

Рисунок 5- Схема модели отрыва электродной капли

После отрыва электродной капли дуга несколько удлиняется, вводится пауза, для того чтобы напряжение дуги снизилось до заданного напряжения горения дуги и затем процесс повторяется.

Выводы:

Разработанный процесс позволяет получать постоянный химический состав наплавленного металла, так как каждая капля расплавляется дозированным количеством энергии с постоянными параметрами и управляемый перенос электродного металла независимо от среднего значения сварочного тока.

Список информационных источников

1.Сварка порошковой проволокой. Под ред. И.К. Походня и др.-К.: Наукова думка,- 1972.-223 с.

ОСОБЕННОСТИ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ РЕЖИМА ПРИ КОНТАНКТНОЙ И ДУГОВОЙ СВАРКЕ

Зеленков А.А.

Томский политехнический университет, г. Томск Научный руководитель: Гордынец А.С., к.т.н., ассистент кафедры оборудования и технологии сварочного производства

Вектор развития источников питания для контактной и дуговой сварки направлен на улучшение их энергоэффективности, снижение массогабаритных показателей расширение технологических возможностей. В настоящее время это достигается благодаря высокочастотного преобразования использованию принципа электрической энергии [1]. В свою очередь, особое внимание уделяется повышению качества соединений, что достигается стабилизацией параметров режима сварки. Однако получение электрических сведений 0 быстропротекающих процессах достоверных электрической сварочной цепи является сложной задачей. В частности, регистрация истинного значения напряжения между электродами при дуговой и контактной сварке затруднена из-за отсутствия возможности непосредственного подключения к ним измерительных средств.

Таким образом, на практике приходится осуществлять измерения на некотором удалении от электродов, что вносит существенную погрешность за счет дополнительного падения напряжения на участках сварочной цепи.

В работе предложен метод дистанционного измерения напряжения на нагрузке при дуговой и контактной сварке, в основу которого положен принцип компенсации аддитивных помех.

Исследование проводили на экспериментальной установке для контактной сварки, функциональная схема которой приведена на рис. 1. В состав установки входят: цифровой синтезатор тока, датчик тока RS (i_2) в сварочной цепи, многофункциональное устройство сбора данных USB-6210 National Instrument и нагрузка, состоящая из индуктивности сварочной цепи (L_{cs}) , активного сопротивления (R_{cs}) и общего сопротивления металла между электродами (r_{39}) .

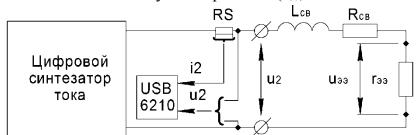


Рисунок 1 – Функциональная схема

Электромагнитные процессы в сварочной цепи описываются уравнением:

$$u_2 - L_{\text{\tiny CB}} \cdot \frac{di_2}{dt} - R_{\text{\tiny CB}} \cdot i_2 - r_{\text{\tiny 33}} \cdot i_2 = 0,$$

где u_2 – напряжение на клеммах подключения сварочной цепи, В;

 i_2 – ток сварочной цепи, А;

 R_{cb} – сопротивление сварочной цепи, Ом;

 L_{cb} – индуктивность сварочной цепи, Гн;

 r_{33} — общее сопротивление метала между электродами, Ом.

Из анализа уравнения следует, что напряжение измеряемое на клеммах подключения сварочной цепи (u_2) состоит из суммы падений напряжений на ее индуктивности $(L_{\mathtt{CB}} \cdot \frac{di_2}{dt})$, активном сопротивлении $(R_{\mathtt{CB}} \cdot i_2)$ и на общем сопротивление металла между электродами $(u_{\mathtt{J}\mathtt{J}})$. В работе была предложена структурная схема дистанционного измерения напряжения между электродами, которая представлена на рис. 2. При этом значение активного сопротивления $(R_{\mathtt{CB}})$ и индуктивности $(L_{\mathtt{CB}})$ сварочной цепи соответствовали 170 мкОм и 1,1 мкГн, соответственно.

В состав схемы измерения напряжения входят: умножители на константу (1 и 3), дифференциатор (2), сумматор (4) и фильтр низкой частоты (5). Необходимость использования фильтра низкой частоты обусловлена высокой частотой коммутации сварочного тока.

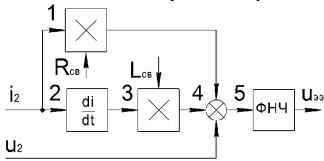


Рисунок 2 – Структурная схема измерения напряжения

Предложенный метод измерения напряжения был реализован в табличном процессоре *Microsoft Excel 2010*.

В качестве входных данных использовали амплитудно-временные параметры импульса тока i_2 в цепи нагрузки и напряжение u_2 на клеммах подключения сварочной цепи, зарегистрированные с периодом дискретизации 10 мкс (рис. 3). Численное дифференцирование значений тока i_2 производили по формулам центральной разностной производной [2]. Фильтрацию данных производили по уравнению экспоненциального сглаживания [3].

Расчетное значение падения напряжения на элементах цепи нагрузки $(L_{\tt CB} \frac{di_2}{dt}, R_{\tt CB} i_2)$ представлены на рис. 4, а изменение напряжения между электродами $(u_{\tt 39})$ на рис. 5.

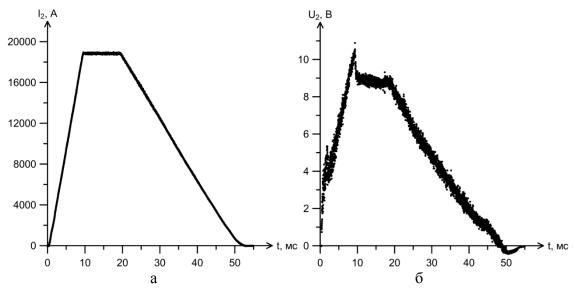


Рисунок 3 — Амплитудно — временные параметры входных данных: а — ток i_2 ; б — напряжение u_2 .

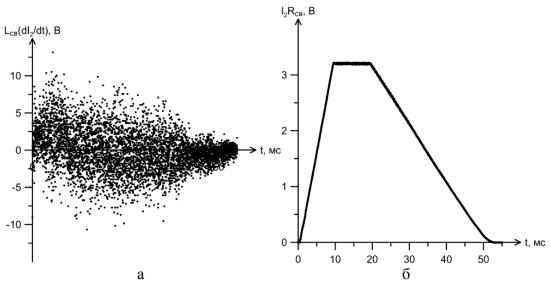


Рисунок 4 — Расчетное значение падения напряжения: а — на индуктивности L_{cs} ; б — на сопротивление R_{cs} .

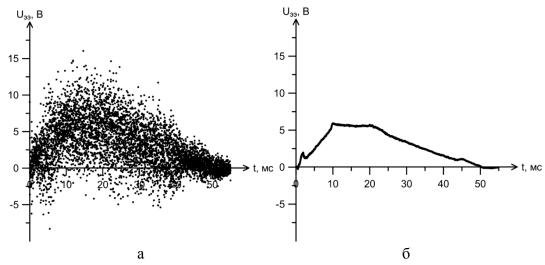


Рисунок 5 — Напряжение между электродами: а — до применения ФНЧ; б — после применения ФНЧ.

Сравнительный анализ временных диаграмм изменения напряжения в точках подключения цепи нагрузки (рис. 3 б) и после обработки, согласно предложенной схеме (рис. 5 б) показал, что предложенный метод измерения напряжения позволяет избавиться от влияния индуктивности в полезном сигнале и его зашумленности.

Таким образом, предложенный метод дистанционного измерения напряжения на нагрузке позволяет компенсировать аддитивные помехи и может быть рекомендован для использования в современном сварочном оборудовании.

Список информационных источников

- 1.Милютин В.С., Шалимов М.П., Шанчуров С.М. Источники питания для сварки. М.: Айрис-пресс, 2007. 384 с.
- 2. Самарский А.А., Гулин А.В. Численные методы. – М.: Наука, 1989. – 432 с.
 - 3.Лэм Г. Аналоговые и цифровые фильтры. М: Мир, 1982. 592 с.