ПРОБЛЕМЫ ГЕОЛОГИИ И ОСВОЕНИЯ НЕДР

существенно преобразуют состав водоотливов шахт и выявлены как самостоятельное, четвертое направление в изменении состава шахтных вод.

Наиболее популярными гипотезами формирования содовых вод являются инфильтрационная, ювенильная, дегидратационная и испарительно – конденсационная. Критический анализ указанных гипотез позволил обоснованно принять испарительно-конденсационную гипотезу и высказать предположение о возможном обнаружении в регионе нефтегазовых скоплений [1,2,4].

Литература

- 1. Гавришин А.И. О генезисе маломинерализованных содовых вод Донбасса. // ДАН РФ. 2005. Т. 404. № 5. С. 668-670. 187 с.
- 2. Гавришин А.И. Количественный анализ природных и техногенных гидрогеохимических закономерностей. // Известия высших учебных заведений. Геология и разведка, 2012, №2. С.37-42.
- 3. Гавришин А.И., Корадини А. Многомерный классификационный метод и его применение при изучении природных объектов. М.: Недра. 1994. 92с.
- 4. Гавришин А.И. Корадини А. Происхождение и закономерности формирования химического состава подземных и шахтных вод в Восточном Донбассе. // Водные ресурсы, 2009, Т. 36, № 5. С. 564-574.
- 5. Гавришин А.И., Корадини А., Мохов А.В., Бондарева Л.И. Формирование химического состава шахтных вод в Восточном Донбассе. Новочеркаск: ЮРГТУ (НПИ), 2003. 187 с.

ХИМИЧЕСКИЙ СОСТАВ ПОДЗЕМНЫХ ВОД КОЖЕВНИКОВСКОГО РАЙОНА ТОМСКОЙ ОБЛАСТИ

А.В. Брюшко

Научный руководитель доцент О.Г. Токаренко

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Во все времена, особенно в настоящее время, вопрос о качестве питьевой воды сохраняет свою актуальность. Академик В.И. Вернадский в свое время совершенно справедливо сказал: «Вода – это первоисточник всего». Она, как ни что другое, влияет на здоровье всего живого, что подчеркивает важность вопроса качества питьевой воды. Для нормальной жизнедеятельности человеку необходимо употреблять только проверенную хорошую и качественную питьевую воду, что зачастую в наше время, к сожалению, не всегда возможно.

В малонаселенных пунктах Томской области подготовка воды, как правило, элементарна: она часто состоит только из стадии отстаивания [5]. Использование природных вод для питьевых и других целей без обработки и подготовки создает угрозу для населения, провоцируя различные заболевания, поэтому водообеспечение граждан Томской области качественной питьевой водой является актуальной проблемой. В исследуемом районе население периодически жалуется на плохое качество воды. Большая часть водопроводов в Кожевникове проложена из стальных и чугунных труб. Трубы забиты ржавчиной и отложениями, которые снижают качество воды.

В связи с этим целью настоящего исследования является изучение качества подземных вод в Томской области Кожевниковского района в деревне Успенка.

В деревне Новоуспенка Кожевниковского района Томской области были взяты две пробы. Одна проба была получена из скважины (рис., точка 1), вторая – из водопроводного крана по адресу Новоуспенка ул. Иркутская 54/2 (рис., точка 2). В данном районе вода поступает из скважины в водонапорную башню. Далее самотеком расходится по водопроводу, поступая в водопроводные краны.

Рис. Деревня Новоуспенка. Карта отбора проб

Таблица

Пробы были отданы на экспертизу в научно-образовательный центр «Вода» ТПУ ИПР. Результаты представлены в таблице. Исследуемые воды пресные, умеренно жесткие, слабощелочные. По химическому типу – гидрокарбонатная кальциево-магниевая. Формула Курлова выглядит следующим образом:

$$\rm M_{0,6} \frac{\rm HCO_{3}99}{\rm Ca59Mg28} \rm pH7,47}$$

Водопроводная вода по составу несколько отличается от воды, отобранной в скважине. Вода также пресная, но по величине pH — нейтральная, концентрация HCO_3 более низкая почти в 2 раза. В то же время, содержание SO^{2-} и CI^- увеличивается почти в 5 раз, тогда как общая жесткость, наоборот, уменьшается в 2 раза. Концентрации азот- и фосфорсодержащих компонентов, таких как NO_2 , NH^+ , PO^{3-} уменьшаются, а NO^- , наоборот, увеличивается в 4 раза. В целом так же после отстаивания в водонапорной башне меняется солевой состав водопроводной воды: значение минерализации уменьшается почти в 2 раза. Также в небольших превышениях норм в воде скважины наблюдается барий, однако после отстаивания его концентрация уменьшается до нормируемых значений.

Вместе с тем, в водопроводной воде присутствует значительное количество железа, которое превышает ПДК в 25 раз и марганец, превышающий нормы в 7 раз. Подобная ситуация не удивительная для нашей железомарганцевой провинции, однако данные компоненты в такой высокой кратности превышения находится в питьевой воде, которую потребляют жители Новоуспенки, не должны. Присутствие высоких концентраций данных компонентов приводит к появлению железистого вкуса воды, а также выпадает рыжий хлопьевидный осалок.

Исследование природной воды с.Новоуспенка Кожевниковский район, мг/л

Компонент	Скважина	Водопроводный кран	ПДК по СанПиН 2.1.4.10749-01
pН	7.47	7.28	6.5-9
HCO ₃	439	244	-
CO_2	31.7	22.9	
CO_2 CO_3^{2-}	<3	<3	_
CO ₃ -	0.01	5.06	500
SO ₄ ² - Cl ⁻	0.76	5.7	350
Об.ж., мг-э/л	6.73	3.97	7
	91	65	/
Ca ²⁺			
Μσ ²⁺	26.6	8.2	200
Na ⁺	10.2	8	200
K ⁺	0.96	2.22	-
Fe ^{общ}	0.47	7.5	0.3(1)
Мин.	568.02	340.79	1000(1500)
NH, ⁺ NO, ⁻	1.23	0.23	2
NO ₂	1.4	< 0.05	3
NO ₃	0.03	4	45
PO ₄ ³⁻	0.23	0.05	3.5
Si	9.26	8.06	10
E-	0.35	0.18	1.2
Сорг.	7.1	6.8	_
Zn	0.013	0.0071	1
Cd	< 0.0002	< 0.0002	0.001
Pb	0.00044	0.00037	0.03
Mn	0.24	0.73	0.1
Cu	0.0032	0.0027	1
I	0.019	0.0084	_
Ba	0.12	0.07	0.1
Al	< 0.02	0.01	0.5
As	< 0.005	0.0039	0.05
Ni	< 0.01	< 0.01	0.1

Таким образом, в водопроводной воде Кожевниковского района, добываемой из скважины, по пути поступления воды к потребителю происходит увеличение железа, марганца, нитратов и др. через в водопроводные трубы. Это, вероятно, связано с возможными процессами микробной деятельности, происходящими по ходу движения подземной воды к потребителю (денитрификация и нитрификация). Данное

предположение возможно подтвердить дополнительным микробиологическим анализом воды. Появление компонента хлор-иона на выходе из крана можно объяснить вероятным его поступлением с поверхности.

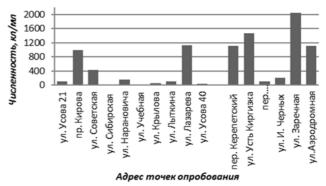
В качестве рекомендации самым оптимальным, простым и дешевым, является метод очистки воды через природные сорбенты [2]. Будущий перспективный фильтровальный материал для повышения качества воды является природный цеолит, который обладает уникальным спектром физико-химических, адсорбционных и ионообменных свойств. Именно поэтому они находят широкое применение в практике очистке сточных вод [3]. Также жителям рекомендуется применение специального фильтра по очистке от повышенных концентраций железа

Литература

- 1. Вернадский В.И. История природных вод / Вернадский В.И.; отв. ред., Шварцев С.Л, Яншина Ф.Т. М.: Наука, 2003. 750 с.
- 2. Ильнин А.П., Милушкин В.М., Назаренко О.Б., Смирнов В.В. Разработка новых методов очистки воды от растворимых примесей тяжелых металлов // Известия Томского политехнического университета. 2010. Т.317. №3. 40-44 с.
- 3. Тараскевич Ю.И. Природные сорбенты в процессах очистки воды. Киев: Наукова думка,1981. 207 с.
- 4. Удодов П.А., Паршин П.Н, Левашов Б.М Гидрогеохимические исследования Колывань-Томской складчатой зоны. Томск, 1971. 284 с.
- 5. Шварцев С.Л., Букаты М.Б. Гидрогеология, инженерная геология и гидрогеоэкология. Томск, 2005. 385с.
- 6. СанПиН 2.1.4.10749-01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения

ОЦЕНКА КАЧЕСТВА ВОДОПРОВОДНОЙ ВОДЫ ГОРОДА ТОМСКА А.Ю. Волженина

Научный руководитель доцент Н.Г. Наливайко


Национальный исследовательский Томский политехнический университет, г.Томск, Россия

Жители г. Томска обеспечиваются водой из двух источников: поверхностного водозабора (р. Томь) и подземного водозабора (водоносного горизонта палеогеновых отложений). Основным источником хозяйственно-питьевого водоснабжения города является подземный водозабор, эксплуатирующийся с 1973 года [1]. Проблема чистой питьевой воды - одна из главнейших глобальных проблем нашего времени, поэтому актуальность данного исследования определяется потребностью обеспечения населения г. Томска воды удовлетворительного качества.

В задачу данного исследования входило изучение химического и микробиологического составов питьевой воды в водопроводящих системах городской территории и оценка ее качества.

Для изучения качественного состава водопроводной воды проводился отбор проб из уличных водозаборных колонок на наиболее возвышенных и тупиковых участках распределительной сети, а также из кранов внутренних водопроводных сетей зданий, с учетом их этажности, возраста, материалов исполнения, давности ремонта и смены водопроводной системы, а также с учетом равномерности распределения точек опробования по территории различных районов города. Пробы воды отбирались без их консервации и хранения на химический и микробиологический анализы в зимний и весенний периоды. По всем точкам определялись компоненты химического состава воды, рекомендуемые СанПиН 2.1.4.1074-01 [3].

В этих же пробах определялись мезофильные сапрофиты, являющиеся показателями санитарно-гигиенического состояния водного объекта. В незагрязненной воде количество этих микробов должно быть определялись менее 50 кл/мл. Также экологические группы микроорганизмов: психрофильные сапрофиты, олиготрофы, нефтеокисляющие бактерии, гетеротрофные и миксотрофные железоокисляющие бактерии, железовосстанавливающие бактерии. сульфатвосстанавливающие Микроорганизмы этих групп безопасны для человека, ИХ количество нормируется. Эти микроорганизмы могут использоваться как индикаторы состояния экологического состояния водного объекта.

Puc.1 Суммарная численность микробов в водопроводной воде в зимний период

Кроме прокариотных выявляли и учитывали также эукариотные микроорганизмы: актиномицеты и плесневые грибки.

Полученные результаты аналитических исследований химического состава воды, как отобранной из уличных водозаборных колонок, так и отобранной из кранов жилых и административных помещений,