
Available online at
http://jess.esrae.ru/

“Journal of Economics
and Social Sciences”

Analysis of Canon CAPT protocol for Linux printer support
improvement

Tomsk Polytechnic University

Alexei Gordeev

Postgraduate, Systems Engineering Department, Siberian State Technological University

Abstract

The following paper discusses major deficiencies found in Canon’s own proprietary Advanced Printing Technology
(CAPT) driver for Linux distributions. It points out the existence of experimental, but more clean and completely open
source driver based on several previous reverse engineering attempts and poses a problem of its incompatibility with a
particular printer model (LBP3000 in this case) in question. Then it proceeds to describe the effort of analysis through
observation of captured conversation between Canon's own proprietary driver and the printer to point out the
differences between the inner workings of original and open source drivers.
Finally, it describes the implementation of printer's support in an open source driver and concludes with the successful
result of producing a driver that is able to work under modern Linux distributions and share a CAPT printer on a
heterogeneous local area network.

Keywords: Canon, Advanced, Printing, Technology, Printer, CAPT, Wireshark, Protocol, Capture, Analysis;

1. Introduction

Reverse engineering is a process of extracting knowledge or design information from anything
man-made and reproducing anything based the extracted information. The process often involves
disassembling something (a mechanical device, electronic component, computer program, or
biological, chemical, or organic matter) and analyzing its components and workings in detail.
Reverse engineering may also be used to create interoperable products. In case of hardware
drivers (such as in the case described in this paper), motivation for reverse engineering may be:
 Interoperability;
 Software modernization;
 Money saving.

Reverse engineering of software can be accomplished by various methods. The three main
groups of software reverse engineering are:
 Analysis through observation of information exchange, most prevalent in protocol reverse

engineering, which involves using bus analyzers and packet sniffers, for example, for
accessing a computer bus or computer network connection and revealing the traffic data
thereon. Bus or network behaviour can then be analyzed to produce a stand-alone
implementation that mimics that behaviour. This is especially useful for reverse engineering
device drivers. Sometimes, reverse engineering on embedded systems is greatly assisted by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic archive of Tomsk Polytechnic University

https://core.ac.uk/display/53093958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tools deliberately introduced by the manufacturer, such as JTAG ports or other debugging
means. In Microsoft Windows, low-level debuggers such as SoftICE are popular.

 Disassembly using a disassembler, meaning the raw machine language of the program is read
and understood in its own terms, only with the aid of machine-language mnemonics. This
works on any computer program but can take quite some time, especially for someone not
used to machine code. The Interactive Disassembler is a particularly popular tool.

 Decompilation using a decompiler, a process that tries, with varying results, to recreate the
source code in some high-level language for a program only available in machine code or
bytecode.
Wireshark is a Free and open source packet analyzer. It is used for network troubleshooting,

analysis, software and communications protocol development, and education. Originally named
Ethereal, the project was renamed Wireshark in May 2006 due to trademark issues.

Wireshark is cross-platform, using the Qt widget toolkit in current releases to implement its
user interface, and using pcap to capture packets; it runs on GNU/Linux, OS X, BSD, Solaris,
some other Unix-like operating systems, and Microsoft Windows. There is also a terminal-based
(non-GUI) version called TShark. Wireshark, and the other programs distributed with it such as
TShark, are free software, released under the terms of the GNU General Public License.

2. Canon Advanced Printing Technology support with open-source drivers on Linux

2.1. Problems with genuine proprietary software

i-SENSYS (also known as LaserShot) LBP3000 is a laser printer that was first released by
Canon in late 2005. It features USB2.0 connectivity, and claims 14 pages per minute throughput.
Despite such printers age, most of them are still in use due to reasonably cheap 3rd-party supplies
and spare parts available.

An entire line of Canon printers, including LBP3000 (and not limited to laser printers), is
controlled by Canon's own proprietary protocol called CAPT, which stands for Canon Advanced
Printing Technology. The company claims that its use of data compression reduces their printer's
memory requirement, compared to conventional laser printers, and claim that it increases the data
transfer rate when printing high-resolution graphics [2].

Being still supported on current modern versions of Microsoft Windows operating system,
CAPT printers lack proper support for open source operating systems, such as Linux. Canon
actually released and periodically updates a Linux driver for their CAPT printers, but it has a
number of disadvantages due, but not limited to, its semi-closed-source nature:
 Limited application range and interoperability. While Canon's own CAPT driver works fine

locally on a Linux workstation, or even on a CUPS network print server, it will fail to print
any printjobs sent to it from Windows workstations.

 Limited host architecture options. Linux was originally developed as a free operating system
for x86-based PCs, but it eventually was ported to different processor architectures and is
ubiquitously found on various types of hardware. While x86-64 architecture still remains
dominant in personal computers, there is now a wide variety of reasonably cheap different
ARM-based devices, such as network routers, development boards (with some of them
represented and used as a desktop computer) and mini PCs. In contrast, Canon's CAPT driver
contains some pre-compiled binary libraries of x86-64 architectures only and thus simply
cannot be run on machine of any other architecture than x86 or x86-64.

 Unnecessary complexity. Canon's CAPT driver was designed to support a range of printers
sharing the same CAPT protocol, including both printers with and without network printserver
built-in, and includes an entire software stack (suite) to manage and control Canon printers. It
consists of printserver application (that can be set up to use both network and local pipe for

passing printjobs), a GUI-based printjob monitor (which would be useless on a headless
server-like system), and a set of printer-specific backends of its own, all of that itself running
as a filter and a backend for the standard Common Unix Printer System. While such setup
may be useful in configurations with many network-shared Canon-only brand printers, it leads
to unnecessary complex and not user-friendly manual setup when used with a single printer,
for example in small or home office. This also leads to an unnecessarily big software package
size of around 25MiB (when installed), when the same exact functionality can be
implemented in a single small CUPS filter program in well under 1MiB of size, at least for the
specific case of locally-connected printer without network interface built-in.

2.2. Testing available support

There is a long-running effort of compiling a clean, open source CAPT driver for Linux by
Alexey Galakhov, based on prevous reverse engineering efforts done by Nicolas Boichat and
Benoit Bolsee, and co-developed by Vitaliy Tomin. At the time of writing this driver seemed to
only offer full support for LBP2900 model. It also offered experimental support for LBP3000,
LBP3010, LBP3018 and LBP3050.

First, experimental support of LBP3000 under consideration was tested. Driver was compiled
and installed, and it was observed that driver is stuck in a loop upon processing next job, after
successfully printing the first job. It was also observed that driver continues to work normally
when printer is power-cycled, and after printing current job, it would stuck in a loop again upon
processing the next job. Appropriate excerpts from CUPS log files are presented in Table 1.

Table 1. Excerpt from /var/log/cups/error_log

I [26/Mar/2016:19:02:30 +0700] Expiring subscriptions...
d [26/Mar/2016:19:02:30 +0700] select_timeout: JobHistoryUpdate=1459079615
D [26/Mar/2016:19:02:30 +0700] [Job 204] Read 4 bytes of print data...
D [26/Mar/2016:19:02:30 +0700] [Job 204] CUPS_SC_CMD_DRAIN_OUTPUT received from driver...
d [26/Mar/2016:19:02:30 +0700] select_timeout: JobHistoryUpdate=1459079615
D [26/Mar/2016:19:02:30 +0700] [Job 204] Wrote 4 bytes of print data...
d [26/Mar/2016:19:02:30 +0700] select_timeout: JobHistoryUpdate=1459079615
D [26/Mar/2016:19:02:30 +0700] [Job 204] CAPT: waiting for 6 bytes
d [26/Mar/2016:19:02:30 +0700] select_timeout: JobHistoryUpdate=1459079615
D [26/Mar/2016:19:02:30 +0700] [Job 204] Read 6 bytes of back-channel data...
d [26/Mar/2016:19:02:30 +0700] select_timeout: JobHistoryUpdate=1459079615
D [26/Mar/2016:19:02:30 +0700] [Job 204] CAPT: recv A0 E0 06 00 88 00
d [26/Mar/2016:19:02:30 +0700] select_timeout: JobHistoryUpdate=1459079615
D [26/Mar/2016:19:02:31 +0700] [Job 204] CAPT: send A0 E0 04 00
I [26/Mar/2016:19:02:31 +0700] Expiring subscriptions...
d [26/Mar/2016:19:02:31 +0700] select_timeout: JobHistoryUpdate=1459079615
D [26/Mar/2016:19:02:31 +0700] [Job 204] Read 4 bytes of print data…
(repeating indefinitely...)

2.3. Protocol analysis with Wireshark

In order to expand support for LBP3000, a Windows XP virtual machine was set up with
original Canon CAPT driver and printer passed through directly to it on a Linux host machine
with Wireshark. Then, Wireshark was set to monitor and capture data passed through USB port
the printer was connected to, while virtual machine was tasked with printing a test page. This
setup is shown in Figure 1.

Fig. 1. Setup for protocol analysis

It was observed that conversation between printer and its driver happens in USB bulk transfer
mode, utilizing USB interface’s full bandwith that is not used by other USB transfers now.

According to driver’s SPECS file (which contains data extracted by previous reverse
engineering attempts), each printer command message generally starts with two-byte command
code, succeeded by optional argument words. The byte order used by CAPT protocol is little-
endian, that is the least significant byte goes first. Those commands and responses can be
observed in the “Leftover capture data” field of each captured packet in Wireshark.

Job start-up command sequences (both successful and unsuccessful) were extracted from both
CUPS error log file and Wireshark capture. Then command arguments were stripped away, and
command codes were substituted with their mnemonic definitions found in header file capt-
command.h for side-by-side comparison, shown in Table 2.

Table 2. Command sequences comparison

CUPS error log
Windows VM + proprietary

driver Notes

Code Mnemonic Code Mnemonic

Job prologue

A1A1 CAPT_IDENT A1A1 CAPT_IDENT

A0A8 CAPT_CHKXSTATUS

E0A0 CAPT_CHKSTATUS A0A1 CAPT_CHKJOBSTAT

A0A8 CAPT_CHKXSTATUS

A3A2 CAPT_START_0 A3A2 CAPT_START_0

A0A1 CAPT_CHKJOBSTAT

A0A8 CAPT_CHKXSTATUS

A0A1 CAPT_CHKJOBSTAT

A2A0 CAPT_JOB_BEGIN A2A0 CAPT_JOB_BEGIN

E1A1 CAPT_JOB_SETUP

E0A0 CAPT_CHKSTATUS E0A0 CAPT_CHKSTATUS Following the source code, initial
implementation gets stuck at this point.

E1A1 CAPT_JOB_SETUP A0A8 CAPT_CHKXSTATUS

E0A0 CAPT_CHKSTATUS A0A1 CAPT_CHKJOBSTAT

Page prologue

E0A6 Unknown command Not documented in the open-source
driver at all.

E0A0 CAPT_CHKSTATUS E0A0 CAPT_CHKSTATUS

A0A8 CAPT_CHKXSTATUS A0A8 CAPT_CHKXSTATUS

E0A3 CAPT_START_1 E0A3 CAPT_START_1

E0A2 CAPT_START_2 E0A2 CAPT_START_2

E0A4 CAPT_START_3 E0A4 CAPT_START_3

E0A0 CAPT_CHKSTATUS E0A0 CAPT_CHKSTATUS

…

Most of extra "check status" commands on Windows driver side presumably come from the
graphical printer monitor polling current job status.

The printing routines are located in prn_lbp2900.c source file. They are broken up in different
printing steps, like job prologue, page prologue, page setup, etc. "lbp2900_ops_s" type structure
contains a set of pointers to all such functions for a specific printer model. That way, a new
printer model can be added to the driver without breaking support for already implemented
printers and can reuse certain functions from other printer model implementation (ether as a
'boilerplate' during development, or just because it naturally uses the same command sequence).

The command sequences of a successfully printed CUPS job and a stuck CUPS job were
compared. It was observed, that unsuccessful printing attempt gets stuck at the first status check
after CAPT_JOB_SETUP command. Apparently, driver keeps polling the printer status for 'ready'
attribute in order to proceed with the print job, and that attribute is not present at the moment.
There's also no additional status check commands in-between 'job begin' and 'job setup'
commands on the Windows driver side. Following the code in the source file, the offending
function call was found, shown in Table 3.

Table 3. Excerpt from prn_lbp2900.c source file [1].

 static void lbp2900_job_prologue(struct printer_state_s *state)
 {
 (void) state;
 capt_sendrecv(CAPT_IDENT, NULL, 0, NULL, 0);
 sleep(1);
 capt_init_status();
 lbp2900_get_status(state->ops);

 capt_sendrecv(CAPT_START_0, NULL, 0, NULL, 0);
 capt_sendrecv(CAPT_JOB_BEGIN, magicbuf_0, ARRAY_SIZE(magicbuf_0), NULL, 0);
 lbp2900_wait_ready(state->ops);
 send_job_start();
 lbp2900_wait_ready(state->ops);
 }

Removing this function call was sufficient to fix the problem under consideration, but it
introduced another problem: print results were scrolled horizontally along the page with each
consecutive page being printed, which is not acceptable.

While studying comparison of Windows and CUPS sequences further, an unknown (never
documented before in capt-command.h file) command with the code E0A6 was discovered in
Windows command sequence. It has a single 16-bit argument that always equals 0 and returns a
single 16-bit word with the value of 0.

The command described above was placed into the send_job_start() function, which is called
once by lbp2900_job_prologue() function (shown in table 4). Another test job was sent to a
printer, and this time, the result finally came out absolutely normal, and the experiment goal was
reached.

Table 4. Excerpt from prn_lbp2900.c source file [1].

static void send_job_start()
{

uint16_t page = 1; /* nobody cares */
uint8_t nl = 16;
uint8_t fg = 0x01;
uint16_t job = 1; /* nobody cares */
time_t rawtime = time(NULL);
const struct tm *tm = localtime(&rawtime);
uint8_t buf[32 + 64 + nl];
uint8_t head[32] = {

0x00, 0x00, 0x00, 0x00, LO(page), HI(page), 0x00, 0x00,
0x10, 0x00, 0x0C, 0x00, nl, 0x00, 0x00, 0x00,
fg, 0x01, LO(job), HI(job), /*-60*/ 0xC4, 0xFF, /*-120*/ 0x88, 0xFF,
LO(tm->tm_year), HI(tm->tm_year), (uint8_t) tm->tm_mon, (uint8_t) tm->tm_mday,
(uint8_t) tm->tm_hour, (uint8_t) tm->tm_min, (uint8_t) tm->tm_sec,
0x01,

};
memcpy(buf, head, sizeof(head));
memset(buf + 32, 0, 64 + nl);
capt_sendrecv(CAPT_JOB_SETUP, buf, sizeof(buf), NULL, 0);

uint8_t dummy[2] = {0,0};

capt_sendrecv(0xE0A6, dummy, sizeof(dummy), NULL, 0);

}

3. Results

The support for LBP3000 printer was implemented in open-source CAPT driver, which can be
compiled and used on any modern Linux (and possibly different BSD) distribution, on any
machine architecture supported by those distributions. The compiled x86-64 binary CUPS filter
file is extremely lightweight compared to genuine CAPT driver's 25MiB software package, only
having a size of approximately 100KiB.

The resulting driver also accepts and naturally processes PostScript print jobs from different
operating systems, such as Windows, which allows to share such printer on a network from a
(typically) Linux-based print server or embedded appliance that has USB host interface and
supports Common Unix Printing System (such as USB-enabled Linux router, or a small ARM
development board, like Raspberry Pi, for example). It also enables to use IPP (Internet Printing
Protocol) to share printer over the network, which allows easy setup on client machines and
completely abstracts away client machines from specific printer drivers.

References

1. Galakhov, A. (2014). Driver for Canon CAPT printers. [Available at:
https://github.com/agalakhov/captdriver] [Accessed 08/04/2016].
2. Wikimedia Foundation, Inc. (2016). Canon Advanced Printint Technology. [Available at:
https://en.wikipedia.org/wiki/Canon_Advanced_Printing_Technology] [Accessed 08/04/2016].

