Список литературы

- 1. Gleiter H. Nanostructured materials: basic concepts and microstructure // Acta Materialia. 2000. V.48 P. 1-29.
- 2. Лотов В. А. Нанодисперсные системы в технологии строительных материалов и изделий // Известия ТПУ. 2007. т.311. №3. С. 84-88.
- 3. Фаликман В.Р. Наноматериалы и нанотехнологии в производстве строительных материалов // Строительные материалы. 2013. №9. С.77-81.
- 4. Шахов С.А. Применение ультразвука для интенсификации процессов формования (Обзор) // Известия вузов. Строительство. 2007. № 5. С. 111-118.
- 5. Агранат Б.А., Гудович А.П., Нежевенко Л.Б. Ультразвук в порошковой металлургии. Москва: Металлургия, 1986. 168 с.
- 6. Бергман Л. Ультразвук и его применение в науке и технике. Москва: изд. Иностранной литературы, 1956. 726 с.
- 7. Молчанов В.И., Юсупов Т.С. Физические и химические свойства тонкодисперсных минералов. Москва: Недра, 1981. 380 с.
- 8. Кузовников Ю.М. Интенсификация процесса разделения эмульсий и суспензий в полях высокоинтенсивных моночастотных и широкополосных ультразвуковых колебаний: автореферат кандидата технических наук: 05.17.08 Бийск: Алт. гос. техн. ун-т им. И.И. Ползунова, 2012. 167 с.
- 9. Шахов С.А. Гагарин А.Е. Реологические характеристики дисперсных систем, обработанных ультразвуком // Стекло и керамика. 2008. № 4. С. 19-21.
- 10. Шахов С.А., Плетнев П.М. Управление структурной организацией дисперсных систем с помощью дискретно импульсных энергетических воздействий // Конструкции из композитных материалов. 2009. № 4. –С. 70 74.

ВЛИЯНИЕ СТЕКОЛЬНОЙ СОСТАВЛЯЮЩЕЙ НА ПРОЦЕСС СПЕКАНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ LTCC

<u>Д.А. ПАШКОВ</u>, В.М. ПОГРЕБЕНКОВ Томский политехнический университет E-mail: pashk@tpu.ru

INFLUENCE OF GLASS COMPONENT FOR SINTERING PROCESS OF LTCC COMPOSITE MATERIALS

<u>D.A. Pashkov</u>, V.M. Pogrebenkov Tomsk Polytechnic University E-mail: <u>pashk@tpu.ru</u>

Annotation. In this work two BaO-ZnO-B₂O₃-SiO₂ glass-forming systems with different components content and similar properties were compared for using in LTCC materials. Glass-ceramics sintering characteristics and their phase composition were researched by hydrostatic weighing. Causes of the differences in properties of the composites based on two glasses were identified.

Введение. На сегодняшний день производство многослойных керамических устройств, построенных на LTCC (low temperature co-fired ceramics) материалах, являются перспективной и ресурсоэффективной технологией. LTCC, или низкотемпературные материалы совместного спекания, обладают целым рядом уникальных свойств из-за своего композиционного строения:

- низкие температуры (ниже 1000°C) и высокая скорость режимов обжига;
- работа в ВЧ и СВЧ диапазоне:
- совместимость с низкотемпературными проводниками Ag, Au, Pd, Cu;
- возможность 3D-интеграции, пайка, сварка и другие технологии по посадке кристаллов;
- экономическая эффективность по сравнению с другими многослойными керамическими технологиями.

LTCC по своему строению являются композиционными материалами на основе стекла и керамики. Объединение достоинств и исключение недостатков в композиции позволяют получать материалы с высокими эксплуатационными характеристиками.

LTCC материалы были разработаны в США и получили широкое распространение в Европе, США и Японии. Композиционные материалы LTCC можно классифицировать на 2 группы: кристаллические стекла (ситаллы) с большим содержанием закристаллизованной фазы и композиции из стекла и кристаллической фазы. Со временем ситаллы проявили ряд недостатков для использования в СВЧ и перспективным направлением стали композиты и стекла и керамики. Наиболее распространенным кристаллическим наполнителем является корунд α -Al₂O₃ ввиду большой доступности и высокой чистоты глиноземистого сырья [1].

В зарубежных трудах исследовано большое количество стеклообразующих систем для LTCC: PbO-CaO-Al $_2$ O $_3$ -SiO $_2$, BaO-B $_2$ O $_3$ -SiO $_2$ и др. На основании их анализа можно сделать выводы о многокомпонентности стеклообразующих составов (более 4 составляющих). Основным требованием к многокомпонентным стеклам является температура размягчения в диапазоне 850-900°C и низкое содержание оксидов, по которым могут идти потери в готовом композите (щелочные). При этом состав многокомпонентных стекол может быть переменным, поскольку большинство компонентов являются взаимозаменяемыми в малых количествах. Исследование влияния количественного содержания компонентов из одной группы стекол на свойства композиционных материалов LTCC на их основе является перспективной задачей.

Целью данной работы является синтез и установление закономерностей в изменении свойств композиционных материалов на основе корунда α -Al $_2$ O $_3$ и двух стекол из системы BaO-ZnO-B $_2$ O $_3$ -SiO $_2$ разного состава со схожими свойствами.

Методика эксперимента и исходные материалы. Исходными материалами для получения стеклокерамических композиций являлись стекло и кальцинированный глинозем марки Nabalox (Nabaltec, Германия). Данная марка глинозема была выбрана из-за высокой степени чистоты (99.8%) и высокого содержания α -Al₂O₃ (98%). Стекло было синтезировано на базе кафедры технологии силикатов и наноматериалов НИ ТПУ и отвечает ряду выбранных заранее свойств:

- температура в интервале вязкости с $log\eta = 6,7$ должна быть на уровне 850-900°C:
- температурный коэффициент линейного расширения (ТКЛР) стекла должен быть близок к ТКЛР корунда ($\alpha = 5 6*10^{-7}$ °C⁻¹).

Сырьевыми материалами для стекольной шихты были выбраны химические реагенты марок Ч, ЧДА и ХЧ, поскольку примеси вносят существенный вклад в свойства стекла и могут повлиять на его совместимость с керамической составляющей. Были выбраны стекольные системы, обозначенные через Si-56 и Si-60, оксидные составы которых приведены в таблице 1.

Таблина	1 —	Оксилні	ые составы	стекол	CAPS и	CBS.
т иозинци		Оксидии	ne cocrabbi	CICICON		CDD.

· · · · · · · · · · · · · · · · · · ·									
Оксиды в	SiO_2	B_2O_3	Al_2O_3	BaO	ZnO	Na ₂ O+K ₂ O			
составе стекол									
Содержание в	60,00	20,00	1,00	10,00	6,00	3,00			
стекла Si-60,									
мас.%									
Содержание в	56,00	17,00	1,00	13,00	10,00	3,00			
стекла Si-56,									
мас.%									

Свойства подобранных стекол были рассчитаны в компьютерной программе SciGlass на базе кафедры технологии силикатов и наноматериалов НИ ТПУ: для стекла Si-56 — температура размягчения $Tg=855,8^{\circ}C$, TKЛР $\alpha=5,09*10^{-6}$ ${^{\circ}C^{-1}}$, постоянная диэлектрической проницаемости $\epsilon=5,24$; для стекла Si-60 — температура размягчения $Tg=863,5^{\circ}C$, TKЛР $\alpha=4,69*10^{-6}$ ${^{\circ}C^{-1}}$, постоянная диэлектрической проницаемости $\epsilon=4,86$.

Варка стекла осуществлялась в корундовых тиглях в электрической печи вертикального типа при температуре 1430°С для обоих стекол. После охлаждения расплава была получена стекольная фритта, которую подвергли операциям дробления и мокрого помола. Помол проводился в фарфоровом барабане с корундовыми мелющими телами в растворе этилового спирта. Помол кальцинированного глинозема проводился в шаровой мельнице по сухому способу с добавлением ПАВ (олеиновая кислота).

После измельчения порошков стекол Si-56, Si-60 и глинозема был определен размер частиц на приборе ПСХ-2: d=2,56 мкм для кальцинированного глинозема; d=3,7 мкм для стекла Si-60, d=3,9 мкм для стекла Si-56. Истинная плотность стекол определялась пикнометрическим методом через вакуумирование в водном растворе и составила для стекла Si-56 – 2,650 г/см³, для стекла Si-60 – 2,486 г/см³.

Смешение компонентов композиции проводилось в планетарной мельнице с корундовыми шарами и футеровкой. Исходные порошковые материалы были взяты в соотношениях 40-60% стекла к 60-40% кальцинированного глинозема марки Nabalox с шагом в 5%. Образцы в виде цилиндров готовились методом одноосного прессования и обжигались при температурах 850, 875, 900°С с выдержкой 30 минут. Водопоглощение, кажущаяся плотность и общая пористость синтезированных материалов определялись методом гидростатического взвешивания с вакуумированием.

Обсуждение результатов. Синтезированные стеклокерамические материалы характеризовались следующими физико-химическими свойствами при изменении состава и температуры: для композиций со стеклом Si-56 усадка -6,33-10,93%; водопоглощение -0,48-8,34%; кажущая плотность -2286-2687 кг/м³; для композиций со стеклом Si-60 усадка -8,18-12,68%; водопоглощение -0,23-3,88%; кажущая плотность -2540-2844 кг/м³. Изменение относительной плотности композиций в диапазоне температур $850-900^{\circ}$ С отображено на рисунке 1.

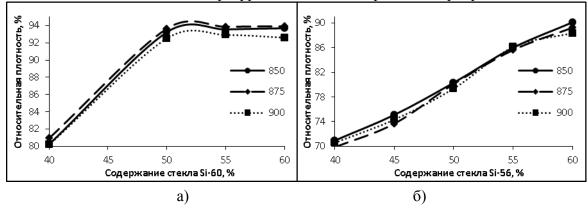


Рисунок 1. Зависимость относительной плотности от содержания стекол в композициях в интервале температур 850-900°С: а) для композиций со стеклом Si-60; б) для композиций со стеклом Si-55

Стекла из которых были составлены композиции с корундом α -Al₂O₃ обладают схожими вязкостными характеристиками в диапазоне температур 850-900°C, однако композиционные материалы на их основе обладают различными свойствами после обжига. Композиции со стеклом Si-60 спекаются до 94% относительной плотности и 12,49% усадки, со стеклом Si-56 до 89% относительной плотности и 10,82% усадки. Если рассматривать спекание композиционных стеклокерамических материалов с позиции изменения вязкости стекла и стягивания частиц кристаллической фазы по жидкофазному механизму, то характеристики после обжига должны быть одинаковыми. Различия в свойствах композитов синтезированных на основе исследуемых стекол говорит о более сложном характере процесса спекания и размягчения стекла в целом.

Изменение огневой усадки композиций в диапазоне температур 850 - 900° C отображено на рисунке 2.

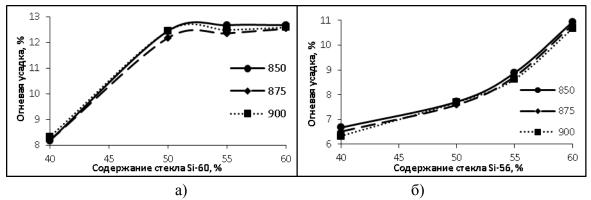


Рисунок 2. Зависимость огневой усадки от содержания стекол в композициях в интервале температур 850-900°С: а) для композиций со стеклом Si-60; б) для композиций со стеклом Si-55

Выводы. Физико-химические процессы, происходящие время температурной обработки в композиционных материалах на основе стекла и керамического наполнителя, носят более сложный характер ввиду особенностей строения стекла. Стекло является веществом, находящимся в метастабильном состоянии, то есть полученным переохлаждением расплава, и при нагревании проявляет свойства жидкости: изменение вязкости; изменение поверхностного натяжения, смачивание и адгезию к граничащей кристаллической фазе. Однако при последующем охлаждении в стекле происходит не только снижение вязкости, но и характера: особенности кристаллического проявляются склонность кристаллизации и изменение линейного расширения при температуре.

При размягчении стекла во время температурной обработки и изменении его вязкости начинается процесс жидкофазного спекания — расплав стекла смачивает и стягивает частицы корунда α -Al₂O₃ под действием сил поверхностного натяжения. Однако рассмотренный механизм на практике встречается крайне редко, и поскольку многокомпонентные стекла для LTCC являются легкоплавкими, то процесс жидкофазного спекания с большой вероятностью идет с растворением твердой фазы — корунда α -Al₂O₃. При этом увеличивается количество расплава, поскольку в момент стягивания твердых частиц происходит растворение контактных зон и дальнейшее сближение зерен [2].

Процесс спекания материалов LTCC нельзя рассматривать только со стороны изменения вязкости стекол входящих в их состав. Для оценки пригодности стеклообразующей системы необходимо комплексно оценить: 1) вязкость и поверхностное натяжение в температурном диапазоне; 2) склонность к кристаллизации; 3) ТКЛР; 4) количество твердой фазы, растворенной в стекле. Если провести комплексную оценку по всем параметрам для ряда стекол, то возможно выделить стеклообразующий состав, обеспечивающий максимальное спекание композиционного материала в дальнейшем.

Список литературы

- 1. Imanaka. Y. Multilayered LTCC Technology. Springer Science+Business Media, Inc., 2005. P.4-16.
- 2. Гузман И.Я. Химическая технология керамики. Изд-во РХТУ им. Д. И. Менделеева, 2003-119c.