the image. 
However, this method would have a high time 
complexity. Ridgelet transform is a recent multi-
resolution analysis tool based on Wavelet transform, 
which capture structural information of an image based 
on multiple radial directions in the frequency domain 
(Donoho, 2001). The image decomposition considers 
more than 3 detail images as for DWT (vertical, 
horizontal and diagonal), and may therefore be of better 
interest to discriminate adjacent lamellar colonies with 
opposite orientations. These new approaches are 
currently under development and testing. The best 
method will then be extended for 3D texture analysis. 
Two main strategies will be evaluated: treating 3D data 
as a stack of 2D images in the 3 principal directions and 
defining real volumetric texture analysis. The former 
method has already been used to denoise volumetric 
data of breast using 3D wavelet transforms (Chen and 
Ning, 2004)  
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