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Summary: Statistical methods such as Monte Carlo Markov 
Chain (MCMC) coupled with Bayesian approach proved its 
usefulness to the Electrical Capacitance Tomography (ECT) 
inverse problem solution. However, this methodology is very 
sensitive to the values of method parameters. The dedicated 
tool for investigation of this statistical method and for 
algorithm adjusting, testing, verification and optimization is 
proposed in the paper.  
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1.  Introduction 

In Electrical Capacitance Tomography (ECT) the 
solution of inverse problem is usually aiming at 
obtaining the tomographic image in the process of 
image reconstruction (Lionheart, 2004; Yang et al., 
1999). Speed and accuracy of the inverse problem 
solution in ECT is still a challenge. Statistical methods 
such as Monte Carlo Markov Chain (MCMC) coupled 
with Bayesian approach proved its usefulness to image 
reconstruction (West et al., 2004; Kaipio et al., 2000; 
Romanowski et al., 2004). Moreover, these techniques 
revealed capabilities in improving some properties of 
image reconstruction, as well (Romanowski and 
Grudzień, 2005). However, the practical use of that type 
of methodology often proves difficult because of strong 
computing demands. Particular tomographic methods 
application requires usually a ready-to-use solution, 
while in case of MCMC methods it is sometimes better 
to first suit the algorithm to the given case each time. 
Such an algorithm optimization may be complicated to 
implement at once, because of needed resource 
consumption.  

Therefore, the authors propose the dedicated tool  
for MCMC imaging algorithm adjustment for ECT. The 
proposed software, named iMCMC, includes 
application of the method for solving the ECT inverse 
problem based on statistical methods including Monte 
Carlo Markov Chain and Bayes’ theorem (Winkler, 
2003; Liu, 2001). The presented tool can be very useful 
for algorithm adjusting, testing, verification and 
optimization because the implemented methodology is 
very sensitive to the proper adjustment of method 
parameters values. Each single small change of the 
individual parameter can cause substantial changes to 
the output results. The use of the software package for 
MCMC individual parameter testing can be very helpful 
in optimal parameters setting for different industrial 
applications imaging. 

2.  Statistical Modelling 

Consider a complete dataset of N capacity 
measurements collected in data vector C={C1,C2,…CN}. 
Suppose that the area of tomograph sensor is discretized 
into M triangular pixels using prepared mesh. The 
permittivity within each pixel is constant and complete 
set of permittivity values is denoted by ε={ε1,ε2,…εM}. 
The unknown is the distribution of the permittivity 
values given measurement records, boundary potential 
values and assuming some a priori knowledge, 
characteristic for the given, examined phenomenon. 

2.1.  Bayes’ theorem 

The inverse problem solution can be described as a 
process of recover the information of the state of a given 
phenomenon on the basis of the outside observations. 
The observations (corresponding to ECT measurement 
records) and the system characteristic parameters 
(dielectric permittivity distribution inside an ECT 
measurement space) can be treated as random variables. 
These variables can be described by a conditional 
probability relationship according to Bayes’ theorem. 
Moreover, applying this theorem also allows to link the 
observation results with the a priori knowledge: 

 )(*)()( prioriaPlikelihoodPposterioriaP ∝  (1) 

As a result, the inverse problem solution parameters 
can be estimated as a measure of probability of the 
a posterior density function. Sought measures can be 
found as expected values computed by integrating the 
a posterior function probability distribution. Monte 
Carlo Markov Chain method can be used for 
integrating.  

2.2.  Monte Carlo Markov Chain 

Metropolis–Hastings algorithm is used for Monte 
Carlo Markov Chain generation. It produces 
approximate samples from the posterior distribution by 
simulating Markov Chain with the posterior distribution 
as its equilibrium distribution. 

Integration with the use of MCMC method computes 
the measure of the function f of random variables X 
vector by sampling the posterior distribution {Xt, 
t=1,2,..w} and approximating according to formula (2): 
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where: 

f – function of random variables vector 
X – vector of random variables 
t – sample index 
w – number of samples 

For the purpose of integration iterations are used in 
the most implementations of MCMC method. The 
iteration process starts with some initial value, which 
can affect further samples. To make chain forget this 
value and be more convergent to stationary distribution 
with the growth of iteration index t, regularization 
criteria are applied. That is why the samples from the 
beginning period, called burn-in period, should be 
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discarded. Assuming that burn-in period lasts for wb 
iterations, formula (2) can be converted into: 

  ∑
−

≈
+=

w

wbt
tXf

wbw
f

1
)(

1  (3) 

where: 

f – function of random variables vector 
X – vector of random variables 
t – sample index 
w – number of samples 
wb – number of samples to discard 

The proper choice of the starting point can increase 
the speed of convergence by decreasing the amount of 
needed iterations and shorten the length of burn-in 
period. 

In practice, the length of burn-in period can be 
determined on the basis of the analysis of graphical 
interpretation of MCMC method output. 

3.  Theoretical basis of MCMC application to 

ECT inverse problem 

3.1.  Discretizing area 

iMCMC application has the build-in algorithm for 
generating mesh for the purpose of area discretizing. 
The user can decide about the number of electrodes, 
which imposes the number of measurements, nodes 
between electrodes (inter-electrode space), number of 
rings and the number of triangles to be placed in the 
first the ring (elements of the outer ring). An example of 
generated mesh is presented in figure 1. 

 
Fig. 1. An example of generated mesh. 

3.2.  Starting point 

The starting permittivity distribution for MCMC 
method can be either zeros, the result of previous 
MCMC solution or the solution obtained by 
implemented Linear Back Projection (LBP) method. 
For this reason, iMCMC application also includes 
method for Jacobian computing based on mathematical 
analysis of electrical field inside the tomographic sensor 
according to the formula (4), presented in (Wajman 
at el., 2004) and in (Liu et al., 2001). Finite Element 
Method (FEM) is used for forward problem solving. 
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where: 

x, y – pixel indexes 
s – source electrode index 
r – receive electrode index 
Ω(x, y) – pixel area 
Es(x, y) – electrical field intensity in (x, y) pixel when 
potential φs is set on s electrode 
Er(x, y) – electrical field intensity in (x, y) pixel when 
potential φr is set on r electrode 

3.3.  MCMC method 

A standard Metropolis-Hastings algorithm is used to 
produce approximate samples from the posterior 
distribution by simulating a Markov chain which has the 
required distribution as its limiting distribution. Inverse 
problem solving with use of MCMC method is based on 
iteration process, in which permittivity distributions are 
proposed in a random way. The proposed permittivity 
distribution in each iteration is based on the accepted 
distribution in previously iteration with the random 
change. The change range level is defined by a variance 
τ. Parameter τ indicates, how much random values can 
affect permittivity distribution.  

Metropolis-Hastings algorithm is implemented as 
the iterations loop. Each iteration another loop - called 
sampler, executes a number of sub-iterations. The 
number of sampler loop iterations depends on the user 
decision and in practice is determined experimentally. 
Whether the proposed permittivity distribution is 
accepted, depends on ratio. Ratio is the parameter 
computed as an exponent of other parameters 
combination. These parameters are energy N, contrast S 
and difference D. The way of computing ratio is 
presented by formula (5). Parameters with index f 
correspond to the formerly saved distribution, whereas 
parameters with index p correspond to the proposed 
distribution.  

 ( ) ( ){ }DSSNNratio pfpf +−+−= exp  (5) 

where: 

Nf – energy of former distribution 
Np – energy of proposed distribution 
Sf – contrast of former distribution 
Sp – contrast of proposed distribution 
D – difference between distributions 

Computed ratio value is compared to the random 
value from range <0,1> and is accepted only, if it is 
greater then the proposed permittivity distribution. After 
last iteration of sampler loop, the recently accepted 
distribution is stored. In the end, the average of all saved 
permittivity distributions is calculated, which is the 
solution of inverse problem. Permittivity distribution 
values of burn-in period are not included. 

Energy factor (N) characterizes how the proposed 
distribution corresponds to the real distribution. It is 
computed by the difference between measured 
capacitance records and calculated capacitance values 



Matusiak et al. / Elektryka 114 (2009) 

129 

coming as the solution of forward problem of the 
proposed distribution. Forward problem is solved with 
FEM method. Energy is the most important parameter 
because it determines the convergence of the sequence. 
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where: 

N – energy of distribution 
βN – parameter for energy 
Cm – measured capacities 
Cp – proposed capacities 
ns – noise parameter simulating real measurements 

Contrast (S) parameter is the difference between the 
value of permittivity of a pixel and the average value of 
permittivity of all contiguous neighbouring pixels. 
It corresponds with the prior knowledge about what the 
contrast of the real distribution should look like. 

 
2npx

SS εεβ −=  (7) 

where: 

S – contrast of distribution 
βs – parameter for contrast 
εpx – vector containing values of permittivity of pixels 
εn – vector containing average values of permittivity of 
all contiguous neighbouring pixels 

Difference (D) parameter matches the difference 
between the proposed distribution and last accepted 
distribution. 

 2
pfDD εεβ −=  (8) 

where: 

D – difference between distributions 
βD – parameter for difference 
εf – former distribution 
εp – propose distribution 

In order to impose an influence on ratio value and, 
as a result, on acceptance rate of proposed distributions, 
a group of parameters is applied. These are, described 
above, energy, contrast and difference. They enable to 
have the control over adjustment of the impact level on 
ratio. In order to define the individual influence of each 
of these parameters on ratio, constant values should be 
preserved during the whole calculation loop. There is 
another, fourth parameter, as well, namely: noise ns. 
This parameter is added to simulate real measurement 
uncertainty influenced by interference, noise and real 
experiment conditions. The noise parameter is applied 
only for simulated data. For real measurement data, no 
additional noise is added to measurement records. 

Acceptance indicator is defined for the rate of 
proposed permittivity distributions monitoring. It is 
computed as a proportion between accepted and all 
drawn permittivity distributions: 

 
all

accepted

n

n
Acceptance =  (9) 

where: 

naccepted – number of accepted samples 
nall – number of all samples 

The algorithm implemented in the application is 
presented in figure 2. 

 
Fig. 2. Implemented algorithm of MCMC method. 

 

4.  iMCMC Application Implementation 

4.1.  Platform & Development 

For the purpose of design and tests Matlab R13 
environment was used. Next the Mac architecture was 
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chosen for iMCMC application development. The 
choice was made because the available, at this platform, 
powerful, user-friendly and easy-programmable 
graphical user interface, simple memory management 
and efficient vector operations processing.  

Implementation was completed on PowerBook G4 
station equipped with 867 MHz PowerPC G4 processor 
and 768 MB of RAM. However the iMCMC application 
can be run on Intel-based Apple computers, as well. 
Mac OS X 10.3.9 operating system was installed and 
XCode 1.5 was used as a software for Mac OS 
application developing, This is the latest version of 
XCode that can be run on PowerPC G4 family 
processors. The choice of the particular system version 
ensures backward compatibility. Therefore, also older 
hardware and software of educational sites, such as 
academia labs can be utilized for program exploration. 

The implementation consists of ten classes written in 
ObjectiveC language and using the Cocoa application 
environment. Application was designed according to 
Model-View-Controller (MVC) architectural pattern but 
it also uses other mechanisms, such as delegation. The 
huge advantage of MVC pattern is ease of further 
development, scalability. 

4.2.  Functionality 

The important advantage, in contrast to many 
powerful research helpful programs, of the presented 
software package is the full graphical user interface. 
GUI implementation ensures that the tool is easy to use 
and the investigation of MCMC method becomes more 
user-friendly. 

• The main function of iMCMC application is solving 
the inverse problem using the implemented MCMC 
method. However, in order to complete the task, a 
number of sub-modules were realized.  
Typical use of the iMCMC application starts with 

mesh parameters input and mesh generation. Having the 
calculated mesh, it is then possible to calculate Jacobian 
matrix. Next step is the input of the data; user can 
upload measured capacitance values, from files or by 
manual input of data. Measurements in text files should 
be saved in float numerical format, separated by spaces 
or new line characters. After that, it is possible to 
calculate the solution using Linear Back Projection 
method. The obtained LBP solution is the starting point 
for MCMC method. User can define each algorithm 
parameter before the start of iteration loop. When the 
program is running, it is not allowed to change the 
parameters until the end of current iteration. During the 
entire chain run process, user can observe changes of 
parameters and accepted distributions at the dedicated 
monitoring window. When the last iteration ends the 
final solution is computed and presented. It can be then 
used as a new starting point or user can reset starting 
point to the solution gained with use of LBP method.  

4.3.  User interface 

User interface of the iMCMC application was 
developed with Aqua GUI for Mac OS X. Aqua 
framework development is restricted with certain rules 

and contains guidelines for designing and creating 
graphical user interface which programmer should obey. 
The whole interface was prepared in English language 
to make the iMCMC application more accessible. 

Interface consists of number of windows. Distinct 
windows are not modal and each of them can be placed 
separately anywhere in view space. Such approach 
allows to display each window of the iMCMC 
application at the same time, including solutions 
windows, which gives the user ability for instant 
comparison. 

The most important part of the user interface is the 
main window of application, which is presented in 
figure 3. The main window is divided into three parts: 

• Mesh – associated with mesh generation, display 
and modification, as well, as Jacobian calculation. 
The mesh is generated according to the user-defined 
parameters. 

• Data – This part concerns the measurement data. 
User, by means of Edit measurements button, gains 
access to data input window, where either manual or 
file upload measurement data input is possible. User 
is responsible for defining the minimum and 
maximum permittivity values, as well, as for 
corresponding potential distribution calculation 
(these are necessary for LBP method employment). 

• Solution – corresponding to inverse problem 
solution. LBP solution button forces the iMCMC 
application to compute the inverse problem solution 
using LBP method. Solution can be displayed with 
Show LBP button. Show MCMC opens the window 
presenting MCMC solution, while MCMC Solution 
button opens the MCMC Solution window covering 
the control options for MCMC algorithm. 
Closing the main window terminates the iMCMC 

application. 

 
Fig. 3. The iMCMC application main window. 

 
The MCMC Solution window is presented in 

figure 4. The upper part of this window contains: 
• START/STOP, PAUSE buttons,  
• status box informing about current state, e.g. 

STOPPED, WORKING;  
• Update view checkbox and boxes informing about 

process parameters values such as iteration of 
sampler; 
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• number of burn-in period iteration; 
• number of iteration after burn-in period; 
• ratio, energy, contrast, difference, and rate of 

acceptance parameters. 
In order to observe progress of MCMC procedure, 

MCMC solution window can be invoked 
(Show MCMC). However drawing on-line all the 
computing stages can slow down the calculations, 
especially on slower computers. It is possible to prevent 
this drawback, disabling Update view checkbox on the 
MCMC Solution window. 

The lower part of the MCMC Solution window 
contains three tabs. Firs tab, parameters allows to 
change values of algorithm parameters. Second tab 
allows to control iterations count, and the last tab gives 
control over automated τ value selection during burn-in 
period. 

 
Fig. 4. The MCMC Solution window. 

4.4.  Numerical experiments 

This section presents examples of iMCMC 
performance. In order to illustrate application 
capabilities, well-chosen simulated permittivity 
distributions, the so-called phantoms, were examined. 

The example procedure of application performance 
is the following. Any calculations begin from 
computing a forward problem solution for a defined 
phantom. For that purpose, dedicated Matlab m-files are 
used. Simulations are performed for eight-electrode 
tomography sensor. Obtained solution serves as 
simulated measured capacitance values and can be 
inserted as an iMCMC application input. Then, inverse 
problem solution for different parameters values and 
number of iterations can be found. The next subsections 
present results for two types of phantom distributions 
(half-, and centric- occupation of measurement space). 
Results are presented using coarse mesh in order to 
attain better representation for the results, especially in 
printed version of the paper. 

4.5.  Half filled sensor 

First simulated experiment assumed the tomography 
sensor was filled in a half with the material of higher 
permittivity value than the other, empty part. The 
phantom shape is presented in figure 5. 
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Fig. 5. Half filled sensor. 

First attempt of the inverse problem solving using 
MCMC method is presented in figure 6. Parameter 
values are the following: burn-in period 5 iterations 
with sampler of 10 samples each iteration; τ  value of 
0.02; noise 1.1, energy factor 1; while contrast and 
difference factors exactly zeros. It can be concluded as 
the solution (100 iter.) looks similar to the phantom. 

 
Fig. 6. MCMC method solution for half filled 

sensor 

Another solution example presented in figure 7 was 
obtained for a different set of parameter value. Sampler 
was changed to 20 samples, burn-in to 10 iterations and 
value of τ was 0.4. Conclusion is the solution, is far 
from the original distribution, which confirms high 
sensitivity of MCMC algorithms with respect to 
parameter values variations. 

 
Fig. 7. MCMC method solution for half filled 

sensor 
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4.6.  Sensor filled in centre 

Another simulated experiment was conducted for a 
centric-located phantom of higher (in contrast to the rest 
of empty space) permittivity shown in figure 8. 
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Fig. 8. Sensor filled in centre. 

Calculations were performed for sampler 5, burn-in 
5 iter., sdnoise 1.1, τ  0.01, βenergy 100, βcontrast 0.0001 
and βdifference 0. 

Solutions for 400 and 1000 iterations are presented 
in figures 9 and 10 respectively. Experiments show that 
besides appropriate adjustment of method parameters, 
number of iterations is crucial to the quality of solution. 
Reconstructed image quality increases with raising 
number of iterations. 

 
Fig. 9. MCMC method solution for the sensor filled 

in the centre after 400 iterations. 

 
Fig. 10. MCMC method solution for the sensor 

filled in the centre after 1000 iterations. 

5.  Conclusions 

Described software package presents an interesting 
tool for both, classical tomography imaging exploration 
and MCMC methods adjustment. The main advantage 
of this program is its applicability to educational 

purposes and tomographic data processing methods 
examination. 

The dedicated tool proposed for investigating Monte 
Carlo Markov Chain imaging algorithm adjustment for 
ECT proves its usefulness for the appropriate method 
parameters values determination. The main advantage 
of the iMCMC application is giving the user an ability 
to change each individual parameter during calculations. 
This feature is very helpful in optimal parameters 
setting for different industrial applications. The 
application is under ongoing development in order to 
enhance its functions and interface. 

Presented numerical experiments carried out with 
use of the iMCMC application showed sensitivity of the 
implemented methodology to the algorithm parameters. 
As it can be expected, parameters values fixed as 
appropriate for a chosen process do not have to 
automatically fit another application. Another confirmed 
anticipation is the quality of image reconstruction is 
highly dependent on the number of iterations. However, 
without adequate parameters adjustment, the solution 
may be unsatisfactory even after numerous iterations. 
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