
XX International conference for students and young scientists «MODERN TECHNIQUE AND TECHNOLOGIES»
Section 7: Informatics And Control In Engeneering Systems

SIMULATION AND VISUALIZATION OF WATER FLOW USING GRAPHICAL
PROCESSING UNITS (GPUs)

Rud M.N., Duseev V.R.
Scientific supervisor: Malchukov A.N., Ph.D.

Language supervisor: Butakova T.I.
Tomsk polytechnic university, 634050, Russia, Tomsk, Lenin Avenue, 30

E-mail: rudmax13@gmail.com

Introduction

One of the most complicated and challenging
problems for rendering realistically looking terrain is
water simulation. Below are some popular methods to
perform this task:

1) Procedural water. It simulates the visual
effects of water surface, but not the water physics.
This approach is suitable for large unbounded
surfaces simulation, such as oceans. The most realistic
results were obtained by J. Tessendorf in 2004.

2) Smooth particle hydrodynamics. In this
method water is represented by set of particles; the
approach perfectly fits for simulating spray,
splashing, and runnels. It is computationally
expensive and not suitable for simulating rivers, lakes
and oceans.

3) Height fields. The method represents water
surface as a 2D-function (,)z f x y= . The advantage
of this approach is transition from 3D-volume to 2D-
surface, and, as a consequence, reduction of
computational complexity. However, there is no
possibility to simulate breaking waves, because at
each point of surface there is only one height value.

The above methods have some advantages and
disadvantages; it is necessary for a researcher to make
the appropriate choice of the method according to the
task, programming, mathematics skills and hardware
resources.
Task
 Our task is to develop a water model to be used on
Interactive Sandbox, an installation for real-time
terrain generating [4]. A good-looking and physically
correct liquid model will add realism and
functionality to the installation.

For our purpose, we need the water model, which
satisfies the conditions below:

1) it provides realistic appearance of water;
2) water interacts with terrain and adapts to its

changes in real time; во время?
3) it is computationally as inexpensive as

possible.
4) it allows simulating other liquids, for

example, volcanic lava.
Shallow water equations

Shallow water equations (also called Saint Venant
equations) are a set of hyperbolic partial differential
equations describing the dynamics of a thin fluid
surface in terms of its height and flow.

Figure 1. Shallow water equations

 Here h is the water depth, hu is the discharge along
the x-axis, hv is the discharge along the y-axis, g is the
gravitational constant, and B is the bathymetry (see
Figure 1).

Figure 2. Variables for shallow water equations in 1D

 The usage of shallow water equations has some
limitations. As mentioned above we cannot simulate
breaking waves and splashing particles, however, this
method is perfect for modelling water domains whose
surface area is much greater than its height. With the
help of shallow water equations we can simulate not
only small lakes, rivers, puddles, pools and ponds but
also large surfaces of water.
Numerical scheme
 We are interested in a simple, accurate, and robust
numerical method for the Saint-Venant system. A
good numerical method for the system should
accurately capture both the steady states and their
small perturbations (quasi-steady flows). From
practical point of view, one of the most important
steady-state solutions is a stationary one (lake at rest):

u=0, h+B=Const.

 Methods having this property are called well
balanced.
 In addition, the method should handle dry (h = 0)
or near dry zones (positivity preserving property). In
these cases, due to numerical oscillations, h can
become negative and all computations can simply
break down.
 Such a method which is both well-balanced and
positivity preserving was suggested by A. Kurganov
and G. Petrova in 2007 [2]. The system of differential
equations is discretized on a regular Cartesian grid
using the so-called central upwind scheme (Figure 3):

303

mailto:tmag@sibmail.com

XX International conference for students and young scientists «MODERN TECHNIQUE AND TECHNOLOGIES»
Section 7: Informatics And Control In Engeneering Systems

Figure 3. Central upwind scheme of discretization

 Here ()j tU is a two-component vector of
conserved quantities w and hu (three-component
vector in case of 2D), where w is a sum of water
height and bathymetry height at the point, and hu is
the discharge along the x-axis. ()j tS is an appropriate
discretization of the cell averages of the source term,
and 1/2 ()j t+H is a central-upwind numerical flux along
the x-axis.
 After obtaining all necessary values, this system
can be solved using a second order stability
preserving Runge-Kutta method.

1

(();

1 ((());
2 2

n n
j j j

n
jn

j j j

U U t R U

U
U U t R U

∗

+ ∗ ∗

= + ∆

= + ⋅ + ∆
,

where ()jR U is the right part of equation in Figure 3.
Implementation using GPU
 Unfortunately, implementation of Kurganov-
Petrova scheme on CPU does not give us satisfactory
results. Intel Core i5 processor can calculate only 50
vertices in each direction with acceptable frame rate
(30 frames per second). This is not enough for two
reasons: firstly, the surface is not smooth and does not
look good enough, and, secondly, Kinect sensor that
is used in Interactive sandbox produces the height
map with resolution at least 320 x 240 points, so we
need to obtain the appropriate resolution in water
calculations.
 GPUs have in recent years developed from being
hardware accelerators of computer graphics into high-
performance computational engines.
 In our case we can use computations on GPU to
implement Kurganov-Petrova scheme in parallel. We
divide the entire algorithm into four stages. At each
stage we perform calculations for each vertex
independently from others. That is exactly how GPU
can be used in non-graphic computations.
 To implement the algorithm we use graphics API
OpenGL and its feature called Frame buffer object.
We use the first program to perform the first stage of
algorithm in parallel for each vertex (the program
performed on GPU is called shader). Then this data is
used to fill the texture which can be used at the
second stage. After all four stages proceed, we obtain
the solution, which includes water height at this point,
and use this value to render water surface.
Visualization
 To visualize the liquid surface we use some well-
known and not very computationally expensive
techniques, which, nevertheless, give very good
results.

1. To compute lighting we use standard ADS-
model (which divides the light into three components
– ambient, diffuse and specular);

2. We use skybox texture to simulate the effect
of real environment around the scene.

3. For water to look realistically we use
reflections of skybox and of terrain part which is
above the water surface. To perform this we render
the scene with terrain into the texture and then apply
this texture to the water to obtain reflection.

4. As in real life, in our implementation water
transparency depends on its height.
Blending liquids
 Algorithm allows simulating two or more liquids
on terrain simultaneously. Computations for them are
performed in parallel, so there is no reduction of a
frame rate. We cannot simulate physical interaction of
fluids without particle system, but usage of specially
computed color blending factor gives good visual
results.
Results
 The result of rendering can be seen in Figure 4.

Figure 4. Final result of rendering

 The water surface has resolution 320 x 240,
obtained frame rate was 40 frames per second. The
program was tested on the notebook with Intel Core i5
processor and NVIDIA GeForce 640M video card.
The developed user interface allows user to add water
in certain points with a mouse, change terrain, move
lighting source, and tune water visualization to make
it more transparent, and etc.

References
1. A. Kurganov and G. Petrova, “A second-order

well-balanced positivity preserving central-upwind
scheme for the Saint-Venant system,”
Communications in Mathematical Sciences, vol. 5,
pp. 133–160, 2007.

2. A. R. Brodtkorb, M. L. Sжtra, and M.
Altinakar, “Efficient shallow water simulations on
GPUs: Implementation, visualization, verification,
and validation” 2010.

3. D. Shreiner, M. Woo, J. Neider, and T. Davis,
OpenGL Programming Guide: The Official Guide to
Learning OpenGL, 6th ed. Addison-Wesley, 2007.

4. Rud M., Duseev V., “Creating interactive
visualization system”, TPU, 2013.

304

